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We propose two semi-device-independent approaches that are able to quantify unknown multipartite quan-
tum entanglement experimentally, where the only information that has to be known beforehand is quantum
dimension, and the concept that plays a key role is nondegenerate Bell inequalities. Specifically, using the
nondegeneracy of multipartite Bell inequalities, we obtain useful information on the purity of target quantum
state. Combined with an estimate of the maximal overlap between the target state and pure product states, and a
continuous property of the geometric measure of entanglement, we shall prove the information on purity allows
us to give a lower bound for this entanglement measure. In addition, we show that a different combination of the
above results also converts to a lower bound for the relative entropy of entanglement. As a demonstration, we
apply our approach on 5-partite qubit systems with the Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality,
and show that useful lower bounds for the geometric measure of entanglement can be obtained if the Bell
expression value is larger than 3.60, and those for the relative entropy of entanglement can be given if the
Bell expression value is larger than 3.80, where the Tsirelson bound is 4.
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I. INTRODUCTION

Quantum entanglement plays a fundamental role in quan-
tum physics and quantum information, where it often serves
as the key factor in physical effects or key resource in in-
formation processing tasks [1,2]. Therefore, how to certify
the existence of quantum entanglement and even quantify it
in physical experiments are two important problems. How-
ever, due to the imperfection of quantum operations and
inevitable quantum noise, fulfilling these two tasks reliably is
extremely challenging. As a result, though some methods like
entanglement witnesses have been applied widely in quan-
tum laboratories [3], they usually depend heavily on accurate
knowledge on involved quantum systems, and possibly give
incorrect results when it is not fully available [4]. Meanwhile,
some other methods, like quantum tomography, consume too
many resources, making it hard to apply them on large sys-
tems [5,6].

To overcome these difficulties, a promising idea is to de-
sign protocols for these tasks in such a way that beforehand
assumption needed on involved quantum systems, particularly
on the precisions of quantum devices or quantum operations,
is as little as possible, which allows us to draw reliable con-
clusions on quantum entanglement that we are interested in.
Following this idea, various device-independent approaches
have been proposed to tackle the problem of characterizing
unknown quantum entanglement [7–11]. The key idea of these
approaches is that the judgements are only based on quan-
tum nonlocality that we can observe in quantum laboratories
reliably, where one has to build nontrivial relations between

quantum nonlocality and the aspects of quantum entangle-
ment that we want to know. Indeed, a lot of interesting results
of this kind have been reported or even demonstrated to certify
the existence of genuine multipartite entanglement [12–18].

If only focusing on the issue of quantifying unknown quan-
tum entanglement experimentally, a lot of results have also
been reported under the idea of device independence [19–23].
For example, inspired by the Navascues-Pironio-Acin (NPA)
method [24], in Ref. [21] a device-independent approach to
quantify the negativity, a measure of entanglement [25], was
provided. In Ref. [20], based on the idea of semiquantum
nonlocal games [26], an approach that quantifies negative-
partial-transposition entanglement was reported, where one
does not have to put any trust onto measurement devices.
In Ref. [22], a new method with excellent performance was
proposed to characterize the quantitative relation between
entanglement measure and Clauser-Horne-Shimony-Holt in-
equality violations.

Particularly, in Ref. [23] another general approach that is
able to provide analytic results on entanglement measures,
like the entanglement of distillation and the entanglement
of formation, was proposed. Basically, this is a semi-device-
independent approach, where the only assumption that we
have to make beforehand is quantum dimension, and the key
idea of this approach is introducing the concept of nondegen-
erate Bell inequalities, which plays a crucial role in providing
nontrivial information on the purities of target quantum states.
As a result, the purity information allows us to quantify the
target entanglement by lower bounding coherent information,
which is known to be a lower bound for the entanglement
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measures that we are interested in [27]. However, an apparent
drawback of the approach in Ref. [23] is that it only works for
bipartite entanglement.

For multipartite quantum entanglement, it has been known
that its mathematical characterization, especially quantifica-
tion, is a notoriously hard problem. However, it turns out that
the geometric measure of entanglement (GME) and the rela-
tive entropy of entanglement (REE) are two quite successful
measures for multipartite entanglement [28–31]. In this paper
we propose two theoretical approaches to quantify the two
above measures of unknown multipartite quantum states in a
semi-device-independent manner. The concept of nondegen-
erate Bell inequalities is essential to these approaches. Indeed,
combined with the purity information provided by apply-
ing nondegenerate Bell inequality onto experimental statistics
data, we manage to lower bound the GME by proving a
continuous property of this entanglement measure. Further-
more, with the help of the purity information, we show that
the REE can also be quantified by estimating the maximal
overlap between the target state and pure product states. To
achieve these tasks, we need to certify the nondegeneracy of
multipartite Bell inequalities.

As a demonstration of our approaches, we show that
the Mermin-Ardehali-Belinskii-Klyshko (MABK) inequal-
ity [32–34] is nondegenerate for qubit systems, and then we
demonstrate that nontrivial lower bounds on the GME and the
REE of multipartite quantum entanglement can be obtained
when the violation of the MABK inequality is sufficient,
where it can be seen that the approaches have decent perfor-
mance.

II. NONDEGENERATE BELL INEQUALITIES

Bell inequalities are crucial tools in the current paper, and
in history they played a key role in the development of quan-
tum mechanics [35]. In a so-called n-partite Bell settings, n
space-separated parties share a physical system. Each party,
say i ∈ [n] ≡ {1, 2, . . . , n}, has a set of measurement devices
labeled by a finite set Xi, and the corresponding set of possible
measurement outcomes are labeled by a finite set Ai. With-
out communications, all parties choose random measurement
devices from their own Xi to measure their subsystems, re-
spectively, and record the outcomes. By repeating the whole
process for sufficient times, they find out the joint probability
distribution of outcomes for any given choices of measure-
ment devices, denoted p(a1a2 · · · an|x1x2 · · · xn), where xi ∈ Xi

and ai ∈ Ai.
For simplicity we call the above joint probability distri-

bution a quantum correlation, and write it as p(�a|�x) (or just
p if the context is clear), where �a = (a1a2 · · · an) and �x =
(x1x2 · · · xn). Then a (linear) Bell inequality is a relation that
p(�a|�x) must obey if the system is classical, and it can be
expressed as

I (p) =
∑
�a,�x

c�a
�x p(�a|�x) � Cl , (1)

where for any �x and �a, c�a
�x is a real number.

However, a remarkable fact on quantum mechanics is that,
if the shared physical system is quantum, Bell inequalities
can be violated. Suppose the shared quantum state is ρ, then

according to quantum mechanics p(�a|�x) can be written as

p(�a|�x) = Tr

[(
n⊗

i=1

Mai
xi

)
ρ

]
, (2)

where for any i and xi, Mai
xi

is the measurement operators
with outcome ai for the measurement with label xi performed
by the ith party. For convenience of later discussions, we let
I (ρ, Ma1

x1
, . . . , Man

xn
) be the Bell expression value achieved by

ρ and Mai
xi

. Then, as mentioned above, if we let

Cq ≡ max I
(
ρ, Ma1

x1
, . . . , Man

xn

)
, (3)

where the maximum is taken over all possibilities of ρ and
Ma1

x1
, . . . , Man

xn
, then it is possible that Cq > Cl , indicating that

quantum systems are able to produce stronger correlations
than classical ones.

In the joint quantum system, suppose the dimensions of
the subsystems are d1, d2, . . . , dn, respectively, then we call
the vector �d ≡ (d1d2 · · · dn) the dimension vector of the joint
system. In this paper we are interested in the maximal value
of I (ρ, Ma1

x1
, . . . , Man

xn
) for fixed dimension vector �d . Similar

with Cq, we denote it as Cq( �d ).
The concept of nondegenerate Bell inequalities was pro-

posed when studying bipartite quantum systems [23]. As we
will see later, it can also be applied in the multipartite case and
plays a key role in entanglement measure quantification.

Suppose I � Cl is a Bell inequality for an n-partite quan-
tum system with dimension d1 × d2 × · · · × dn. We say it is
nondegenerate on dimension vector �d = (d1 · · · dn), if there
exist two real number 0 � ε1 < ε2 � Cq( �d ), such that for any
two quantum states of this system, |α〉 and |β〉 with 〈α|β〉 = 0,
and any quantum measurement sets Ma1

x1
, . . . , Man

xn
, the relation

that

I
(|α〉〈α|, Ma1

x1
, . . . , Man

xn

)
� Cq( �d ) − ε1

always implies that

I
(|β〉〈β|, Ma1

x1
, . . . , Man

xn

)
� Cq( �d ) − ε2.

Roughly speaking, if I � Cl is a nondegenerate Bell inequal-
ity on dimension vector �d , then for any two orthogonal
quantum states, at most one of them is able to achieve near
maximum violation using the same measurements.

We further let M = ∑
�a,�x c�a

�x (
n⊗

i=1
Mai

xi
), then it can be seen

that M is a Hermitian operator. And for any ρ with dimension
vector �d , it holds that I (ρ, Ma1

x1
, . . . , Man

xn
) = Tr(ρM ). Sup-

pose λ1(M ) � · · · � λr (M ) are the eigenvalues of M, where
r = d1 × · · · × dn. For any integer t with 1 � t � r, let

C(I, �d, t ) ≡ max
t∑

k=1

λk (M ),

where the maximum is taken over all possible local quan-
tum measurements. Then we immediately have that Cq( �d ) =
C(I, �d, 1). Furthermore, an important fact that allows us to
certify the nondegeneracy of Bell inequalities is that, for any
multipartite Bell expression I and any dimension vector �d , I �
Cl is nondegenerate if and only if C(I, �d, 2) < 2C(I, �d, 1),
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and when I � Cl is nondegenerate, the parameters can be cho-
sen by the relations ε1 < C(I, �d, 1) − 1

2C(I, �d, 2) and ε1 +
ε2 = 2C(I, �d, 1) − C(I, �d, 2) [23].

To illustrate the existence of nondegenerate multipartite
Bell expressions, we consider the MABK expression over
qubits [32–34]. In fact, the nondegeneracy property of this
inequality has been observed in Ref. [36], where it was proved
that the first two eigenvalues of the Bell operator satisfy
λ2

1(M ) + λ2
2(M ) � 2n−1. This implies that if λ1(M ) > 2n/2−1,

we have

λ2(M ) �
√

2n−1 − λ2
1(M ) < λ1(M ),

which indicates C(I, �d, 2) < 2C(I, �d, 1). Meanwhile, it is
known that the maximal value that λ1(M ) can achieve
is 2n/2−1/2, where the corresponding state can be the n-
qubit Greenberger-Horne-Zeilinger (GHZ) state |GHZ〉 =

1√
2
(|0〉⊗n + |1〉⊗n) [32–34]. Therefore, the MABK expression

is nondegenerate over qubits.

III. QUANTIFYING THE GEOMETRIC MEASURE
OF ENTANGLEMENT

The geometric measure of entanglement is a well-known
measure for multipartite quantum entanglement [28,29]. Sup-
pose |ψ〉 is a pure state of a joint system composed by n
subsystems. Define G(|ψ〉) to be the maximal overlap be-
tween |ψ〉 and a product pure state, that is to say,

G(|ψ〉) = sup
|φ〉∈sepn

|〈ψ |φ〉|, (4)

where sepn is the set of n-partite product pure states. Then for
|ψ〉, its geometric measure of entanglement is defined to be

EG(|ψ〉) ≡ 1 − G(|ψ〉)2. (5)

For a mixed state ρ of this joint system, the geometric measure
can be defined by convex roof construction, which is

EG(ρ) ≡ min
ρ=∑

i pi|ψi〉〈ψi|

∑
i

piEG(|ψi〉). (6)

The GME has many nontrivial applications in quantum
physics and quantum information, for example quantifying
the difficulty of multipartite state discrimination under local
operations and classical communications (LOCC) [37], con-
structing entanglement witness [29,38], characterizing ground
states of condensed matter systems and detecting phase tran-
sitions [39,40], and so on. Therefore, it will be very nice if we
can quantify the GME reliably in quantum laboratories. We
now show how the concept of nondegenerate Bell inequalities
allows us to achieve this, and the approach is composed by
three steps as below.

Step 1. Suppose ρ is the global state that produces the
quantum correlation p(�a|�x). Let the underlying measurements
be Ma1

x1
, . . . , Man

xn
; that is, p(�a|�x) = tr[(

⊗n
i=1 Mai

xi
)ρ]. Now,

since a crucial component in the definition of GME is the
maximum overlap

G(|ψ〉) = max
|φ〉∈sepn

|〈φ|ψ〉| = max
|φ〉∈sepn

F (|φ〉, |ψ〉),

where F is the fidelity, we wish to quantify the related fidelity

max
|φ〉∈sepn

F (|φ〉〈φ|, ρ) = max
|φ〉∈sepn

√
〈φ|ρ|φ〉

in a fully device-independent manner, where sepn is the set of
product pure states.

Suppose |φ〉 ∈ sepn is the state that maximizes
F (|φ〉〈φ|, ρ). Let q∗(�a|�x) be the correlation produced by
|φ〉 upon measurements Ma1

x1
, . . . , Man

xn
. Since |φ〉 is a product

pure state, the correlation q∗ is a product correlation; that
is, there exists probability distributions q∗

i (ai|xi ) such that
q∗(�a|�x) = ∏n

i=1 q∗
i (ai|xi ). When ρ and |φ〉 are measured,

the fidelity between them should increase [2]; that is, for
any �x the resulting probability distribution p�x ≡ p(·|�x) and
q∗

�x ≡ q∗(·|�x) satisfy∑
�a

√
q∗(�a|�x)p(�a|�x) = F (q∗

�x , p�x ) � F (|φ〉〈φ|, ρ),

hence it holds that min
�x

F (q∗
�x , p�x ) � F (|φ〉〈φ|, ρ). Since q∗ is

a product correlation, we have

max
q

min
�x

F (q�x, p�x ) � F (|φ〉〈φ|, ρ),

where the outmost maximization is over product correlations
q and q�x ≡ q(·|�x). By the max-min inequality, it holds that

min
�x

max
q

F (q�x, p�x ) � max
q

min
�x

F (q�x, p�x ),

then we have

min
�x

max
q

F (q�x, p�x ) � F (|φ〉〈φ|, ρ).

Then by numerical calculations on the correlation data, we
can get an upper bound on the fidelity between the target
state and a pure product state, denoted as F̂ . For example,
once �x is fixed, the inner maximization can be computed using
symmetric embedding [41] and the shifted higher-order power
method (SHOPM) algorithm [42], yielding a correct answer
up to numerical precision with very high probability (see also
Ref. [43]).

Step 2. Since computing GME for a mixed state requires
complicated optimization over ensembles, it would be ideal
for the quantification of GME if ρ is a pure state. Therefore,
we wish to bound the purity of ρ, defined as Tr(ρ2), from
below, which is accomplished by the nondegeneracy property
of Bell inequalities [23].

Let ρ = ∑
i ai|ψi〉〈ψi| be the spectral decomposition

of ρ. Suppose I � Cl is a nondegenerate Bell inequal-
ity with parameters ε1 and ε2 satisfying 0 � ε1 < ε2. If
I (ρ, Ma1

x1
, . . . , Man

xn
) � C(I, �d, 1) − ε1, then there is i such that

I (|ψi〉〈ψi|, Ma1
x1

, . . . , Man
xn

) � C(I, �d, 1) − ε1. Thus, by nonde-
generacy of I � Cl , we have

C(I, �d, 1) − ε1 � I
(
ρ, Ma1

x1
, . . . , Man

xn

)
=

∑
j

a jI
(|ψ j〉〈ψ j |, Ma1

x1
, . . . , Man

xn

)

� aiC(I, �d, 1) + (1 − ai )[C(I, �d, 1) − ε2].

This implies that ai � 1 − ε1/ε2. Since the order of eigen-
states in the spectral decomposition is arbitrary, for conve-
nience we now relabel the index i found above to 1, then it
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holds that a1 � 1 − ε1/ε2. This allows us to lower bound the
purity.

Step 3. In the previous two steps we obtained a lower
bound for a1 in the spectral decomposition of ρ and an up-
per bound F̂ for F (|φ〉〈φ|, ρ) = √〈φ|ρ|φ〉 among all product

pure states |φ〉. The following theorem shows that, if F̂ � a1,
then we can derive a lower bound for EG(ρ) by proving a
continuous property of GME.

Theorem. Suppose F̂ � a1, then it holds that

EG(ρ) � max
c∈

[
F̂√
a1

,
√

a1

] a1 − c2

1 − c2

⎡
⎣1 −

⎛
⎝ F̂√

a1
c +

√
1 − F̂ 2

a1

√
1 − c2

⎞
⎠

2⎤
⎦.

Proof Suppose ρ = ∑
j ã j |ψ̃ j〉〈ψ̃ j | is an ensemble of ρ

that obtains the GME of ρ. Let c be a real number in the
interval [F̂/

√
a1,

√
a1]. Consider the sets of indices

J1 = { j : |〈ψ1|ψ̃ j〉| � c},
J2 = { j : |〈ψ1|ψ̃ j〉| < c},

which form a partition of the set of all indices j. Intuitively,
the set J1 consists of components with high fidelity with |ψ1〉.
Let μ = ∑

j∈J1
ã j . We have

a1 = 〈ψ1|ρ|ψ1〉
=

∑
j

ã j |〈ψ1|ψ̃ j〉|2

=
∑
j∈J1

ã j |〈ψ1|ψ̃ j〉|2 +
∑
j∈J2

ã j |〈ψ1|ψ̃ j〉|2

� μ + (1 − μ)c2,

thus

μ � a1 − c2

1 − c2
� 0,

which is lower bound for the sum of weights of components
whose indices belong to J1. Note that μ → 1 when a1 → 1 if
c <

√
a1, and μ = 1 if a1 = c = 1. By the definition of F̂ , for

any product pure state |φ〉, we have

F̂ 2 � 〈φ|ρ|φ〉 =
∑

i

ai|〈φ|ψi〉|2 � a1|〈φ|ψ1〉|2,

thus

|〈φ|ψ1〉| � F̂√
a1

.

On the other hand, there are states {φ j} such that

EG(ρ) = 1 −
∑

j

ã j |〈φ j |ψ̃ j〉|2.

By the triangle inequality of fidelity, for every j ∈ J1, we have

arccos |〈φ j |ψ̃ j〉| � arccos |〈φ j |ψ1〉| − arccos |〈ψ1|ψ̃ j〉|

� arccos

(
F̂√
a1

)
− arccos(c).

As F̂/
√

a1 � c, the inequality above implies

|〈φ j |ψ̃ j〉| � F̂√
a1

c +
√

1 − F̂ 2

a1

√
1 − c2.

For j ∈ J2, we upper bound the overlap via |〈φ j |ψ̃ j〉| � 1,
thereby obtaining a lower bound for the GME of ρ as

EG(ρ) � 1 − μ

⎛
⎝ F̂√

a1
c +

√
1 − F̂ 2

a1

√
1 − c2

⎞
⎠

2

− (1 − μ)

= μ

⎡
⎣1 −

⎛
⎝ F̂√

a1
c +

√
1 − F̂ 2

a1

√
1 − c2

⎞
⎠

2⎤
⎦

� a1 − c2

1 − c2

⎡
⎣1 −

⎛
⎝ F̂√

a1
c +

√
1 − F̂ 2

a1

√
1 − c2

⎞
⎠

2⎤
⎦.

Note that the above relation holds for any c ∈ [F̂/
√

a1,
√

a1],
which concludes the proof.

In particular, if ρ is a pure state, then it holds that a1 = 1.
In that case, the lower bound in Proposition 1 reads

EG(|ψ1〉〈ψ1|) � 1 − F̂ 2, (7)

which agrees with the definition of GME on pure states, indi-
cating that our lower bound is tight in this case.

Therefore, combining all the above three steps together,
we obtain a semi-device-independent approach to quantify
the GME for unknown multipartite entanglement. We now
demonstrate that this approach indeed works well by quan-
tifying the GME of an n-partite quantum system with the
MABK inequality (n = 3, 5). Recall that we have known that
this inequality is nondegenerate. At the same time we would
like to stress that in principle the approach can be applied on
any multipartite quantum systems with known dimensions.

There exist many configurations that achieve the maximum
violation to the MABK inequality, and it turns out that they
are essentially equivalent [44]. For example, one can let the
state be

|	〉 = 1√
2

(|0〉⊗n + e
2π i

8 (n−1)|1〉⊗n
)
,

then measure the observables σx and σy on each qubit. That is,
for each site, we select

M0
0 = |+〉〈+|, M1

0 = |−〉〈−|,
M0

1 = |+i〉〈+i|, M1
1 = |−i〉〈−i|,

where |±〉 = 1/
√

2(|0〉 ± |1〉) and | ± i〉 = 1/
√

2(|0〉 ± i|1〉).
To obtain physical statistic data of the Bell experiments,

we perturb the state |	〉 and the above optimal measurements,
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FIG. 1. Lower bounds for the GME and the REE, where n = 3, 5. Note that the maximal Bell expression value is 2 (n = 3) and 4 (n = 5),
respectively, and we focus on the gaps to the maximal Bell expression values.

which produces a series of legitimate quantum correlations.
We then apply our approach to each correlation. The result is
shown in Fig. 1.

It can be seen from the blue (triangle) scatter plot in Fig. 1
that, when n = 3, if the gap between the Bell expression value
I and the Tsirelson bound 2 is smaller than 0.20 (that is, when
I � 1.80), our approach is able to provide a nontrivial result
on the GME. Furthermore, when the violation approaches the
maximum, our approach gives a tight result 0.5, considering
that the maximal violation is achieved by |	〉.

Similarly, the green scatter (X) plot in Fig. 1 also illustrates
the result of our approach on 5-partite qubit systems. The
same patterns as in the case n = 3 can be observed here:
nontrivial GME lower bounds can be obtained when the gap
between the Bell expression value I and the Tsirelson bound 4
is smaller than 0.40 (that is, when I � 3.60), and it approaches
the tight result of 0.5 when the gap tends to zero.

IV. QUANTIFYING THE RELATIVE ENTROPY
OF ENTANGLEMENT

Interestingly, steps 1 and 2 introduced above are already
sufficient for us to lower bound the relative entropy of entan-
glement (REE) in a semi-device-independent manner.

The REE of ρ is defined to be the minimal relative entropy
of ρ to the set of separable states, that is,

ER(ρ) ≡ min
σ∈D

S(ρ‖σ ) = min
σ∈D

Tr(ρ log2 ρ − ρ log2 σ ), (8)

where D is the set of all separable states [30,31]. It turns
out that the REE has many profound applications in quantum
information theory. For example, for bipartite quantum states,
REE can lower bound the entanglement of formation and
upper bound the entanglement of distillation [31]. Therefore,
quantifying the REE reliably in experiments is naturally very
important and rewarding.

We now show that ER(ρ) has a close relation with the quan-
tity F̂ introduced above. In fact, it has been known that [45]

ER(ρ) � G(ρ) − S(ρ), (9)

where S(ρ) is the Von Neumann entropy and

G(ρ) ≡ − log2

{
max

|φ〉∈sepn

〈φ|ρ|φ〉
}
. (10)

Since max
|φ〉∈sepn

〈φ|ρ|φ〉 � F̂ 2, it holds that

ER(ρ) � −2 log2(F̂ ) − S(ρ). (11)

In the meantime, in step 2 we get a lower bound for the purity
of ρ (in terms of a1). Combining this fact and the approach
introduced in Ref. [46], we can derive a upper bound for
S(ρ) (see [23] for a complete demonstration). According to
Eq. (11), this implies that we are able to lower bound the
REE and any other multipartite entanglement measures that
are lower bounded by the REE (for example, the generalized
robustness of entanglement [45,47,48]).

Still using the MABK inequality and the samples of quan-
tum correlations generated above, we test the performance of
the second approach, and the result can also be seen in Fig. 1.
Particularly, when n = 3, our approach can give positive lower
bound for the REE when the Bell expression value is larger
than 1.88; when n = 5, it can provide nontrivial results when
the Bell expression value is larger than 3.80.

V. DISCUSSION

In this paper, based on the concept of nondegener-
ate Bell inequalities, we show that multipartite quantum
entanglement can be quantified experimentally in a semi-
device-independent way. The key information provided by
this concept is on the purity of the target quantum systems.
Based on this, by studying the mathematical properties of the
geometric measure of entanglement and the relative entropy
of entanglement, we can provide nontrivial lower bounds
for these two well-known entanglement measures. Our ap-
proaches do not need any trust on the precision of the involved
quantum devices except the information on their dimensions
and have decent performance, hence might be valuable for
characterizing unknown multipartite states in future quantum
experiments.
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