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The number of outcomes is a defining property of a quantum measurement, in particular, if the measurement
cannot be decomposed into simpler measurements with fewer outcomes. Importantly, the number of outcomes
of a quantum measurement can be irreducibly higher than the dimension of the system. The certification of
this property is possible in a semi-device-independent way either based on a Bell-like scenario or by utilizing the
simpler prepare-and-measure scenario. Here we show that in the latter scenario the minimal scheme for certifying
an irreducible three-outcome qubit measurement requires three state preparations and only two measurements
and we provide experimentally feasible examples for this minimal certification scheme. We also discuss the
dimension assumption characteristic of the semi-device-independent approach and to what extent it can be
mitigated.
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I. INTRODUCTION

The most general description of a quantum measure-
ment is given by a positive-operator-valued measure (POVM)
which is any collection of positive operators summing up
to identity. The set of measurements described in this way
contains instances which are neither projective nor obtain-
able by combining projective measurements. This class of
genuinely nonprojective measurements can be utilized, for
example, in quantum computing [1,2], quantum cryptography
[3,4], randomness certification [5], and quantum tomography
[6]. However, since genuinely nonprojective measurements
cannot be combined from projective measurements, their ex-
perimental implementation is difficult and typically requires
control over additional degrees of freedoms [7]. It is hence
of interest to verify whether an experiment had successfully
implemented a nonprojective measurement. Recently, semi-
device-independent certification schemes have become the
focus of theoretical investigation [8–10] as well as experi-
mental implementation [11–13]. The employed certification
schemes can be divided into two classes, those based on
Bell-like scenarios [11] and those using a prepare-and-
measure scenario [8–10,12].

In the former case, an entangled state is distributed to two
spatially separated measurement stations and the correlations
between the different measurements at each station can then
certify the presence of a genuinely nonprojective measure-
ment. In the latter case, the certification consists of several
preparation procedures, possibly intermediate transforma-
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tions, and subsequent measurements on the same system. Both
scenarios are device independent because only very rudimen-
tary assumptions need to be made about the implementation
details of the state preparation and measurement devices.
However, because nonprojective measurements can always be
implemented on a system with enlarged Hilbert space, it is
common to both scenarios that they add an extra assumption,
namely, an upper limit on the dimension of the system, ren-
dering the scenarios semi-device-independent.

It should be noted that the certification of a genuinely
nonprojective measurements is usually performed in a slightly
different context where the number of outcomes of a mea-
surement plays a key role [8–12]. If a measurement cannot be
implemented by using measurements with a lower number of
outcomes, then the number of outcomes is irreducible. Since
projective measurements cannot have more outcomes than
the dimension of the system, it is hence sufficient to certify
excess outcomes in order to certify that a measurement is
also genuinely nonprojective. For the purposes of this paper,
where we consider three-outcome measurements on a qubit,
this distinction is not relevant, because for qubits, the number
of outcomes of a measurement is irreducibly 3 if and only if
the measurement is genuinely nonprojective.

In the prepare-and-measure scenario, so far, the certifi-
cation schemes for three-outcome and four-outcome qubit
measurements are based on linear inequalities satisfied for
all correlations requiring fewer outcomes. The schemes use
at least two additional measurement settings [12] to achieve a
certification. In this paper we do not restrict ourselves to linear
inequalities and we show that the minimal scheme consists
of three different state preparations and only one auxiliary
measurement. Our analysis is complemented with examples
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which allow a simple certification of a three-outcome qubit
measurement.

Our paper is organized as follows. In Sec. II we revisit the
concept of prepare-and-measure scenarios and fix our nota-
tion and terminology. In Sec. III we define the operational
setup in which a three-outcome qubit measurement can be
certified. We prove the necessity of one auxiliary measure-
ment and three preparation procedures and give corresponding
examples. We proceed in Sec. IV by discussing a possible mit-
igation of the assumption of an upper bound on the dimension
before we conclude with a discussion in Sec. V.

II. PREPARE-AND-MEASURE SCENARIO

A prepare-and-measure scenario can be understood as a
setup that is composed solely of a preparation device and a
measurement device. An experimenter can choose among s
different preparation procedures labeled by x ∈ { 1, . . . , s }
and m different measurements labeled by y ∈ { 1, . . . , m }.
After choosing one particular pair (x, y) the experimenter
produces the state x on which the measurement y is performed.
Consequently, this experiment can be described by the ex-
perimentally accessible correlations p(a|x, y) which give the
probability of obtaining outcome a when performing mea-
surement y on preparation x. It is important to note that
the preparation as well as the measurement apparatuses are
considered as a black box, that is, no assumptions are made
about the state ρx and the measurement description My. This
is with the exception that we assume that the dimension of
the underlying Hilbert space is fixed. In this sense, properties
of the system that can be deduced from the experimental data
alone are semi-device-independent.

A. Structure of the measurements

Any n-outcome measurement M on a d-dimensional
Hilbert space can be written as a POVM, that is, as
positive-semidefinite operators M = (M1, . . . , Mn) satisfying∑

a Ma = 1. The operators Ma are the effects of M and are
associated with the outcomes a ∈ { 1, . . . , n } of M. The set
of all POVMs is convex, that is, it is closed with respect
to taking probabilistic mixtures and efficient algorithms are
known in order to decompose a given POVM into extremal
POVMs [14]. By virtue of the Born rule, the probability p(a)
of obtaining outcome a for a quantum state ρ is given by
p(a) = tr(ρMa).

It is interesting to notice that a similar notion of POVMs
can also be introduced in classical probability theory. Here a
general n-outcome measurement on a d-dimensional classical
system is given by n vectors from the d-dimensional unit cube
Cd = { x ∈ Rd | 0 � xi � 1 } such that they sum up to 1 =
(1, . . . , 1) ∈ Rd . Therefore, the set of all classical n-outcome
measurements is equivalent to the set of all right stochastic
d × n matrices. We mention that this classical case is identical
to the quantum case when one restricts all effects and states to
be diagonal in some fixed basis.

When a measurement has only two nonzero outcomes the
measurement is dichotomic, for three nonzero outcomes it is
trichotomic, and it is n-chotomic in the case of n nonzero
outcomes. An n-outcome POVM M can be simulated [15]

FIG. 1. Representation of the state and effect configuration for
generating trichotomic correlations with the trine POVM. The states
ρx are obtained from the vectors labeled by �ρx via ρx = 1

2 (1 +∑
k[�ρx]kσk ) for x ∈ {1, 2, 3} and the effects Ma|1 are obtained from

the vectors labeled by �Ma|1 via Ma|1 = 1
3 (1 + ∑

k[ �Ma|1]kσk ) for
a ∈ {1, 2, 3}.

with n′-chotomic POVMs (N�)� if there exists a probabil-
ity distribution (p�)� such that M = ∑

� p�N�. Otherwise the
measurement is irreducibly n-chotomic. For n = 3 and n′ =
2 the simulation reduces to the randomization of three di-
chotomic measurements, that is,

(M1, M2, M3) = p1(N1|1, N2|1, 0) + p2(0, N2|2, N3|2)

+ p3(N1|3, 0, N3|3), (1)

where we write Na|� for the outcome a of the measurement
N�. These reducible three-outcome measurements form a
convex subset of the set of all measurements. While in the
d-dimensional classical probability theory all measurements
are reducible to d-outcome measurements, this is not the case
in quantum theory [16]. An archetypal counterexample is
the trine POVM S which is composed of three qubit effects
Sa = 2

3 |Sa〉〈Sa|, where the |Sa〉 for a = 1, 2, 3 are located in a
plane of the Bloch sphere and are rotated by an angle of 2

3π

against each other (see Fig. 1).

B. Unambiguous state discrimination

Unambiguous state discrimination [17] (USD) is a special
instance of quantum state estimation. While the power of
quantum state tomography relies on the access to a sufficiently
high number of identically prepared quantum states, here only
a single copy of the input state is available. In what follows
we formulate the task of USD for the special case where the
system subject to discrimination is prepared in one of two
pure states. Then one party (Alice) randomly but with equal
probability chooses one of two states |ψ1〉 and |ψ2〉 which
are known to both parties and sends it to a receiver (Bob).
By measuring the incoming state, Bob must either correctly
identify the state or declare that he does not know the answer,
yielding an inconclusive result. Naturally, as soon as Alice’s
two states are not perfectly distinguishable, 〈ψ1|ψ2〉 �= 0, Bob
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cannot archive a unit success rate. It is well known [17] that
for qubits Bob’s best measurement is given by the irreducibly
trichotomic POVM M = (M1, M2, M3) with

M1 = 1 − |ψ2〉〈ψ2|
1 + | 〈ψ1|ψ2〉 | , M2 = 1 − |ψ1〉〈ψ1|

1 + | 〈ψ1|ψ2〉 | , (2)

and M3 = 1 − M1 − M2. With this construction one can see
directly that if the measurement yields the outcome a = 1 or
a = 2, then one can conclude that the received state was |ψa〉,
while outcome a = 3 does not allow a definite statement.

Motivated by the above considerations, we define now a
family of correlations that is particularly useful for our later
analysis. We consider a prepare-and-measure scenario with
three preparations ρ1, ρ2, and ρ3 and two measurements M1 =
(M1|1, M2|1, M3|1) and M2 = (M1|2, M2|2). The states and the
measurements are chosen in such a way that if M2 yields the
outcome 1 this implies that the received state was not ρ1 and
if the obtained state is ρ2, then M2 produces with certainty
outcome 2. For M1 we impose that from outcome 1 (2) it
follows that the state was not ρ3 (ρ2). Since any POVM has
to obey the normalization condition, the last effect can always
be calculated from the previous ones. Hence we arrange the
correlations p(a|x, y) = tr(ρxMa|y) in a 3 × 3 matrix P , where
the rows correspond to the states and the columns to the effects
M1|1, M2|1, M1|2, that is,

P =

⎛
⎜⎝

p(1|1, 1) p(2|1, 1) 0

p(1|2, 1) 0 1

0 p(2|3, 1) p(1|3, 2)

⎞
⎟⎠. (3)

Since correlations of this form are motivated by USD, we refer
to them as USD correlations. In particular, if the dimension of
the system is known to be d , we write USDd for the set of all
USD correlation achievable under this constraint. Obviously
the sets USDd obey the inclusion USDd ⊂ USDd+1 and fur-
thermore, as we point out in Sec. III A, dimension 3 is already
sufficient to achieve all USD correlations, USDd = USD3 for
all d > 3. We are therefore particularly interested in the qubit
case, for which we have the following characterization.

Lemma 1. The set USD2 consists exactly of all correlations
of the form

P (p, q, ξ ) =

⎛
⎜⎝

pξ q 0

p(1 − ξ ) 0 1

0 q(1 − ξ ) ξ

⎞
⎟⎠, (4)

with p, q, ξ ∈ [0, 1] such that (1 − p)(1 − q) � pqξ . In ad-
dition, for a given correlation matrix P , the states and
measurements realizing P are unique, up to a global unitary
transformation.

The proof is given in Appendix A.

III. CERTIFICATION OF TRICHOTOMIC
MEASUREMENTS

We approach now the question whether the difference be-
tween reducible and irreducible n-outcome measurements can
be observed using only the correlations, that is, whether there
exists an irreducible n-outcome POVM M = (M1, . . . , Mn)
together with auxiliary measurements M2, . . . Mm and states

ρ1, . . . , ρs such the correlations p(a|x, y) = tr(ρxMa|y) can-
not stem from a reducible measurement. Correlations of
this type are genuinely n-chotomic; otherwise they are sim-
ulable n-chotomic. Clearly, if such correlations exist, they
enable us to certify that the measurement M1 is indeed irre-
ducible. To point out the difference between both questions
consider the following example. Suppose that one implements
the trine POVM S on a qubit system, which is an irreducible
three-outcome measurement. We show in Sec. III A that this
measurement alone can never yield correlations which can-
not be explained by a reducible measurement. Therefore, an
irreducible three-outcome measurement does not necessar-
ily define genuine trichotomic correlations, while genuine
trichotomic correlations always involve an irreducible mea-
surement.

A. Minimal scenario

Suppose we want to certify that a given measurement appa-
ratus implements an irreducible n-outcome POVM M1. What
is the minimal scenario in which one can conclude from the
output statistics alone that the POVM is irreducible? In other
words, what is the minimal number of state preparations s and
auxiliary measurements m − 1?

Clearly, if one has access to s preparations and m − 1
auxiliary measurements, the set of all possible correlations
p(a|x, y) that can be obtained in a scenario without any con-
straint on the dimension of the system yields a convex set.
As it turns out, this convex set is a polytope, whose extremal
points correspond to deterministic correlations [18], that is,
where all p(a|x, y) are either 0 or 1. If the dimension d of
the system is at least s then these extremal points can be
obtained from a fixed choice of s orthogonal states ρx =
|ψx〉〈ψx| and at most s-chotomic measurements with effects
Ma|y = ∑

x p(a|x, y)ρx. Hence, all correlations can be written
as convex combination of deterministic strategies. Since all
extreme points use the same states, the convex coefficients
can be absorbed into the effects yielding at most s-chotomic
POVMs. For our case of an irreducible three-outcome mea-
surement on a qubit, n = 3 and d = 2, this implies that at
least s = 3 different states are required. It also follows that
USDd ⊂ USD3 since only three different states are used in
the USD correlations.

Regarding the number of auxiliary measurements
m − 1, we consider the case where no auxiliary
measurements are used. In this scenario, we write
Cd (s, n) for the convex hull of all correlations on a
d-dimensional classical system and Qd (s, n) for the convex
hull of all correlations on a d-dimensional quantum system.
Note that these sets are only of importance for determining
the minimal scenario and are not used subsequently. In
Theorem 3 in Ref. [19] it was established that both sets
are equal, Qd (s, n) = Cd (s, n). Since all correlations in
Cd (s, n) can be obtained from d-chotomic measurements,
this property also follows for all correlations in Qd (s, n).
Therefore, the smallest scenario which allows us to certify an
irreducible three-outcome measurement on a qubit includes
at least two measurements M1 = (M1|1, M2|1, M3|1) and
the auxiliary measurement M2 = (M1|2, M2|2) (see also
Fig. 2). The set of all correlations achievable in the minimal
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FIG. 2. Prepare-and-measure setup of the minimal scenario pro-
ducing simulable trichotomic correlations. On the left-hand side
one can choose between three different preparation procedures x ∈
{1, 2, 3} and the corresponding qubit state is sent to one of two
measurement devices (right-hand side). The measurement device is
chosen by the experimenter and this choice is denoted by y ∈ {1, 2}.
For y = 1 the measurement can yield three different outcomes,
but governed by a specific inner mechanism. It consists of three
two-outcome measurements, one of which is chosen at random. De-
pending on the outcome of this measurement, an outcome is assigned
to the overall three-outcome measurement. If y = 2 the measurement
device is a simple two-outcome measurement.

scenario with fixed dimension d is subsequently denoted by
CORd . Furthermore, we write SIMd for the set of simulable
trichotomic correlations within CORd . All sets that are
relevant for our discussion can be concisely described as
follows: USDd is the set of correlations of the form (3) that
can be obtained from a d-level quantum system, SIMd is the
set of simulable trichotomic correlations that can be obtained
from a d-level quantum system in the minimal scenario, and
CORd is the set of all correlations achievable in the minimal
scenario with fixed dimension d . Clearly, the correlations
USDd are a subset of CORd and SIMd ∩ USDd are the
simulable trichotomic correlations within USDd .

B. Geometry of the trichotomic correlations

In this section we investigate how the sets SIM2

and COR2 are related. In contrast to Bell-like scenarios,
where the convex hull of the correlations is taken [11,20],
here we restrict the study to the bare sets COR2 and SIM2.
These sets are not convex, as can be seen by considering
the subset USD2, characterized by Lemma 1. In fact, it is
evident that the correlation matrix of D1 = P (1, 0, 1) and
D2 = P (1, 1, 0) can be realized with dichotomic measure-
ments, that is, D1, D2 ∈ USD2 ∩ SIM2. However, no convex
combination Dλ = λD1 + (1 − λ)D2 with 0 < λ < 1 can be
written in the form P (p, q, ξ ) as given by Eq. (4). Here it
is important to note that the correlations Dλ are still USD
correlations. Hence Dλ ∈ COR2 already implies Dλ ∈ USD2.
The relation of the points D1 and D2 and their convex mixture
Dλ to the sets USD2 and SIM2 is illustrated in Fig. 3. Since
USD2 is an affine section of COR2, it follows that neither
COR2 nor SIM2 is convex.

Our next step is to establish that not all qubit USD cor-
relations are simulable trichotomic. We have the following
theorem, which we prove in Appendix B.

Theorem 1. There exist correlations in USD2 that are not
contained in the convex hull of USD2 ∩ SIM2.

FIG. 3. Schematic illustration of the relations among the sets
USD2, SIM2, and COR2. The set COR2 of all correlations that can be
obtained with a qubit in the minimal scenario is obviously a superset
of SIM2, the set of all simulable correlations in the minimal scenario
as well as USD2, the set of all correlations that can be obtained with
a qubit and are of the form (3). The points D1 and D2 represent
deterministic correlations contained in USD2 ∩ SIM2, hence located
at the boundary of any of the three sets. The dashed line represents
the convex hull of the set USD2 ∩ SIM2.

Hence, even the convex hull of the simulable trichotomic
qubit USD correlations does not cover all qubit USD cor-
relations. This might raise the expectation that there exists
a linear inequality separating COR2 and SIM2, despite the
nonconvexity properties discussed above. However, note that
the statement of Theorem 1 only concerns the subset of USD
correlations and one cannot conclude that the convex hull of
SIM2 is a proper subset of COR2.

C. Genuine trichotomic correlations

For an experimental certification of an irreducible three-
outcome measurement it is essential to find correlations P ∈
COR2 such that closest simulable correlations P ′ ∈ SIM2

have a distance r of reasonable size. We measure this distance
either in terms of the supremum norm, yielding r∞, or in terms
of the Euclidean norm, yielding r2, that is,

r∞ = max
i, j

|Pi, j − P ′
i, j |, (5)

r2 =
[∑

i, j

(Pi, j − P ′
i, j )

2

]1/2

. (6)

According to Theorem 1, we can preliminarily focus on the
family of USD correlations, since Theorem 1 guarantees that
there exist USD correlations P ∈ USD2 such that r > 0.

In order to compute r2 and r∞ we rely on numerical
optimization over the set SIM2. The optimization is non-
linear and involves three (possibly mixed) states as well as
four dichotomic POVMs. It is important to note that if the
states or the effects are fixed, the problem can be rephrased
as a semidefinite program (SDP) and becomes thereby easy
to solve numerically. We use this fact to implement an al-
ternating optimization (seesaw algorithm [21]); a detailed
description is provided in Appendix C. We mention that,
technically, this optimization algorithm only yields guaran-
teed upper bounds on the distances, because it is based on
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finding the correlations in SIM2 closest to P . While this
fact is not of practical concern, we discuss in Appendix D
also how strict, but rather rough, lower bounds can be ob-
tained. The largest distance we found is realized by the choice
of P = P (0.577, 0.726, 0.276), where the seesaw algorithm
yields r2 ≈ 0.0391 and r∞ ≈ 0.0177. Using the algorithm
described in Appendix D, the computation of the lower bound
yields r∞ ≈ 0.0022, hence one order of magnitude smaller.
However, the lower bound should only emphasize that the
distance is indeed positive, hence consistent with Theorem 1.
Larger distances can be achieved using correlations which are
not confined to USD2. In particular, choosing an arrangement
involving the trine POVM (see Fig. 1 and Appendix E), we
find r2 ≈ 0.0686 and r∞ ≈ 0.0342. Hence we obtain only
moderate experimental requirements for a certification of an
irreducible three-outcome measurement.

IV. ESTIMATING THE STATE SPACE DIMENSION

As discussed in the Introduction, in order to certify an irre-
ducible n-outcome measurement, knowledge of the dimension
of the prepared system is necessary. While it is possible that
the dimension can be convincingly deduced from the exper-
imental setup, for a fully device-independent procedure, the
dimension of the system has to be determined from correlation
data alone. However, the dimension of a system is a physically
ill-defined object, in the sense that any description of a system
can always be embedded into a higher-dimensional system.
For example, we can treat a qubit as a restricted theory of
a qutrit. However, from an operational point of view, one
can still assess the dimension by determining the effective
dimension, that is, the minimal dimension which explains
the experimental data. A dimension witness [22] might seem
to be the appropriate tool for this purposes, since it gives
a procedure to determine a lower bound on the dimension.
However, this is not sufficient for our purposes, because it
does not exclude that the effective dimension can be higher
than the dimension witnessed.

In general, we assume that the procedure to determine the
effective dimension of a system consists of s different state
preparations and m measurements. The correlations p(a|x, y)
form a matrix (Ax,�)x,�, where x labels the states, a labels the
outcome of measurement y, and � enumerates all outcomes
of all measurements. For a d-level system, the rank of this
matrix can be at most the affine dimension of the state space,
that is, d2 − 1. Hence determining the rank of the matrix A
can give an estimate of the effective dimension of the system.
In practice, one would choose a large number of preparation
procedures and a large number of measurement procedures
with the expectation that an estimate of the rank of A produces
a reliable estimate of the affine dimension of the state space.
We mention that for consistency reasons, the preparation-
and-measurement procedures should include those required to
certify the irreducibility of the n-outcome measurement.

While this approach can work in principle, it has to be
considered with care. For an implementation of an irreducible
three-outcome measurement on a qubit, it is typically neces-
sary to dilate the three-outcome measurement to a projective
measurement on a higher-dimensional system [7]. Despite
this, it still makes sense to speak about an irreducible three-

outcome measurement if the additional dimensions used for
the dilated measurement are not accessible due to a physical
mechanism that reduces the dimension before entering the
measurement station. In a setup using the polarization degree
of freedom of a photon, this may be achieved, for example, by
means of a single mode fiber. Mathematically, such a mecha-
nism corresponds to a completely positive map 	 so that the
correlations are obtained through p(a|x, y) = tr[	(ρx )Ma|y].
However, then the rank of the matrix A alone is insufficient
to establish the effective dimension of the system, as can
be seen by considering the dephasing qutrit-qutrit channel
	 : ρ �→ ∑

k |k〉〈k| ρ |k〉〈k|. Using this channel, the matrix A
will have rank 3, which would suggest an effective dimension
of d = 2, while the actual effective dimension is d = 3. This
can be overcome by certifying that the shape of the state and
effect space correspond to a qubit. For methods to implement
such a certification refer to Ref. [23].

V. DISCUSSION

We studied the structure of the correlations produced by
irreducible three-outcome qubit measurements in the prepare-
and-measure scenario. Our goal was a minimal scenario in
terms of the number of experimental devices required. Using
only one auxiliary measurement, we found that the gen-
uine trichotomic correlations and the simulable trichotomic
correlations can be separated in the Euclidean norm by
r2 = 0.0686. Consequently, all nine entries in the correlation
matrix must be determined with an absolute error of roughly
r2/

√
9 ≈ 0.0229. We mention the great similarity of this setup

to the one used in Ref. [12], namely, the states and the mea-
surements are the same, but in our setup we omit one of the
auxiliary measurements. While this scheme is motivated by
symmetry considerations, we also used the USD correlations
to systematically describe a subset of the trichotomic correla-
tions. However, within these correlations the largest distance
we obtained is smaller, r2 ≈ 0.0347. We mention that the
results in Ref. [9] are also based on USD, but with the different
goal to certify any of several trichotomic measurement.

Our results are not based on a linear inequality separating
genuine and simulable trichotomic correlations and such an
inequality is not necessary for the purpose of an experimental
certification. However, we also established in Theorem 1 that
such an inequality exists when the analysis is constrained to
the USD correlations. It is now an interesting open question
whether in our minimal scenario this also holds when consid-
ering all correlations, since this would imply that also in the
minimal scenario the convex hull of the simulable correlations
does not include all trichotomic correlations. A further inter-
esting question is if it is possible to find a systemic approach
to construct families of distributions in a minimal scenario that
are able to determine whether an implemented n-chotomic
measurement is irreducible. Such an approach would unify
recent results that actually appear in separate contexts.
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APPENDIX A: PROOF OF LEMMA 1

Suppose that P ∈ USD2. This has consequences
for the measurements M1 = (M1|1, M2|1, M3|1) and
M2 = (M1|2, M2|2) and the states ρ1, ρ2, and ρ3 that can
realize the correlations. In particular, P2,3 = tr[ρ2M1|2] = 1
and P1,3 = 0 imply ρ2 = M1|2 = |ϕ〉〈ϕ| and ρ1 = |ϕ⊥〉〈ϕ⊥|,
where |ϕ〉 and |ϕ⊥〉 are two orthonormal vectors. With
a similar argument we obtain M2|1 = q|ϕ⊥〉〈ϕ⊥| with
0 � q � 1. It remains to consider the consequences of
P3,1 = 0 for ρ3 and M1|1. This requires M1|1 = p|η⊥〉〈η⊥| and
ρ3 = |η〉〈η| for some orthonormal vectors |η〉 and |η⊥〉 and
0 � p � 1.

Without loss of generality, we can assume

|η〉 =
√

ξ |ϕ〉 +
√

1 − ξeiφ |ϕ⊥〉 , (A1)

|η⊥〉 =
√

1 − ξ |ϕ〉 − ξeiφ |ϕ⊥〉 , (A2)

where 0 � ξ � 1 and φ ∈ R. This yields immediately Eq. (4)
together with the conditions p, q, ξ ∈ [0, 1]. For M1 to form
a POVM it remains to verify that M3|1 = 1 − M1|1 − M2|1 is
positive semidefinite. This reduces here to tr(M3|1) � 0 and
det(M3|1) � 0 and can be equivalently expressed as the single
condition (1 − p)(1 − q) � pqξ .

From the above construction it is also immediately clear
that, conversely, any choice of p, q, ξ satisfying the con-
straints in Lemma 1 is in USD2. Finally, given P , all effects
and states are fixed by the above considerations, except for
the choice of the orthonormal basis {|ϕ〉 , eiφ |ϕ⊥〉}, prov-
ing the claim of a unique representation up to a unitary
transformation.

APPENDIX B: PROOF OF THEOREM 1

We first parametrize the correlations D ∈ SIM2 ∩ USD2

with D3,3 �= 0. By virtue of Eq. (1) and using the proof of
Lemma 1 above, the effects of the simulated trichotomic
POVM M1 can be written as

M1|1 = p |η⊥〉〈η⊥| = κ1F1 + κ3(1 − F3), (B1)

M2|1 = q |ϕ⊥〉〈ϕ⊥| = κ1(1 − F1) + κ2F2, (B2)

where, compared to Eq. (1), we write κ j in place of p j

and Fj in place of Nj| j . For κ1 �= 0 it follows that F1 ∝
|η⊥〉〈η⊥| and 1 − F1 ∝ |ϕ⊥〉〈ϕ⊥|, yielding F1 = |η⊥〉〈η⊥| =
|ϕ〉〈ϕ|. This is in contradiction to the assumption D3,3 �= 0
by virtue of D3,3 = tr(M1|2ρ3) with ρ3 = |η〉〈η| and M1|2 =
|ϕ〉〈ϕ|. Hence κ1 = 0. Writing κ ≡ κ2 = 1 − κ3, Eq. (B2)
implies F2 = f2 |ϕ⊥〉〈ϕ⊥| with 0 � f2 � 1 and κ f2 = q. Sim-
ilarly, from Eq. (B1) one obtains 1 − F3 = f3 |η⊥〉〈η⊥| with
(1 − κ ) f3 = p. Therefore, D ∈ USD2 ∩ SIM2 with D3,3 �= 0

if and only if

D =

⎛
⎜⎝

f3(1 − κ )ξ f2κ 0

f3(1 − κ )(1 − ξ ) 0 1

0 f2κ (1 − ξ ) ξ

⎞
⎟⎠, (B3)

with f2, f3, κ, ξ ∈ [0, 1] and ξ �= 0.
Next we show that for any 0 < ξ < 1 there exist correla-

tions P ∈ USD2 \ SIM2. For this we consider the linear map

W : P �→ −P1,1 − P1,2 + P3,2 + P3,3. (B4)

For P (p, q, ξ ) as in Eq. (4) and the choice p = 1
2 and q =

1/(ξ + 1), we verify that for any 0 < ξ < 1 the constraint
(1 − p)(1 − q) � pqξ is satisfied and in addition W (P ) <

0 holds. However, for any D as in Eq. (B3), we have
W (D) = ξ [1 − f2κ − f3(1 − κ )] � 0 and in addition for any
T ∈ USD2 with T3,3 = 0 we have immediately W (T ) = 0.
Consequently, W (S − P ) > 0 for our choice of P and any
S ∈ SIM2 ∩ USD2, that is, S �= P .

From this observation, it readily follows that the convex
hull of USD2 ∩ SIM2 does not contain all of USD2. This is
the case because W is a linear map and thus its minimum over
the convex hull of USD2 ∩ SIM2 is attained already for some
S ∈ USD2 ∩ SIM2. However, for this set we just proved that
W (S ) > W (P ) for certain P ∈ USD2.

APPENDIX C: UPPER BOUND ON THE MINIMAL
DISTANCE

We compute the maximal radius r of a ball Br (P ) around
correlations P ∈ COR2 \ SIM2 such that Br (P ) ∩ SIM2 is
empty. As we mention in the main text, we consider this
maximal ball with respect to the supremum norm r = r∞ and
the Euclidean norm r = r2 [see Eqs. (5) and (6), respectively].
Correspondingly, computing r can be formulated as the op-
timization problem to minimize a real parameter t over all
Q ∈ SIM2 such that

−t � Pi, j − Qi, j � t ∀ i, j (C1)

in the case of r∞ and∑
i, j

(Pi, j − Qi, j )
2 � t2 (C2)

in the case of r2.
We write F1 = M1|1, F2 = M2|1, and F3 = M1|2 so that

Qi, j = tr(ρiFj ). If we keep the effects fixed, then the optimiza-
tion is a semidefinite program of the following type: Minimize
t under the constraints ρi � 0 and tr(ρi ) = 1 for i = 1, 2, 3
and either the linear constraint (C1) or the quadratic-convex
constraint (C2). Similarly, if we keep the states fixed, then the
optimization is again a semidefinite program, however now
with the constraints on the states replaced by constraints on
the effects, namely,

F1 = F ′
1 + F ′

0 , F2 = F ′
2 + f01 − F ′

0 , (C3)

0 � F ′
0 � f01, 0 � F ′

1 � f11, 0 � F ′
2 � f21, (C4)

0 � F3 � 1, f0 + f1 + f2 = 1. (C5)

062431-6



MINIMAL SCHEME FOR CERTIFYING THREE-OUTCOME … PHYSICAL REVIEW A 104, 062431 (2021)

Since these small semidefinite programs can be solved very
fast numerically, this invites a seesaw optimization [21]
where one alternates between the two optimizations until t
converges.

We implement this seesaw algorithm using the PYTHON

library PICOS with the CVXOPT back end. As the criterion for
convergence we take tn−1 − tn < 10−6, where tn is the value
after n seesaw iterations. This convergence happens after at
most 300 iterations. We repeat the optimization 4500 times,
each time with different starting values for ρ1, ρ2, and ρ3,
where we take pure states chosen randomly according to the
Haar measure and then decrease the purity tr(ρ2) to be uni-
formly in the interval [ 1

2 , 1]. The same optimal value is always
reached independently of the start values for the Euclidean
norm, while it occurs only for about 1% of the start values in
the case of the supremum norm.

APPENDIX D: LOWER BOUND ON THE MINIMAL
DISTANCE

In this Appendix we describe an algorithm that yields
a lower bound on the distance between a given correlation
and the set SIM2. In the following we will write B(P, ε)
for the ball at P ∈ COR2 of radius ε in the metric induced
by the ∞-norm. Considering a given correlation P ∈ USD2

of the form in Eq. (3), we are interested in the condition
on the states and the measurements under which we have
Q ∈ B(P, ε) for ε > 0. Clearly, any Q ∈ COR2 is of the
form

Q =

⎛
⎜⎜⎝

tr(ρ1M1|1) tr(ρ1M2|1) tr(ρ1M1|2)

tr(ρ2M1|1) tr(ρ2M2|1) tr(ρ2M1|2)

tr(ρ3M1|1) tr(ρ3M2|1) tr(ρ3M1|2)

⎞
⎟⎟⎠. (D1)

However, it turns out to be useful to group the parameters in
(D1) into two different classes. Define a = (ρ1, ρ2, M1|2) and
b = (ρ3, M1|1, M2|1), which together form the full set of pa-
rameters of the distribution Q = Q(a, b). The question of how
large can ε be chosen such that there is no Q(a, b) ∈ B(P, ε) if
the trichotomic measurement M1 = (M1|1, M2|1, M3|1) is lim-
ited to be simulable by dichotomic measurements. Observe
that if Q(a, b) are USD correlations, then the elements Q13,
Q22, Q31, and Q23 all are 0 or 1 and this imposes strong con-
straints on the parameters a. In fact, if Q(a, b) = P, then the
value of a is fixed up to a unitary transformation, as we have
seen in Appendix B. We call this fixed value a∗. In the follow-
ing, we will extend the argument in Appendix B to show that
Q(a, b) ∈ B(P, ε) implies that a ∈ B(a∗,O(

√
ε)). Then, using

the continuity of Q, we can show that a ∈ B(a∗,O(
√

ε)) im-
plies Q(a, b) ∈ B(Q(a∗, b),O(

√
ε)). Since Q(a, b) ∈ B(P, ε)

and Q(a, b) ∈ B(Q(a∗, b),O(
√

ε)), it follows that Q(a∗, b) ∈
B(P, ε + O(

√
ε)) by the triangular inequality. We have thus

reduced the problem of asking for the existence of a and b
such that Q(a, b) ∈ B(P, ε) to simply asking for the existence
of b such that Q(a∗, b) ∈ B(P, ε + O(

√
ε)). The latter means

that, for a fixed value of ε and fixed values of ρ1, ρ2, and
M1|2, we ask for the feasibility of ρ3, M1|1, and M2|1 such
that Q ∈ B(P, ε + O(

√
ε)). This is not yet an SDP; however,

it can be decomposed into a finite number of SDPs by scan-

ning the values of ρ3 and bounding the error in the finite
scanning.

The detailed calculation of the above program is straight-
forward yet cumbersome. We will first introduce some
notation. For convenience we parametrize the effects and
the states by the Bloch coordinates. More precisely, for an
effect E , we write (x0, �x), which means E = 1

2

∑3
i=0 xiσi,

where σ0 := 1 and σi are the Pauli matrices. Similarly, for a
state ρ we write �y with ρ = 1

2 (1 + ∑3
i=1 yiσi ). In particular,

we write ρi = (1, �ri ), M1|1 = (x01, �x1), M2|1 = (x02, �x2), and
M1|2 = (y0, �y). Because of the unitary freedom, we can always
assume �x1 and �x2 to have no z component and at the same
time �r2 to have no y component. We also write Q ∈ P ± ε as
a synonym of Q ∈ B(P, ε).

First, we show that one can bound the trace of the ef-
fect from below, given a lower bound on the probability for
that effect.

Lemma 2. Let ρ = (1, �r) be a state and F = (x0, �x) be
an effect. We have (i) if tr[Fρ] � a then x0 � a and (ii) if
tr[Fρ] � b then x0 � 1 + b.

Proof. We first show (i). We have tr[Fρ] = 1
2 (x0 + �x�r) �

a. Because �x�r � |�x||�r| � x0|�r| � x0, we have x0 + x0 � 2a or
x0 � a. For (ii) we have similarly tr[Fρ] = 1

2 (x0 + �x�r) � b;
then 1

2 (2 − x0 − �x�r) � 1 − b. Then applying (i), we find 2 −
x0 � 1 − b or x0 � 1 + b.

The following corollary is an application of the lemma to
the condition Q ∈ P ± ε.

Corollary 1 (estimation of the traces of effects). For Q ∈
P ± ε we need (i) 1 − ε � y0 � 1 + ε, (ii) c1 − ε � x01 �
1 + ε with c1 = max{P12, P22}, and (iii) c2 − ε � x02 � 1 + ε

with c2 = max{P13, P33}.
Proof. (i) is the direct consequence of 0 � Q13 � ε and

1 � Q23 � 1 − ε. (ii) is the direct consequence of Q11 ∈
P11 ± ε and Q21 ∈ P21 ± ε. Likewise, (iii) is the direct con-
sequence of Q12 ∈ P12 ± ε and Q32 ∈ P32 ± ε.

Corollary 2 (estimation of �r1 and �r2 by �y). (i) Q23 � 1 −
ε implies |�y − �r2| �

√
4ε + ε2 and (ii) Q13 � ε implies |�y +

�r1| �
√

4ε + ε2.
Proof. (i) We have Q23 = 1

2 (y0 + �y �r2) � 1 − ε; then �y �r2 �
2(1 − ε) − y0. Further, �y�r2 � 2(1 − ε) − y0 leads to �y2 +
�r2

2 − (�y − �r2)2 � 4(1 − ε) − 2y0. Because |�y| � min{y0, 2 −
y0} and �r2

2 � 1, we obtain (min{y0, 2 − y0})2 + 2y0 − 3 +
4ε � (�y − �r2)2. The left-hand side is maximized at y0 = 1 +
ε, which leads to 4ε + ε2 � (�y − �r2)2. The proof of (ii) is
analogous to (i).

Now we consider the constraint of the form tr[ρF ] � ε.
We show that if the trace of F is bounded from below, we can
bound the purity of ρ. This also extends to the consideration
of each Bloch components of the Bloch vectors.

Lemma 3. Let ρ = (1, �r) be a state and F = (x0, �x)
be an effect with x0 � c and �x having no z component.
Then tr[ρF ] � ε implies |�r| � |�rxy| � 1 − 2ε

c and |rz| �√
1 − (1 − 2ε/c)2. As a consequence, if we let �n be the unit

vector of the direction of �rxy, then |�rxy − �n| � 2ε/c and |�r −
�n| � 2ε/c +

√
1 − (1 − 2ε/c)2. Here �rxy denotes the projec-

tion of �r onto the xy plane and �rz onto the z axis.
Proof. Observe that tr[ρF ] = 1

2 (x0 + �r�x) = 1
2 (x0 +

�rxy�x) � ε. This leads to −�rxy�x � x0 − 2ε. Then we
have |�rxy|x0 � x0 − 2ε and so |�r| � |�rxy| � 1 − 2ε/x0 �
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1 − 2ε/c. Also 1 � �r2
z + �r2

xy � �r2
z + (1 − 2ε/c)2, so

|�rz| �
√

1 − (1 − 2ε/c)2. The latter part of the statement
is obvious.

Corollary 3 (estimation of �r2 and �r3 by the unit vectors of
their projection onto the xy plane). Let �r2xy denote the xy com-
ponent and �r2z denote the z component of �r2. Further, let �n be
the unit vector in the direction of �r2xy and �t be the unit vector in
the direction of �r3xy. Then we obtain the following as a direct
consequence of Lemma 3: (i) Q31 � ε implies |�r3xy − �t | �

2ε/(c1 − ε) = ε3xy and |�r3z| �
√

1 − [1 − 2ε/(c1 − ε)]2 =
ε3z and (ii) Q22 � ε implies |�r2xy − �n| � 2ε/(c2 − ε) = ε2xy

and |�r2z| �
√

1 − [1 − 2ε/(c2 − ε)]2 = ε2z.
Now let us consider the cost of pinning the values of

�r1, �r2, and �r3. It is best to start with �r2. We consider the
estimation of �r2 by �n. This leads to a new estimation of
the matrix elements involving ρ1 and ρ2. In particular, we
have

Q11 = 1
2 (x01 + �r1�x1)

= 1
2 [x01 + (−�n)�x1 + (�n − �r2xy)�x1 + (�r2 − �y)�x1 + (�y + �r1)�x1]

∈ 1
2 [x01 + (−�n)�x1 ± (ε2xy + 2

√
4ε + ε2)], (D2)

Q12 = 1
2 (x02 + �r1�x2)

= 1
2 [x02 + (−�n)�x2 + (�n − �r2xy)�x2 + (�r2 − �y)�x2 + (�y + �r1)�x2]

∈ 1
2 [x02 + (−�n)�x2 ± (ε2xy + 2

√
4ε + ε2)], (D3)

Q21 = 1
2 (x01 + �r2�x1) = 1

2 [x01 + �n�x1 + (�r2xy − �n)�x1] ∈ 1
2 [x01 + �n�x1 ± ε2xy], (D4)

Q22 = 1
2 (x02 + �r2�x2) = 1

2 [x02 + �n�x2 + (�r2xy − �n)�x2] ∈ 1
2 [x02 + �n�x2 ± ε2xy]. (D5)

Let us consider the error one introduces by setting �r3xy equal to �t . This only affects the last row of the correlation table

Q33 = 1
2 (y0 + �y�r3) = 1

2 [y0 + �r2�r3 + (�y − �r2)�r3] ∈ 1
2 [y0 + �r2�r3 ±

√
4ε + ε2]

∈ 1
2 [y0 + �r2xy�r3xy + �r2z�r3z ± (

√
4ε + ε2)]

∈ 1
2 [y0 + �n�t + �n(�r3xy − �t ) + (�r2xy − �n)�t + (�r2xy − �n)(�r3xy − �t ) ± (ε2zε3z +

√
4ε + ε2)]

∈ 1
2 [y0 + �n�t ± (ε2xy + ε3xy + ε2xyε3xy + ε2zε3z +

√
4ε + ε2)], (D6)

Q31 = 1
2 (x01 + �x1�r3) = 1

2 (x01 + �x1�r3xy) = 1
2 [x01 + �x1�t + �x1(�r3xy − �t )]

∈ 1
2 [x01 + �x1�t ± ε3xy], (D7)

Q32 = 1
2 (x02 + �x2�r3) = 1

2 (x02 + �x2�r3xy) = 1
2 [x02 + �x2�t + �x2(�r3xy − �t )]

∈ 1
2 [x02 + �x2�t ± ε3xy]. (D8)

To sum up, as long as Q ∈ P ± ε, Eqs. (D2)–(D8) should
be satisfied. This further implies the constraints on the val-
ues on the right-hand sides of Eqs. (D2)–(D8). For example,
Eq. (D2) together with Q11 ∈ P11 ± ε implies 1

2 (x01 + �n�x1) ∈
P11 ± [ε + (ε2xy + 2

√
4ε + ε2)], and so on. Therefore, given

ε > 0 arbitrary, we have to ask whether there exist feasible
�n and �t and (x10, �x1) and (x20, �x2) which are simulable by
dichotomic measurements such that all these constraints are
satisfied.

Notice that, due to the unitary freedom mentioned at the be-
ginning of this Appendix, one can always set �n = (1, 0, 0). If
we further set �t = (cos(ϕ), sin(ϕ), 0), asking for the existence
of (x10, �x1) and (x20, �x2) which are simulable by dichotomic
measurements is an SDP.

To conclude, we have the following algorithm. Scanning
over �t = (cos(ϕ), sin(ϕ), 0) with certain finite step in ϕ, for
any value of �t , set �r2 = �n, �r1 = −�n, �y = �n, and �r3 = �t . Set a
value of ε and test the SDP of finding reducible M1|1 and M2|1
such that all the above-mentioned constraints are satisfied. At
ε = 0, the SDP is infeasible. We can implement a bisection
method to find the exact transition point where the SDP is
infeasible. We obtain the critical error tolerance εc(ϕ). By
scanning all values of ϕ, we find ε∗ = min εc(ϕ).

For practical purposes, the above-described procedure is
sufficient. In principle, one may still object that the number
ε∗ may not be reliable because of the finite step scanning over
the values of ϕ. This objection can also be addressed. The idea
is that the error introduced by the finite steps can in fact be
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bounded by bounding the variation of the function εc(ϕ). That
is, we can find a number C such that |εc(ϕ + x) − εc(ϕ)| � Cδ

for all ϕ ∈ [0, 2π ] and |x| � δ. Note that the variation of
ϕ only affects Q3k . A variation of δ in ϕ gives rise to a
variation of δ�t with |δ�t | � δ. One then sees that δQ3k � δ/2.
Therefore, |εc(ϕ + x) − εc(ϕ)| � δ/2 for any value of ϕ and
|x| � δ. If one selects a step in ϕ with size δ, the error in
the global minimum ε∗ = min εc(ϕ) is bounded by δ/4 (since
the maximum distance from any point to a computed point
is δ/2). Taking δ = 2π × 10−5 is sufficient to bounding the
error by π/2 × 10−5. An adaptive scheme of varying the step
sizes over different regimes of ϕ can be utilized to speed up
the computation.

APPENDIX E: CORRELATIONS FROM THE TRINE POVM

At the end of Sec. III C and in Fig. 1 we used
an arrangement of states and effects involving the trine
POVM. This arrangement produces the genuine trichotomic

correlations

Ptrine =

⎛
⎜⎝

1
2

1
2 0

1
2 0 3

4

0 1
2

3
4

⎞
⎟⎠ (E1)

with a Euclidean distance of r2 ≈ 0.0686 to the simulable
trichotomic correlations. The correlations Ptrine are obtained
with the states

ρ1 = 1

2
(1 + σz ),

ρ2 = 1

2

(
1 −

√
3

2
σx − 1

2
σz

)
,

ρ3 = 1

2

(
1 +

√
3

2
σx − 1

2
σz

)
(E2)

and the measurement effects M1|1 = 2
3 (1 − ρ3), M2|1 = 2

3 (1 −
ρ2), M3|1 = 2

3 (1 − ρ1), M1|2 = 1 − ρ1, and M2|2 = ρ1.
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