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Filtering states with total spin on a quantum computer
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Starting from a general wave-function described on a set of spins or qubits, we propose several quantum
algorithms to extract the components of this state on eigenstates of total spin S2 and its z component Sz. The
method plays the role of total spin projection and gives access to the amplitudes of the initial state on a total spin
basis. The different algorithms have various degrees of sophistication depending on the requested tasks. They can
either solely project onto the subspace with good total spin or completely uplift the degeneracy in this subspace.
In the former case, when the projection on the total spin j is made, we show that the number of operations for
the projection can be reduced from a quadratic to a linear dependence in j. After each measurement, the state
collapses to one of the spin eigenstates that could be used for postprocessing. For this reason, we call the method
total quantum spin filtering.
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I. INTRODUCTION

Quantum many-body systems interacting strongly can
spontaneously break symmetries [1,2]. To quote some phys-
ical examples presenting spontaneous symmetry breaking, we
mention the Cooper pairing in superfluid systems, which can
be treated by breaking the U(1) symmetry associated with the
particle number conservation [3–6]. Another historical exam-
ple is the case of spin chains where different spontaneous spin
orientations can take place [7]. In some cases, like in atomic
nuclei, several symmetries can be broken simultaneously, like
parity, U(1) symmetry (particle number conservation), rota-
tional symmetry, and so on to unveil the richness of such
mesoscopic systems [8–10].

A practical way to incorporate such symmetry breaking
(SB) in the mean-field or Hartree-Fock (HF) approaches is to
utilize the many-body trial wave-functions in the variational
method, that do not respect all symmetries of the problem
under interest. Such SB states are very powerful tools to
grasp the complex internal correlations without requiring to
go beyond the mean-field approximations.

Although the SB wave-function in variational methods can
be used to treat the complex internal correlations, a precise
description of physical systems requires the restoration of bro-
ken symmetries [1]. The first reason is that the experimental
observations generally reflect the properties of quantum states
respecting symmetries of the Hamiltonian, while the SB states
correspond to a mixing of different “true” channels. Sec-
ond, symmetry restoration (SR) is a practical way to include
quantum fluctuations beyond the mean-field [1,2]. Such quan-
tum fluctuations can be seen as a mixing of different SB states.
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In practice, with conventional (i.e., classical) computers, SR
can be performed using the projection techniques [1,8–10].
The projected wave function can then be used directly to com-
pute the energy or more generally spectroscopic properties,
leading to the so-called projection-after-variation (PAV) tech-
nique [9,10]. In a more challenging way, the SR wave function
itself can be used as a trial state for the further reduction
in steps of the variational method leading to the variation-
after-projection (VAP) technique. The VAP technique is at the
forefront of what can be done today and becomes especially
complicated to perform when several symmetries are broken
[10] initially.

The SB-SR is a ubiquitous technique for the description
of many-body systems. Part of its success comes from the
fact that SR wave-function generally corresponds to strongly
entangled many-body states that properly incorporate the
symmetry properties of quantum systems. Given the success
of the SB-SR technique on classical computers, it is inter-
esting to explore the possibility to construct these states on
quantum computers with the aim to use them in quantum
variational techniques [11–17].

Besides the applications to the physical systems mentioned
above, the possibility to prepare entangled states respect-
ing specific symmetries might have wider applications in
quantum computing. Indeed, the wave functions prepared by
some widely used quantum algorithms, like the hardware
efficient ansatz (HEA) [18], qubit coupled cluster [19], (QEB-
ADAPT)-VQE [20] to quote some of them, are not necessarily
eigenstates of the particle number or total spin. The projection
method presented here can be used in combination with these
techniques.

The direct construction of such states using quantum cir-
cuits has already been explored for some symmetries like
U(1) symmetry associated with particle number conservation
[21,22]. The problem of constructing eigenstates of the total
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spin directly was also considered. For example, an efficient
quantum algorithm based on the Schur transformation was
proposed in Ref. [23] (see also Refs. [24–27]). The construc-
tion of eigenstates of the total spin on a quantum computer
has attracted a lot of attention primarily due to its usefulness
in quantum many-body problems appearing in physics and
chemistry [15]. Significant efforts are being made currently
to prepare many-body states on quantum computers that au-
tomatically preserve the spin symmetry [22,28–31], intending
to obtain more optimal states that can be used in variational
calculations.

As an alternative to the direct method, we explore here the
possibility to use SB followed by SR in two steps for the
problem of projection onto the total spin. Some discussions
related to the formulation of the SR on quantum computers
using projection techniques can be found in Refs. [21,32–
36]. Our work is a continuation of Ref. [36], where a method
based on the measurement of ancillary qubits is used to project
the wave-function and restore the symmetry. In Ref. [36], an
application is explored for the restoration of the number of
particles, where only a single projection is necessary.

Some advantage of the quantum algorithm compared with
its equivalent on classical computers is that (i) it can a pri-
ori be applied to a very large Hilbert space, provided that a
large number of qubits can be manipulated; (ii) it avoids the
calculation of integrals [8,9] that might be tedious, especially
when multiple projections are performed simultaneously. At
variance, in the quantum algorithm, a projection of the system
is made after each measurement, and (iii) the same circuit
gives parallel access to the projections on different sub-Hilbert
spaces associated with different particle numbers. We discuss
here how the method can be adapted to a more complex
problem such as the spin projection. One evident motivation
of the present work is the development of the projection
algorithm that can be used as a preprocessing prior to the
use of variational methods. Second, the projection on spins is
also an important intermediate step for treating more complex
systems, like atomic nuclei, with spin-orbit coupling.

The algorithms we present below play the role of SR and
can be seen as a filter for the symmetry-restored components.
For this reason, we call it the total quantum spin filtering
(TQSf) technique.

II. QUANTUM ALGORITHMS FOR THE PROJECTION
ON TOTAL SPIN

Our starting point is an ensemble of n particles labeled by
i with two components, spin up (+) and spin down (−). The
spin components of the particles are encoded on a set of qubits
{|si〉}i=0,n−1 (with si ∈ {0, 1}) with the convention |0i〉 = |+〉i

and |1i〉 = |−〉i. The basis formed by the states {⊗i=0,n−1 |si〉}
is called natural basis (NB) below. The total spin operator
of the system is defined as S = ∑

i Si, where Si denotes the
spin operator associated with the particle i that is linked to
the standard Pauli matrices through Si = 1

2 (Xi,Yi, Zi ). These
three operators are completed by the identity operator Ii.

The eigenstates of the commuting variables S2 and Sz also
form a complete basis for the Hilbert space of n qubits. We
call this basis below the total spin basis (TSB). The possi-
ble eigenvalues of S2 and Sz are given by S(S + 1) and M

(assuming h̄ = 1), respectively, with the constraints S � n/2
and −S � M � +S. The TSB is widely used in physics and
chemistry. Its properties can be found in textbooks [37–39].

In the natural basis, the system is described by the wave
function

|�〉 =
∑

si∈{0,1}
�s1,...,sN |s1, . . . , sn〉. (1)

We consider here a system described by a Hamiltonian that
commutes with both S2 and Sz. Therefore, the eigenstates
of the Hamiltonian are also eigenstates of the total spin
components. The goal of the present work is to discuss quan-
tum algorithms that project this state on eigenstates of the
total spin.

Let us introduce the set of projectors P[S,M] that projects
on the subspace associated with the eigenvalues (S, M ). Our
first objective is to obtain the amplitudes of the initial state de-
composition AS,M ≡ 〈�|P[S,M]|�〉 and eventually obtain one
of the projected normalized states given by

|�S,M〉 = A−1/2
S,M P[S,M]|�〉.

To achieve this objective, we apply the technique proposed
in Ref. [36]. We consider two separate operators US and
Uz, allowing for the discrimination of S2 and Sz eigenvalues
when used in the quantum phase estimation (QPE) algorithm
[40–43]. As a result, the projection on the states |�S,M〉 is
automatic when the ancillary qubits used in the QPE are
measured.

The operators used to discriminate the different compo-
nents are taken as US/z = e2π iαS/z (n)OS/z , where OS and Oz are
operators with known eigenvalues. The eigenvalues, denoted
by {λS

i } and {λz
i }, are proportional to those of S2 and Sz, respec-

tively. Furthermore, αS (n) and αz(n) should be chosen in a
very specific way. These parameters should ensure that, for all
eigenvalues, the quantities αx(n)λx

i verifies 0 � αx(n)λx
i < 1

and that these quantities always correspond to a binary frac-
tion with a finite number of terms. Moreover, denoting the
number of extra ancillary qubits used in the QPE by nS and nz,
respectively, for US and Uz, these numbers should be chosen as
the minimal values such that 2nx αx(n)λx

i are positive integers
for all eigenvalues.

There is some flexibility in the choice of both US and Uz.
First, we consider the total Sz component. This component
verifies

Sz = N0 − N1 with N0 + N1 = nI,

where N0 = 1
2

∑
k (Ik + Zk ) [N1 = 1

2

∑
k (Ik − Zk )] is the oper-

ator that counts the number of 0 (the number of 1 in the state).
Sz, N0, and N1 are commuting operators, and the states of the
natural basis are eigenstates of these operators. To select the
states with good particle number or, equivalently, eigenstates
of Sz, we use the QPE applied on N1. With the constraint listed
above, a convenient choice is

Uz = exp

{
2π i

N1

2nz

}
. (2)

The eigenvalues of N1 range from zero to n. Accordingly,
the minimal possible value for nz is such that nz > ln n/ ln 2.
With this choice, the filtering of states with respect to the
eigenvalues of Sz becomes strictly equivalent to the particle
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FIG. 1. Schematic illustration of the circuit used in the present
work to project the states onto eigenstates of the total spin S2 and Sz

number projection illustrated in Ref. [36]. Therefore, in the
natural basis, Uz is given by a product of phase operators

Uz =
∏

k

[
1 0
0 eiπ/2nz−1

]
k

.

We now consider the projection on total spin S2. For n
qubits, the eigenvalues of this operator are positive and verify
λS � n(n + 2)/4. Depending on the fact that n is even or odd,
we propose the following forms of U e

S and U o
S :

U e
S = exp

{
2π i

S2

2nS+1

}
, U o

S = exp

{
2π i

(S2 − 3/4)

2nS

}
. (3)

The number of ancillary qubits has the constraints

nS >
ln k(k + 1)

ln 2
− 1 (even), nS >

ln k(k + 2)

ln 2
(odd),

(4)

respectively, for even n = 2k and odd n = 2k + 1 cases.
In practice, to compute the operators U e

S and U o
S , we use

the standard formula [44]

S2 = n(4 − n)

4
I +

n−1∑
i<i′,i′=0

Pii′ , (5)

which generalizes the Dirac identity originally derived for two
spins in Ref. [45]. The set of operators Pii′ are the transposition

operators given by

Pii′ = 1
2 (I + XiXi′ + YiYi′ + ZiZi′ ).

We have in particular Pii′ |δiδi′ 〉 = |δi′δi〉 and P2
ii′ = I . With the

formula given in Eq. (5), the well-known link between total
spin operator and the permutation group becomes explicit
[39]. Some aspects of transpositions and their use in directly
constructing states with good total spins were discussed in
Ref. [31]. In the quantum computing context, the transposition
operators are nothing but the SWAP operators. In the present
work, we implement the US operators [Eq. (3)] by using the
Trotter-Suzuki decomposition technique [15,46] based on the
expression given by Eq. (5) and by noting that

eiαPii′ = cos(α)I + iPii′ sin (α). (6)

A schematic diagram of the circuit to perform the simultane-
ous selection of eigenstates of Sz and S2 is shown in Fig. 1.

The method proposed here is tested by using the IBM
toolkit qiskit [47]. We show in Fig. 2 the amplitudes ob-
tained for a system described on n = 4 qubits by measuring
the ancillary qubits of the circuit shown in Fig. 1 for two
examples of initial states. For such a small number of qubits,
the decomposition in terms of the |�S,M〉 can be obtained
analytically. We have checked that the amplitudes obtained
with the measurement are consistent with the analytical ones
within the errors due to the finite number of measurements.

We can further analyze the results obtained. Results dis-
played in Fig. 2(a) correspond to an initial state that is
completely symmetric with respect to any permutation of
the qubit indices. Consequently, it only decomposes on state
|�S,M〉 that also has this property. Such states correspond to
the states with the maximal possible eigenvalue of S2, i.e., in
our case, S = 2. In the context of group theory, the irreducible
representation associated with the TSB can be represented by
the Young tableau [37–39] with a maximum of two rows.
Fully symmetric states are those represented with a single
row. For a general initial state with n qubits given by |�〉 =∏n−1

k=0 Hk|0〉, its decomposition onto the TSB will be given by

|�〉 =
n∑

k=0

√
pk|�S=n/2,Sz=n/2−k〉, (7)

FIG. 2. Illustration of the results obtained for a system described on n = 4 qubits. In this case, the optimal choice for the number of
ancillary qubits are nS = 2 and nz = 3. Results are obtained for an initial state |�〉 = ∏3

k=0 Hk |0〉 [panel (a)] and |�〉 = X1X3
∏3

k=0 Hk |0〉
[panel (b)] using the qiskit software with 105 shots of the qasm simulator. Here Hk denotes the Hadamard gate.
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where k is the eigenvalue associated with N1. For this specific
initial state, the amplitudes pk are equal to Ck

n/2n identifying
with a binomial distribution (with p = q = 1/2). In the large-
n limit, this probability will tend to a Gaussian probability.

We now come to the main goal of the present algorithm.
When measurements are performed on the two sets of ancil-
lary qubits respectively associated with US and Uz, after each
measurement labeled by (λ), the total wave function |� (λ)

f 〉
identifies with

∣∣� (λ)
f

〉 = |S(λ)〉 ⊗ |M (λ)〉 ⊗ |�S(λ),M (λ)〉. (8)

Here, S(λ) (M (λ)) should be interpreted as the binary number
obtained by measuring the ancillary qubits associated with
US (Uz) in the event λ. So, after the measurement, the wave
function |� (λ)

f 〉 is an eigenstate of both the total spin and its
azimuthal component. Said differently, the circuit represented
in Fig. 1 plays the role of a funnel that lets only one compo-
nent (S, M ) pass at each event. The circuit therefore acts as as
a projector that restores the total spin symmetry.

The values (S(λ), M (λ) ) might change at each measurement
unless the initial state is already an eigenstate of the total
spin operators. In general, the outcome of the circuit can be
controlled solely through the control of the initial state (1).
Consecutively, the projected state can be used for postpro-
cessing. A direct application of the present method in physics
or chemistry is to study spin systems that encounter spon-
taneous symmetry breaking associated with a preferred spin
orientation. If we assume that the initial state depends on a set
of parameters {θi}i=1,g, the symmetry-restored state can then
be used in variational approaches both prior (projection after
variation) or after the projection (projection before variation)
(see, for instance, Refs. [1,8]).

The circuit of Fig. 1 helps in achieving our first objective,
which is the preparation of states with good total spin and total
z projection. This technique also works if the initial state is not
fully symmetric with respect to the permutation of qubits. An
example of such application is given in Fig. 2(b). As we see,
in this case, the states will also have components of total spin
with S < n/2, i.e., the states corresponding to a Young tableau
with two rows. There is, however, a difference between the
fully symmetric (FS) case and the other cases. In the FS
case, the Hilbert space associated with the eigenvalues (S, M ),
denoted by HS,M , contains only one eigenvector of S2 and Sz.
In other cases, i.e., for HS,M with S < n/2, the Hilbert space
contains an ensemble of degenerate eigenstates. For instance,
in the n = 4 qubit case, the space H0,0 contains two states,
while H1,M with M = −1, 0, 1 contains three states. We de-
note by d(S,M ) the size (degeneracy) of the HS,M Hilbert space.
In the degenerate case, the system state in Eq. (8) obtained
after measuring the ancillary qubits will be an admixture of
the different eigenstates, where the mixing coefficients will
directly reflect the relative proportion of the degenerate states
in the initial wave function.

III. CALCULATION OF INITIAL STATE DECOMPOSITION
ON THE COMPLETE TOTAL SPIN BASIS

Let us now consider a complete basis formed by eigen-
states of S2 and Sz. We denote one element of the basis by

|S, M〉g. The indices g = 1, dS,M are introduced to dissociate
different states belonging to the space HS,M . The system’s
initial state |�〉 can be decomposed as

|�〉 =
∑
S,M

dS,M∑
g=1

cg
S,M |S, M〉g. (9)

When dS,M = 1, the state |S, M〉1 will be identical with the
state |�S,M〉 introduced previously. Otherwise, |�S,M〉 is an
admixture of the states |S, M〉g. Here, we intend to generalize
the circuit proposed in Fig. 1 in order to obtain the amplitudes
|cg

S,M |2 and to obtain directly the amplitude of the initial-state
basis on the complete TSB formed by the states |S, M〉g.

Coming back to the Young tableaux representation, all
states that are not fully symmetric have two rows. Let us
assume that these states correspond to l1 and l2 blocks on the
first and second row, respectively (with l2 � l1 and l1 + l2 =
n). The associated total spin corresponds to S = (l1 − l2)/2.
The different |S, M〉g have the same (l1, l2) but differ in their
symmetries with respect to the exchange of qubits. Each
state can be associated with a different sequence of Young
tableaux when including each spin or qubit one after the
other [37,48,49] (see, for instance, Fig. 4 of Ref. [49]). The
sequence of the Young tableau can be seen as an iterative
procedure, where the total spin of n qubits is obtained by
coupling one spin at a time. Starting from one spin, a second
spin is added and an eigenstate of the operator S2

[2] is obtained.
Here, the subscript “[2]” indicates that the operator refers only
to the first two spins. Consecutively, a third spin is coupled to
find an eigenvector of S2

[3], and so on, until the eigenstate of
S2

[n] is obtained [48,49]. For a system with n qubits exactly,
S2

[n] identifies with the total spin S2 defined previously. In the
following, we denote the total spin eigenvalue for the first
k qubits by S[k] such that the eigenvalue of S2

[k] is equal to
S[k](S[k] + 1).

As an illustration, we consider the n = 4 case used in
Fig. 2. The states |1, M〉 can be generated by the three
sequences of Young tableau given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −→ 1 2 −→ 1 2 3 −→ 1 2 3
4

path (a)

1 −→ 1 2 −→ 1 2
3

−→ 1 2 4
3

path (b)

1 −→ 1
2

−→ 1 3
2

−→ 1 3 4
2

path (c)

(10)

(10)

Omitting S[1] that is always equal to 1/2, the three sequences
in Eq. (10) correspond to the set of eigenvalues for [S[2] →
S[3] → S[4]] respectively given by (a) [1 → 3/2 → 1], (b)
[1 → 1/2 → 1], and (c) [0 → 1/2 → 1].

There are several important properties to be recalled here.
First, there is a one-to-one correspondence between the Young
tableaux sequence and a state of the irreducible representation.
Second, the state constructed by a Young tableaux sequence
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FIG. 3. Illustration of the circuit used to obtain the amplitudes
|cg

S,M |2. After each measurement, the final state of the system col-
lapses to one of the states of the irreducible representation |S, M〉g.

has a “memory” of its path, i.e., it is an eigenvalue of the full
set of operators S2

[2], . . . , S2
[n] along with the total Sz compo-

nents. This last property gives us a direct way to generalize the
circuit given in Fig. 1 and obtain the amplitudes in Eq. (9). A
brute-force technique consists of introducing a set of ancillary
qubits and perform independent QPEs for all the operators S2

[ j]
together with the QPE associated with the total Sz component.
In practice, the QPE on a specific total spin S2

[ j] is associated to
a unitary operator denoted by U[ j], which can be constructed
in a similar way as the operators defined in Eq. (3) depending
on whether j is odd or even. The operators U[ j] are deduced
simply by replacing S2 with S2

[ j] and by optimizing the number
of ancillary qubits n[ j] according to the accessible eigenvalues
of S2

[ j] as prescribed in Eq. (4).
The corresponding circuit is shown in Fig. 3. This circuit

is implemented to perform calculations utilizing qiskit [47],
and the results obtained for the same condition as in Fig. 2(b)
are shown in Fig. 4. We see in this figure that the amplitudes

FIG. 4. Results obtained for a system described on n = 4 qubits
with the same initial state as in Fig. 2(b) but using the circuit shown
in Fig. 3. The degeneracy in the components of states |1, −1〉, |1, 1〉,
and |0, 0〉 is uplifted, leading to three, three, and two separated
components, respectively. The probabilities along vertical axis are
the amplitudes |cg

S,M |2.

associated previously with the two components |�1,M〉 with
M = −1, 1 have now systematically split into three ampli-
tudes corresponding to the three states |1, M〉g=1,2,3. Similarly,
the component associated with |�0,0〉 is now separated into
the two contributions |0, 0〉0 and |0, 0〉1. Here, again, the
algorithm has been validated by confronting the amplitudes
obtained numerically with the analytical ones. Finally, we
mention that the outcome of the circuit after each mea-
surement is one of the states of the irreducible total spin
representation.

A. Reducing the circuit depth of the total quantum spin
filtering method

The brute-force generalization of the algorithm to project
a given state onto one of the irreducible representations of
the total spin requires a rather larger number of operations
and of ancillary qubits. As seen in Eq. (5), the number of
transpositions in S2

[ j] is equal to j( j − 1)/2. Therefore, if the
Trotter-Suzuki technique is employed to simulate the operator
U[ j], the exponential appearing in this operator have a priori
also to be split into j( j − 1)/2 terms showing that the decom-
position scales quadratically with j. To reduce the numerical
efforts, we first note that the states |S, M〉g are also eigenstates
of the difference S2

[ j] − S2
[ j−1] for 2 � j � n. Since we have

S2
[ j] − S2

[ j−1] = 5 − 2 j

4
+

∑
i< j

Pi j, (11)

we finally remark that these states are the eigenstates of the
set of simpler operators given by

H[ j] =
∑
i< j

Pi j, (12)

for j = 2, . . . , n. The eigenvalues of a given operator H[ j] are
integers and lie in the interval [−1, j − 1]. The set of eigenval-
ues of the H[ j] also uniquely defines a state of the irreducible
representation. If we denote an eigenvalue of H[ j] by h[ j],
the three different paths displayed in Eq. (10) correspond to
the sequences [h[2] → h[3] → h[4]] respectively given by (a)
[+1 → +2 → −1], (b) [+1 → −1 → +2], and (c) [−1 →
+1 → +2]. Therefore, they can be used as an alternative of
the S2

[ j] in the previous algorithm. A proper choice of the U[n]

is then

U[n] = exp

{
2π i

[H[ j] + 1]

2n[ j]

}
, (13)

where n[ j] is optimally chosen as the minimal value of n[ j]

verifying for j � 2

n[ j] >
ln ( j − 1)

ln 2
. (14)

The use of H[ j] instead of S2
[ j] has two practical advantages.

As seen from Eq. (12), these operators contain only ( j −
1) transpositions, and therefore the number of terms in the
Trotter-Suzuki method will scale linearly with j compared
with the quadratic number of terms for S2

[ j]. This reduction
from quadratic to linear scaling is a significant improvement
in the algorithm proposed here compared with the original
one. In addition, the number of ancillary qubits n[ j] obtained
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from the condition given in Eq. (14) will also be much lower
than the one obtained from the previous condition given in
Eq. (4) when j increases. We have also implemented the TQSf
approach based on the operators {H[ j]} for the illustration
given in Fig. 4 and have obtained strictly the same results (not
shown here) but with fewer operations.

B. Total quantum spin filtering method based on sequential
measurements technique with minimal quantum resources

In the previous discussion, we have explored the possibility
of obtaining the amplitudes of any state on the total spin basis
by performing the simultaneous measurements of a set of
ancillary qubits. These measurements give a snapshot of the
paths of each total spin eigenvectors in the so-called sequential
construction of the state.

As underlined in Ref. [48] and further discussed recently
in Refs. [27,49], one can associate a binary number to each
path representing directly the increase or decrease of the total
spin components or Young tableaux construction (see Fig. 4
of Ref. [49]). Thus, considering the three examples of paths in
Eq. (10) again, the different paths can indeed be represented
by (a) [↗↗↘], (b) [↗↘↗], and (c) [↘↗↗] that can be
associated with the three binary numbers 110, 101, and 011,
respectively.

A possible manner to directly encode the increase or
decrease of the total spin on a single qubit is to find an
appropriate operator to encode this property. Let us assume
that we have j − 1 qubits already having a total spin S[ j−1] that
is known. If we add one more spin, the new total spin that is
accessible to the complete set of spins will be S[ j] = S[ j−1] ±
1/2 (note that S[ j−1] = 0 imposes S[ j] = S[ j−1] + 1/2). A sim-
ple analysis shows that the following operator:

G[ j] = S2
[ j] − S2

[ j−1] + S[ j−1] + 1
4

(2S[ j−1] + 1)
, (15)

has an eigenstate of the total spin with an eigenvalue equal
to 1 (0) for the eigenstate associated with the spin S[ j] =
S[ j−1] + 1/2 (S[ j] = S[ j−1] − 1/2). Therefore, this operator di-
rectly encodes the increase or decrease of the total spin when
adding the spin j.

A crucial aspect of the application of the operator G[ j] is
that (i) the mapping to a single binary digit is valid only if
the set of j − 1 spins are already projected onto eigenstates

of the total spin S2
[ j−1] and (ii) the eigenvalue S[ j−1] is known.

Assuming that these two conditions are fulfilled, it is worth
mentioning that a single ancillary qubit will be necessary to
perform the QPE method for the G[ j] operator. The unitary
operator to be used in the QPE is given by

V[ j] = exp {π iG[ j]}, (16)

and the QPE reduces to a simple Hadamard test.
The two conditions above suggest a modified algorithm

with an iterative procedure for the measurements with a suc-
cessive set of projections on the S2

[ j] with increasing j. We
restart from a system |�〉 described on a set of n spins. We in-
troduce a variable S that will be updated at each measurement
and equal to the S[ j] value at step j. Initially, S = 1/2, i.e., the
total spin for a single-spin case. Consecutively, we make the
set of Hadamard tests or measurements iteratively as follows:

S = 1
2 , j = 1

while j �= n do
j → j + 1
if S �= 0 do

S[ j] = S
Perform the Hadamard test with V[ j]

Measure the ancillary qubit
M = result of the measurement (0 or 1)
S → S + M − 1

2
else do

S → S + 1
2

end if
end while
S[n] = S

One difficulty in the algorithm is that the intermediate step
j is triggered by the knowledge of S[ j−1] and more generally of
the total spins components S[k] with k < j. Assuming ideally
that the interface from a quantum to a classical computer
works perfectly, the above algorithm can be implemented by
using sequentially a set of Hadamard tests for the operators
V[k] with increasing k. Explicitly, starting from the initial
state |�〉, a Hadamard test is performed using V[2]; after the
ancillary qubit measurement, the value of S is updated on the
classical computer and the new operator V[3] is constructed.
Then, a second Hadamard test is made on the system using
V[3], and so on, until all Hadamard tests are performed. This
procedure is nothing but a quantum algorithm with repeated
controlled operations by the classical computer.

FIG. 5. Quantum circuits for a three spin system to implement the technique for Young tableaux to encode the path of total spin. (a) The
circuit with the controlled operations on classical bits based on the measurement outcome from previous step. Double lines represent the
classical bits. (b) An alternative circuit based on the principle of deferred measurement [40], suitable for currently available real quantum
hardware. These circuits can be extended for a larger spin system in a similar manner.
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FIG. 6. Illustration of the results obtained for a system described
on n = 4 qubits with the same initial state as in Fig. 2(b) but using
the circuit shown in Fig. 5(b). The 0(1) in the bit strings on horizontal
axis represents the increase (decrease) in the spin, and the total spin S
is given in parentheses. The path represented by the bit strings should
be read from right to left.

We show in Fig. 5 the circuit for a three-spin case to
perform this scheme [Fig. 5(a)]. We start with considering
two spins and, after measurement, the resulting value (0 or
1) stored in the classical bit is utilized to control the form of
operator V[ j] to be considered for the three spin case. Further-
more, by adding one more ancilla qubit for each spin, and
the controlled operations using the values stored previously on
classical bits, we can extend this circuit to explore the larger
spin or qubit systems.

Considering the same initial state as used in Fig. 2(b), the
results obtained from the extension of circuit Fig. 5(a) to the
four-qubit or -spin case are given in Fig. 6. As a straight-
forward validation, we can see that the contribution of total
S is the same as given in Fig. 4. To obtain the irreducible
representation, we can project the Sz in the same way as
performed in the earlier two techniques.

We finally mention that conditional operators on the clas-
sical register are currently not supported on the available real
quantum devices. Therefore, we also explore the possibility
to apply the present procedure without requesting classical
controlled operations. An alternative procedure is to use the
circuit given in Fig. 5(b), which is based on the principle of
deferred measurement [40]. This procedure for the three qubit
case essentially leads to the same results. But this circuit has
complexities in the form of multicontrolled gates, which need
to be further decomposed into single- and two-qubit gates.

IV. CONCLUSIONS

We have extended the strategy proposed in Ref. [36] to
develop the quantum algorithm to project a general wave

function described on a set of spins or qubits onto eigenstates
of the total spin and its projection on the z axis. We call this
algorithm the total quantum spin filtering (TQSf) because it
acts as a filter for components having specific properties. We
start with the brute-force method based originally on the QPE
and requires several controlled operations that scale quadrati-
cally with the total spin value. Guided by the properties of the
permutation group and more specifically on the sequence of
Young tableaux to construct a symmetric state, we propose a
technique in which the number of controlled operations scales
linearly with the spin. Such an alternative algorithm should be
more suited for applications of near-term quantum platforms.
Recently, an algorithm named the “Rodeo algorithm” [50,51]
was proposed that can be used as an alternative to the QPE,
opening new perspectives for applications during the “noisy
intermediate-scale quantum” (NISQ) period. It would be
interesting to investigate how the different projection methods
we propose here can be combined with or take advantage of
the Rodeo method.

The primary motivation of the present work is the prepa-
ration of wave functions that uses the symmetry-breaking
and symmetry-restoration method to grasp complex internal
correlations in quantum many-body systems. The states ob-
tained here, after projection, are strongly entangled and can be
directly used as inputs for variational methods. This variation-
after-projection method [1,8] is known to be rather effective,
but states obtained in this way, especially when several sym-
metries are restored simultaneously, are difficult to manipulate
on a classical computer. It is worth noting that the projection
can a priori be combined with any existing methods which are
popular today to prepare trial states on qubits and that do not
necessarily respect the total spin or particle number projection
[18,20,33]. An illustration of the combined use of variational
and filtering technique was made in Refs. [52] underlying the
great potential of our approach.

Finally, and although this is not the original motivation of
the present problem, because of the close connection between
total spin space and symmetric group, one might anticipate
that the projection technique can also be used in complex
combinatorial problems. As a straightforward example, one
might assume that the states |0i〉 and |1i〉 encode the result
“No” or “Yes” to a certain query by an element “i” of a set.
The projection technique can then be directly used to perform
data mining, such as isolating components with a given num-
ber of “Yes” and computing the associated probabilities.
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