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Biphoton phase-space correlations from Gouy-phase measurements using double slits
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Quantum correlations encoded in photonic Laguerre-Gaussian modes were shown to be related to the Gouy-
phase shifts [Kawase et al., Phys. Rev. Lett. 101, 050501 (2008)], allowing for a nondestructive manipulation
of photonic quantum states. In this work, we exploit the relation between phase-space correlations of biphotons
produced by spontaneously parametric down-conversion (SPDC) as encoded in the logarithmic negativity (LN)
and the Gouy phase as they are diffracted through an asymmetrical double-slit setup. Using an analytical
approach based on a double-Gaussian approximation for type-I SPDC biphotons, we show that measurements
of Gouy-phase differences provide information on their phase-space entanglement variation, governed by the
physical parameters of the experiment and expressed by the LN via covariance matrix elements.
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I. INTRODUCTION

Quantum information science has reached a revolutionary
point in the timeline of technological advances and com-
mercial exploitation. Quantum effects have been effectively
used in various kinds of information processing and com-
munication. More recently, continuous quantum variables [1]
have been used to extend quantum communication protocols
from discrete (finite dimension) to continuous variables (in-
finite dimensions). This amounts to encoding information in
continuous variables, such as quadratures of coherent states.
The main advantage of working with continuous variables
is their unconditionality [2], meaning that the information
carriers (e.g., entangled states) originate from the nonlinear
optical interaction of a laser with a crystal in an unconditional
(every inverse bandwidth time). The drawback is the quality
of the entanglement of the states. Quantum information via
continuous variables has been contemplated in quantum key
distribution protocols [3], in which one may convey uncondi-
tionally secure communication. Continuum variable quantum
correlations can be encoded in degrees of freedom with a
continuous spectrum such as the position and momentum of
a particle as well as light quadratures and collective magnetic
moments of atomic ensembles, which obey the same canon-
ical algebra. In this contribution, we study the quantification
of quantum correlations encoded in continuous variables of
biphotons produced in a nonlinear crystal via spontaneous
parametric down-conversion as encoded in their Gouy phase
in a double-slit experiment.

*crislane.brito@ufabc.edu.br
†irismarpaz@ufpi.edu.br

In a nutshell, the Gouy phase is an axial phase shift that
a converging light wave suffers as it passes through a focal
point. This phase anomaly was first observed by Gouy in
1890 [4,5] and it can be seen as the result of the photon
transverse momentum spread as its trajectory is limited in the
transverse direction due to focusing or diffracting through a
slit aperture. However, the Gouy-phase shift is present in any
kind of wave that is transversally confined, and its physical
interpretation is connected to the underlying wave phenom-
ena [6–13]. For instance, the Gouy phase shift can be seen as
a manifestation of a general Berry phase, namely a topological
phase acquired by a system after a cyclic adiabatic evolution
in parameter space [14]. It is known that the Gouy phase
shift can be understood in light of the uncertainty princi-
ple, as transverse spatial confinement leads to a spread in
the transverse momenta and, consequently, to a shift in the
expectation value of the axial propagation constant. Thus,
a general expression for the Gouy-phase shift is given in
terms of expectation values of the squares of the transverse
momenta. Therefore, the physical origin of the Gouy phase
shift arises from the covariance matrix elements [6,11]. The
Gouy-phase shift amounts to a n × π/2 axial phase shift that
a converging light wave experiences as it passes through its
focus in propagating from −∞ to +∞. Whereas the Gouy-
phase shift for a focused wave is equal to π/2 for cylindrical
waves (line focus) and π for spherical waves (point focus),
in wave diffraction by small apertures it was verified to be
π/4 [15].

Gouy-phase shift is observed in different wave phenom-
ena, such as water [16], acoustic [17], surface plasmon-
polariton [18], phonon-polariton [19], and more recently
matter waves [20–22], and it has important applications in
modern optics and photonics. For example, the Gouy phase
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was used to determine the resonant frequencies in laser
cavities [23], the phase matching in high-order harmonic gen-
eration (HHG) [24], and the spatial variation of the carrier
envelope phase of ultrashort pulses in a laser focus [25].
Moreover, it has been observed that the Gouy phase influ-
ences the evolution of optical [26] and electronical vortex
beams, which acquire an additional Gouy-phase dependence
on the absolute value of the orbital angular momentum [21].
For coherent matter waves, the Gouy phase has been stud-
ied in Refs. [15,27–29] and experimental realizations were
performed in different systems such as Bose-Einstein conden-
sates [20], electron vortex beams [21], and astigmatic electron
matter waves [22]. Matter-wave Gouy-phase shifts can be
used as mode converters in quantum information process-
ing [27], in the development of singular electron optics [22],
and in the study of nonclassical looped path contributions in
multiple-slit interferometry [30].

In our analysis, we use entangled photon pairs (bipho-
tons or twin photons) produced via spontaneous parametric
down-conversion (SPDC). Such events are produced when a
nonlinear crystal is hit by a (pump) photon with frequency
ωp, which in turn produces two new outgoing photons of
lower frequencies ωs (signal) and ωi (idler). A type-I SPDC
process happens when the polarization of the outgoing pair
of photons is parallel to each other and orthogonal to the po-
larization of the pump photon. The spatial distribution of the
emerging photons forms a cone that is aligned with the pump
beam propagation, with the apex at the crystal. Such a pro-
cess is energy-momentum conserving, namely ωp = ωi + ωs

and �kp = �ki + �ks, and thus the outgoing photon pair state is
highly correlated in their spatial, temporal, spectral, and po-
larization properties [31]. Therefore, their joint quantum state
is entangled [32]. Under reasonable physical assumptions, a
double-Gaussian effective wave function for a type-I SPDC
can be constructed from the quantization of the nonlinear
interaction in the medium represented by the crystal which
allows for two outgoing photons from the pump beam source,
which may be treated classically [33–36]. We study the prop-
agation of the twin photons diffracted by a double-slit setup
in order to obtain the wave functions corresponding to the
four possible paths, namely both photons passing through the
upper (lower) slit or each one passing through a different slit.
The purpose here is to generalize the results cast in Ref. [37],
where we established a connection between the logarithmic
negativity and the Gouy phase in the biphoton-free propa-
gation, as both depend on the biphoton correlations through
the Rayleigh length. Furthermore, by focusing the double
Gaussian biphoton wave function using a thin lens, we have
calculated the Gouy phase by writing the quantities as a func-
tion of the Rayleigh range and have found good agreement
with the experimental data [38].

In this contribution, we calculate the Gouy phase and the
logarithmic negativity at the detection screen after the diffrac-
tion of a type-I SPDC biphoton wave packet. In contrast to
the free evolution, in which the biphoton entanglement re-
mains constant, a diffraction through the double slit changes
the phase-space correlations [39]. We analyze the quantum
correlation behavior of twin photons diffracting through a
double slit, and from these correlations presented in the

covariance matrix, one can calculate an entanglement quan-
tifier known as logarithmic negativity. The biphoton entan-
glement at the detection screen depends on the double-slit
geometrical parameters as well as on the initial wave-packet
Gaussian widths. We show that the logarithmic negativity
and the Gouy-phase difference are connected to each other
through the slit width; thus, this setup can serve the pur-
pose of measuring the variation of entanglement, produced
by the change in spatial geometry, in terms of the slit width
using indirect measurements of the Gouy-phase shift. The
Gouy-phase difference is experimentally accessible through
the relative intensity and visibility for certain values of slit
widths in an asymmetrical double slit. We follow the ideas
presented in Refs. [37,38], where it was shown that biphoton
phase-space correlations are related with the Gouy phase via
the logarithmic negativity. For this purpose, we use an asym-
metrical double slit (different slit widths) in order to generate
a Gouy-phase shift, since this phase cancels out when the slits
have the same widths.

We organize our results as follows. In Sec. II, we study
the time evolution of a type-I SPDC biphoton wave function
diffracted through an asymmetrical double slit and obtain the
corresponding Gouy phase. Then, we calculate the covariance
matrix elements and the biphoton entanglement through the
logarithmic negativity at the detection screen in terms of
the slit parameters. The biphoton position cross correlations
both at the slits and at the detection screen are computed for
biphotons passing through the same slit as well as through
different slits as a function of the geometrical parameters and
the wave-packet Gaussian widths. We verify that for a specific
set of those parameters, the interference pattern can be fitted
by the interference of the wave functions corresponding to
the photons passing through the same slit only. For this case,
we define the fringe visibility in analogy to the double-slit
single-particle interferometry and study the behavior of the
visibility as a function of the logarithmic negativity. Sec-
tion III is devoted to the study of the Gouy-phase difference
for an asymmetrical double slit. We show that the Gouy-phase
difference can be expressed in terms of the relative intensity
and the fringe visibility, which can be measured in a simple
way. Then we fix the double-slit parameters as well as the
propagation distances and vary the width aperture of one slit.
This procedure enables us to obtain the Gouy-phase difference
and the logarithmic negativity as a function of the slit aperture.
We draw our concluding remarks in Sec. IV.

II. BIPHOTONS DOUBLE-SLIT INTERFEROMETRY

Consider a biphoton produced in a typical type-I SPDC
process undergoing diffraction through a double slit. It can
be described by an effective wave function [33,40,41] in the
position space whose parameters encode phase-space entan-
glement, and a propagator can be derived [40,42] to evolve
the double-Gaussian biphoton wave function in time. Ana-
lytical expressions for the time evolution and intensity at the
detection screen can be obtained by considering Gaussian slit
apertures [43]. From the four wave functions describing the
biphoton diffraction through a double slit (namely the two
photons passing either through the same or different slits), we
extract the Gouy phase, a geometric phase that arises from
transverse spatial confinement. Thereafter, we can calculate
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the logarithmic negativity using the photon pair diffracted
state in terms of phase-space correlations expressed by the
covariance matrix. Quantum correlations of a biphoton pair
were first investigated in connection with the Gouy phase in
Ref. [38]. Later on, a relation between the Gouy phase and
quantum correlations through the logarithmic negativity for
the biphoton-free evolution was shown in Ref. [37]. Here, we
express the relation between the Gouy phase and the logarith-
mic negativity through the double-slit geometrical parameters
(as seen in Fig. 4). We also study how the position cross corre-
lations affect the interference pattern. By judiciously choosing
a regime for position correlations, we derive the visibility and
relative intensity [15,44], which are experimentally accessible
and contain information about the Gouy-phase difference.

A. Type-I SPDC photon pair state in a double slit and
the Gouy phase

Let us first consider the free evolution of the biphoton wave
function. The effective wave function for biphotons gener-
ated in a degenerate collinear type-I SPDC process is given
by [33,40,41]

ψ0(x1, x2) = 1√
πσ�

e
−(x1−x2 )2

4σ2 e
−(x1+x2 )2

4�2 , (1)

which is the generalized Einstein-Podolsky-Rosen state for
the momentum-entangled particles. In Eq. (1), x1,2 is one
of the transverse biphoton coordinates for which the effec-
tive wave function factorizes in the paraxial approximation.
Moreover, � and h̄/σ quantify the position and momentum
spread of the particles in the x direction [40]. Notice that this
state is not entangled (it factorizes) if � = σ [37]. The time
propagation kernel for each of the photons in the pair is given
by

Ky(y, t ; y′, t ′) =
√

1

iλct
exp

[
−2π (y − y′)2

iλc(t − t ′)

]
, (2)

from which we write the state describing the free propagation
of the biphoton as

ψ (r, q, t ) =
∫

r′,q′
Kr (r, t ; r′, 0)Kq(q, t ; q′, 0)ψ0(r′, q′), (3)

where ψ (r′, q′) is given by Eq. (1) written in terms of relative
coordinates r′ = (x1 + x2)/2 and q′ = (x1 − x2)/2. Writing
the time propagation as a function of the longitudinal dis-
tance [37], namely z = ct , yields

ψ (r, q, z) = 1√
4πw(z)w̃(z)

exp

{
−

[
r2

w2(z)
+ q2

w̃2(z)

]}

× exp

{
−i

[
− k0

r+
r2 − k0

r−
q2 + ζ (z)

]}
. (4)

Similarly to the single-particle propagation, the biphoton
wave function is characterized by the wave-packet spreads
w(z) and w̃(z), the radius of curvature of the wave fronts
r±(z), and the biphoton Gouy phase for the free propagation
ζ (z), whose expressions are presented in Appendix A. In
the double-slit setup, the biphoton covers a distance z = ct
from the source to the slits and zτ = cτ from the slits to the
detection screen. There are four contributions that account for
the intensity at the detection screen: both entangled photons

(a)

(b)

FIG. 1. Double-slit setup for biphoton interference. (a) Both pho-
tons can propagate through slit 1 (upper slit) or slit 2 (lower slit);
(b) each photon of the pair can propagate through different slits. The
photons travel a distance z = ct from the nonlinear crystal to the slits
of widths β1 (upper slit) and β2 (lower slit), with d being the interslit
distance. Thereafter, the photons travel a distance zτ = cτ until the
detection screen.

propagating through the same slit and each one propagat-
ing through different slits, as seen in Fig. 1. The complete
evolution from source to detection screen for a type-I SPDC
biphoton is described by the wave function

�(r, q, z, zτ ) =
∫

r′,q′
Kr (r, z + zτ ; r′, z)Kq(q, z + zτ ; q′, z)

× F (r′, q′)ψ (r′, q′, z),

where the integrals over the primed variables {r′, q′} run
from −∞ to +∞. The propagators Kr and Kq, and the initial
state ψ (r, q, z) are given by Eqs. (2) and (4), respectively.
The Gaussian window functions, representing slits of widths
β1 (upper slit), β2 (lower slit), and interslit center-to-center
distance d , read either

F (r, q) ≡ exp

[
−

[
(r + q) ∓ d

2

]2

2β2
1(2)

]
exp

[
−

[
(r − q) ∓ d

2

]2

2β2
1(2)

]
,

(5)

when the two photons travel through the same slit, where the
upper (lower) sign refers to photons traveling by slit 1 (slit 2),
or

F (r, q) ≡ exp

[
−

[
(r + q) ∓ d

2

]2

2β2
1(2)

]
exp

[
−

[
(r − q) ± d

2

]2

2β2
2(1)

]
,

(6)

when the two photons propagate through different slits.
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Firstly, let us consider identical slit apertures β1 = β2 = β.
The wave function for the biphoton propagating through the
upper slit is

�uu(r, q) = 1√
πBB̃

exp

[
− (r − Duu/2)2

B2

]
exp

[
q2

B̃2

]

× exp

(
ik0

R+
r2 + ik0

R−
q2 + i�uur + iθuu + iζ

)
,

(7)

where the expressions for B, B̃, R±, Duu, �uu, and θuu are writ-
ten in Appendix B. As for the biphoton propagating through
the lower slit, ψdd (r, q, z, zτ ), we replace d with −d in Eq. (7).
On the other hand, the wave function describing a photon,
say 1, passing through the upper slit and a photon 2 passing
through the lower slit is

�ud (r, q) = 1√
πBB̃

exp

[
− r2

B2

]
exp

[
− (q − Dud/2)2

B̃2

]

× exp

(
ik0

R+
r2 + ik0

R−
q2 + i�ud q + iθud + iζ

)
.

(8)

Clearly the state ψdu(r, q, z, zτ ), which describes the prop-
agation of photon 1 through the lower slit and photon 2
through the upper slit, is obtained by replacing d with −d
in ψud (r, q, z, zτ ) (see Appendix B). Just as in the biphoton
propagation in the free space, B(z, zτ ) and B̃(z, zτ ) are the
wave-packet spreads, R±(z, zτ ) is the radius of curvature of
the wave fronts for the propagation through the slit, D(z, zτ )
is the wave-packet separation, and θ (z, zτ ) is a phase which
depends on the propagation distances and d . Therefore, the
Gouy phase is given by

ζ = − 1

2
arctan

[
f (z, zτ , β ) + g(z, zτ , β )

1 − f (z, zτ , β )g(z, zτ , β )

]
, (9)

where the functions f (z, zτ , β ) and g(z, zτ , β ) are given in
Appendix B. As the parameters � and σ become identical,
the initial state is not entangled [40], yet some correlations
remain, as seen from the covariance matrix [37].

Let us study the behavior of the biphoton Gouy phase in
Eq. (9) as a function of the distance after slits zτ , for different
values of the initial correlation between the two photons.
A small correlation � = 3.5σ produces a large total Gouy-
phase variation as compared with � = 5.0σ or � = 10σ ,
represented by the dashed, dash-dotted, and solid curves re-
spectively, in the upper plot of Fig. 2. This result has a similar
pattern to the biphoton-free propagation case [37], showing
that initial correlation between the photons plays a relevant
role in the value of the Gouy phase in Eq. (9), even when
the wave packet suffers diffraction. Moreover, we analyze the
Gouy phase (9) as a function of zτ , for three values of the
slit width β as seen in Fig. 2. We observe that the smaller slit
width, the larger the total Gouy-phase variation (dash-dotted
curve) as seen in Fig. 2. In the limit where β → ∞, the Gouy
phase in (9) for the propagation through a double slit tends to
the Gouy phase given by Eq. (A4) for the free propagation, as
it should. We considered the following set values of param-
eters to construct Fig. 2: biphoton wavelength λ = 702 nm,
laser pump wavelength λp = 351.1 nm, and crystal typical

FIG. 2. Gouy phase as a function of the propagation distance
from the slits to the detector zτ . As the biphoton crosses the slits,
its wave function acquires a Gouy phase that is dependent on the
initial correlations. Notice that the smaller the initial correlation,
the larger is the total Gouy-phase variation. (Top) The dashed curve
corresponds to the Gouy phase for the parameter � = 3.5σ whereas
the dash-dotted curve corresponds to � = 5σ . After diffraction, the
Gouy phase shows dependence on the slit parameters. (Bottom) The
Gouy phase for slit widths β = 35 μm and β = 65 μm represented
by the dash-dotted and dashed curves, respectively. Notice that as the
slit width β increases, the curve approaches the one for the Gouy
phase for free biphoton propagation (β → ∞) represented by the
solid curve.

length Lz = 7.0 mm. This enables us to obtain σ =
√

Lpλp

6π
=

11.4 μm and z0− = k0σ
2 = 1.4 mm, where k0 = 2π/λ. We

consider the distance from the source to the slits z = 1.2 mm.
The slit width for the upper plot in Fig. 2 is β = 40 μm.
The Gaussian spread is such that � = 10σ in the lower plot
of Fig. 2. Those are typical values as used in the bipho-
ton double-slit experiment in Ref. [45]. It is noteworthy that
SPDC biphotons were theoretical and experimentally studied
by Kawase and collaborators in Ref. [38], and the Gouy phase
generated in the free evolution was connected to quantum
correlations encoded in Laguerre-Gaussian modes. Moreover,
the authors suggest that the Gouy phase can be used as a tool
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to manipulate multidimensional photonic quantum states. By
diffracting a wave packet through a double slit, the Gouy-
phase shift can be measured only in asymmetric setup, namely
for different slit widths. In the next section, we study this
configuration and how the Gouy phase difference is related
to the relative intensity and visibility.

B. Logarithmic negativity for type-I SPDC
biphotons in a double slit

A type-I SPDC biphoton pair diffracted through a dou-
ble slit is effectively described by the double-Gaussian state
expressed by Eq. (7). Such Gaussian states are fully char-
acterized by their first and second moments. It is possible
to set the first moments to zero by local unitary operations,
while keeping the entanglement unchanged, and the second
moments are given by the covariance matrix elements [46]. A
necessary condition for an entanglement quantifier is that it
has to vanish if the state is separable. According to the Peres-
Horodecki criterion [47], if a state is separable, the partial
transpose of the correlation (variance) matrix of the state has
a non-negative spectrum. Therefore, we can establish that a
Gaussian state is separable if and only if the minimum value
of the symplectic spectrum of MT2 , M defined in Eq. (10), is
greater than 1/2, the lowest value allowed by the uncertainty
principle [41]. Consider the wave function for the biphoton
propagating through the upper slit, as seen in Fig. 1(a). Using
Eq. (7), we calculate the elements of the covariance matrix
whose symplectic form can be written as

M =

⎡
⎢⎣

g 0 c 0
0 g 0 c′
c 0 h 0
0 c′ 0 h

⎤
⎥⎦, (10)

which is related to the phase space correlation matrices

G =

⎡
⎢⎣

〈
x2

1

〉
L2

〈x1 p1+p1x1〉
2h̄

〈x1 p1+p1x1〉
2h̄

L2
〈
p2

1

〉
h̄2

⎤
⎥⎦,

H =

⎡
⎢⎣

〈
x2

2

〉
L2

〈x2 p2+p2x2〉
2h̄

〈x2 p2+p2x2〉
2h̄

L2
〈
p2

2

〉
h̄2

⎤
⎥⎦,

C =
[ 〈x1x2〉

L2
〈x1 p2〉

h̄
〈x2 p1〉

h̄
L2〈p1 p2〉

h̄2

]
,

through simple relations det G = g2, det H = h2, and det C =
cc′. The constants h̄ and L, which appear in the above matri-
ces, are inserted to make the matrix M dimensionless. The full
expressions for the elements of M are disposed in Appendix C.
With that in sight, the logarithmic negativity is a suitable
measure to quantify entanglement for general Gaussian states.
It can be written as EN = max{0,− ln(2νmin)} where νmin

is the lowest symplectic eigenvalue of MT2 . The equation
that determines the symplectic eigenvalues is ν4 + (g2 + c2 −
2cc′)ν2 + det(M ) = 0, with solutions ±iνα , α = 1, 2, and να

is the symplectic spectrum. Thus, the logarithmic negativity

FIG. 3. The biphoton logarithmic negativity in Eq. (11) depends
on propagation distances z and zτ . As the slit width increases, the
quantum correlations become independent of z and zτ and saturate
at a maximum constant value, represented by the solid curve in the
four plots. In these plots, we have the logarithmic negativity EN as a
function of the distance from the source to the slits z (distance from
the slits to the detector zτ ), with zτ = 70 mm (z = 2 mm), for the slit
widths β = 50 mm and β = 60 μm (β = 60 μm and β = 70 μm),
dash-dotted and dashed curve, respectively. For two different values
of slit distance d = 100 μm (upper plots) and d = 180 μm (lower
plots), we observe deeper valleys for larger values of d due to loss of
correlation for a range of values of zτ .

obtained is expressed as

EN = ln

[ √
2icBB̃R+R−√√−A1A2 + A3

]
, (11)

where i is the imaginary unit and c is the speed of light
constant. The expressions for B, B̃, R+, and R− are shown
in Appendix B, and the expressions for A1, A2, and A3 are
displayed in Appendix C. In a free evolution, the logarithmic
negativity for a similar biphoton [37] is written in terms of
the Gaussian wave packet spreads as EN = ln ( �

σ
), i.e., in

terms only of the initial correlation between the photons. After
diffracting through a double slit, the logarithmic negativity
calculated for the biphoton wave function depends on the
geometrical double-lit parameters as well. Consequently, we
may explore how the quantum correlations represented by the
logarithmic negativity behave as a function of the apparatus
parameters.

In order to study how EN is affected by the slit parameters,
we show in the graphs of Fig. 3 the logarithmic negativity
as a function of z and zτ , the flight distances before and
after the slits, respectively, for some typical values of the
interslit distance d , and the slit width β. Notice that the log-
arithmic negativity EN decreases as z increases (plots on the
left), whereas, as zτ increases, it displays a valley before it
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becomes constant (plots on the right). As the interslit distance
d increases, the photons become less correlated, and the log-
arithmic negativity is nearly zero for a slit width β = 60 μm
(dash-dotted curve in the lower right plot in Fig. 3). One can
see this by comparing the upper right with the lower right plot,
the only difference being that d = 100 μm in the upper one
and d = 180 μm in the lower one. Due to the existence of
a region where the momentum uncertainty has a maximum,
between zτ = 0 and zτ = 50 mm, the logarithmic negativity
decreases in that same region, which is consistent with the
fact that decreased entanglement leads to higher uncertainty
of the position and momentum [48].

Moreover, notice in the plots of Fig. 3 that as the slit
width β increases, so does EN . Evidently when β → ∞, EN

becomes independent of z and zτ and saturates at a maxi-
mum constant value. This value coincides with logarithmic
negativity for biphotons in a free propagation regime EN =
loge ( �

σ
) ≈ 2.3. We used a biphoton wavelength λ = 702 nm,

laser pump wavelength λp = 351.1 nm, and a crystal typical

length Lz = 7.0 mm. Thus, we have σ =
√

Lpλp

6π
= 11.4 μm,

� = 10σ , and z0− = k0σ
2 = 1.4 mm, where k0 = 2π/λ [45].

While the logarithmic negativity depends on all geomet-
rical parameters of the double slit, the Gouy phase does not
depend on the interslit distance d . Later, we show that the
Gouy-phase difference, in terms of the relative intensity and
visibility, does present a dependence on d . Then, to investigate
the relation between the biphoton Gouy phase and its quantum
correlations, we may replace for a while the two slits with a
single one, located in the origin x = 0, by setting d = 0. On
the other hand, the slit width β plays an important role in the
measurement of the Gouy phase, as expected. Consequently,
the biphoton logarithmic negativity at the detection screen is
influenced by the spatial transverse confinement represented
by β. The logarithmic negativity EN as a function of slit
width β is exhibited in Fig. 4 (upper left plot). Notice that
the smaller β, so are the quantum correlations between the
photons. We have also depicted the Gouy phase in Eq. (9) as
a function of β in Fig. 4 (upper right plot), which shows that
the Gouy phase diminishes as the slit width increases. We
used a biphoton wavelength λ = 702 nm, laser pump wave-
length λp = 351.1 nm, and the crystal typical length Lz =
7.0 mm, in Fig. 4, which yield σ =

√
Lpλp

6π
= 11.4 μm and

z0− = k0σ
2 = 1.4 mm, where k0 = 2π/λ [45]. We also con-

sidered � = 10σ , d = 200 mm, z = 2 mm, and zτ = 70 mm.
We now proceed to investigate the relation between the

phase-space quantum correlations and the Gouy phase of a
type-I SPDC biphoton in a double-slit setup. For a free evo-
lution, such a relation was first studied in Ref. [38], where
the authors used lenses to focus the biphoton beams and thus
manipulated the quantum correlations in the free propaga-
tion evolution by promoting transverse spatial confinement of
the wave packet. In our proposal, the Gouy-phase difference
arises due to the transverse spatial confinement promoted by
a double slit, and it can be measured if we use different slit
widths β. Since in the case we are considering here both the
logarithmic negativity and the Gouy phase depend on the slit
parameters, we can relate them through the slit width (see
lower plot in Fig. 4). For the set of parameters considered in

FIG. 4. The biphoton entanglement at the detection screen is
influenced by the transverse spatial confinement represented by the
slit. As we can see, the logarithmic negativity EN equation (11), for
d = 0, as a function of the slit width β1 = β2 = β indicates that the
larger is β, the larger is the biphoton entanglement at the detection
screen (upper left plot). On the other hand, the biphoton Gouy-phase
variation ζ increases with transverse spatial confinement (upper right
plot). Finally, we verify that the entanglement represented by EN

decreases as the Gouy-phase ζ increases (lower plot).

Fig. 4, the logarithmic negativity decreases as a function of
the Gouy phase. Therefore, we conclude that for the system
type-I SPDC biphoton diffracted by a double slit, one can
access information about the logarithmic negativity through
values of the Gouy phase. In the next section, we explore the
possibility of relating the logarithmic negativity and the Gouy-
phase difference in an asymmetric double slit experiment. For
this purpose, we have to define the visibility and the relative
intensity, which is attainable in a certain regime of position
correlations.

C. Position cross-correlation effects in the interference pattern

In this section, we will see that by choosing the wave-
packet parameters such that one has strong position correla-
tion at the slits, we can numerically disregard the amplitudes
that correspond to photons crossing different slits. In turn,
this configuration results in a slightly anticorrelated photon
pair at the detection screen. Also, in analogy to a single
particle-double-slit interferometric setup, we can define the
visibility and the relative intensity [15,44]. We investigate
how the interference pattern of biphotons diffracted through
a double slit is related to their position correlations at the
detection screen.

The two-particle normalized spatial cross correlation
reads [49]

ρx = 〈x1x2〉 − 〈x1〉〈x2〉
σx1σx2

, (12)
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where σx1,2 is the standard deviation of x1,2. It ranges from −1
to 1, it is zero if the two particles are uncorrelated. They are
spatially closely correlated (bunched), if ρx → 1 and spatially
closely anticorrelated, if ρx → −1. The position cross corre-
lations at the detector, calculated using the wave functions in
Eqs. (7) and (8), respectively, are

ρuu(z, zτ , β ) = B − B̃ + Duu

B + B̃ + Duu
,

ρud (z, zτ , β ) = B − B̃ − Dud

B + B̃ + Dud
. (13)

As we can observe, these quantities are expressed in terms
of the wave-packet spreads B and B̃, as well as the wave-
packet separation Duu and Dud (whose expressions are in
Appendix B). Also in the limit of wide slit width β → ∞, we
recover the biphoton cross correlation for a free propagation

ρ(z, zτ ) = (�2 − σ 2)

(�2 + σ 2)

[
1 − ( z+zτ

k0σ�

)2]
[
1 + ( z+zτ

k0σ�

)2] , (14)

where, as usual, � and σ are the wave-packet initial param-
eters, k0 = 2π/λ, and z and zτ are free propagation distances
traveled by the photons. For the position cross correlations
in (13) and depicted in Fig. 5, we consider σ = 11.4 μm,
� = 10σ , d = 100 μm, β = 5.0 μm. Just after crossing the
upper slit, the biphoton is evidently very correlated in its
spatial coordinates. As the photons move away from the slits,
the position correlation ρuu decreases until reaching a constant
value. In contrast, photons traveling separately through differ-
ent slits are considerably anticorrelated just after crossing. The
position correlation ρud decreases as zτ increases and the pho-
tons become less anticorrelated until ρud assumes a constant
value. The asymptotic values of correlations can be easily
obtained numerically. For instance, if we take zτ = 500 mm,
we get ρ∞

uu = 0.00035 and ρ∞
ud = 0.000035 for z = 500 mm,

whereas for z = 8 μm, we have ρ∞
uu = −0.0099 and ρ∞

ud =
−0.010. In other words, the biphoton becomes uncorrelated
as it travels large distances between the slits and the detector
zτ , regardless of the distance traveled before reaching the slits
z (see Fig. 5). However, the asymptotic value reached by the
cross correlations is not equal to zero. Thus, we see that for
z = 500 μm, photons crossing the same slit are very corre-
lated ρuu = 0.98 whereas when each one crosses a different
slit, they are as much anticorrelated, ρud = −0.98, just after
crossing the slits. As zτ increases, they lose spatial correlation
in both cases. For small distances before the diffraction, say
z = 8 μm, the photons leave the slits with the position cross
correlations ρuu = 0.98 and ρud = −0.98, and they become
anticorrelated at the detector far from the slits.

As we showed in Subsec. II B (see Fig. 4), one can access
information about the logarithmic negativity through the val-
ues of the Gouy phase in this setup. In the next section, we
obtain analytical expressions for an asymmetric double-slit
experiment in order to obtain (experimentally) measurable
values of Gouy phase differences of the biphoton. For this
purpose, we need analytical expressions for the visibility
and the relative intensity. Such quantities are easily obtained
analytically for one-particle interference. Despite having a
two-particle wave function, we may still obtain analytical

FIG. 5. Cross-correlation ρuu (ρud ) as a function of the distance
from the slits to the detector zτ , calculated using the wave function
for the two photons crossing the upper slit (crossing different slits).
(Top) The cross correlations for ρuu and ρud for the distance between
the source and the slits z = 500 mm. (Bottom) The cross correla-
tions for ρuu and ρud for the distance between source and the slits
z = 8 mm We can observe from both plots that the biphoton passing
through the same slit is very correlated just after crossing the slits
zτ ≈ 0 and becomes less correlated far from the slits. A closer view
at zτ ≈ 0 shows that the pair becomes actually slightly anticorrelated.
The constant values achieved by the cross correlations are ρuu =
0.00035 and ρud = 0.000035, for z = 500 mm, and ρuu = −0.0099
and ρud = −0.010, for z = 8 mm.

expressions because within a particular range of position cor-
relations only two wave functions instead of four contribute
effectively to the interference pattern at the detection screen.
In order to see how the position correlations affect the inter-
ference pattern at the detection screen, we study the intensity
as a function of the position on the screen x, using different
values of position correlation. The intensity composed by the
four possibilities for the biphoton to cross the double slit,
the intensity including only the (two) wave functions that
represent the photons passing through the same slit and the
intensity for wave functions that represent only the photons
passing through different slits are given, respectively, by

I4� = |�uu + �ud + �du + �dd |2,
I2� = |�uu + �dd |2, and I ′

2� = |�ud + �du|2. (15)
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FIG. 6. Interference pattern for the biphoton as a function of
the transversal position on the detector x. (a) The dashed line
represents the intensity, considering only two wave functions, that
describes propagation through the same slit. The dash-dotted line
exhibits the intensity considering only photons going through dif-
ferent slits. (b) The solid line represents the intensity taking into
account the four possibilities of propagation, while the dashed line
describes the intensity for the propagation through the same slit. For
the upper plots, the position cross correlation for the photons just
after leaving the slits are ρuu = 0.98 and ρud = −0.98; at the detector
placed in zτ = 500 mm we have ρuu = 0.00035 and ρud = 0.000035,
with z = 500 mm. (c) The dashed line represents the intensity for
the photons passing through the same slit, and the red dash-dotted
line exhibits the intensity considering only two propagations for
each photon crossing different slits. (d) The solid line represents the
intensity taking into account the four possibilities for the propaga-
tion, while the dashed line describes the intensity for the photons
passing through the same slit. For the lower plots, the photons have
position cross correlation ρuu = 0.98 and ρud = −0.98 just after the
slits, whereas far from the slits ρuu = −0.0099 and ρud = −0.010,
considering z = 8 mm and zτ = 500 mm, respectively.

We calculated the intensities I4ψ , I2ψ , and I ′
2ψ as functions of

the position at the screen x as shown in Fig. 6. We consider
the set of parameters σ = 11.4 μm, � = 10σ , d = 100 μm,
β = 5.0 μm, and zτ = 500 mm. The flight distance before the
slits is z = 500 mm for the upper graphs and z = 8 mm for
the lower graphs. The interference fringes produced by I2�

[dashed curve in Fig. 6(a)] are composed by the wave func-
tions corresponding to the propagation of the photons through
the same slit (strongly correlated at the slit). On the other
hand, the wave functions corresponding to the propagation of
photons through different slits (photons anticorrelated at the
slits) produce only the envelope I ′

2� given by the dash-dotted
curve for the interference pattern. In Fig. 6(b), we compare the
intensity I4� (solid curve) that contains the four amplitudes
for the biphoton diffraction with I2�

(dashed curve) using

the same parameters as those used in Fig. 6(a). As we can
observe, the interference pattern produced by the four wave
functions has a few interference fringes as compared to I2� ,
which means that the wave functions in I ′

2� are still giving
relevant contribution to I4� . In other words, we conclude that
a stronger position correlation between the photons play an
important role in unraveling the effective contributions to the
interference pattern. Notice that we have the behavior shown
in Figs. 6(a) and 6(c), where the wave functions in I ′

2� have an
even smaller contribution. This means that its wave functions
contribute less to I4� . In fact, by comparing the intensities I4�

(solid curve) and I2� (dashed curve) in Fig. 6(d), one notices
that its interference patterns match. Thus, the wave functions
present in I2� govern the interference pattern. Meaning that,
under this choice of parameters that leads to strong position
correlation for the biphoton at the slit and anticorrelation at
the detection screen, it is reasonable to take into account only
the wave functions �uu and �dd . In such a regime, the relative
intensity Ir = I/F for a biphoton is given by [44]

Ir (r) = [1 + ν(r) cos φ(r)], (16)

where F (r) = |�uu|2 + |�dd |2 and

φ = φuu − φdd =
(

k0

cR+
− k0

cR−

)
r2, (17)

where R± is the radius of curvature of the wave fronts for
the propagation through the slit (whose expression is in Ap-
pendix B). We have fixed q = 0; i.e., the two photons strike at
the same position on the screen. From Eq. (16), the visibility
is defined as

ν(r) = 2|�uu||�dd |
|�uu|2 + |�dd |2 = cosh−1

(
2Duur

B2

)
, (18)

where Duu and B are the wave-packet separation and wave-
packet spreads, respectively (see Appendix B). The visibility
equation (18), using the logarithmic negativity at the screen
equation (11), as a function of the detector position r and
for different values of the logarithmic negativity EN is ex-
hibited in Figs. 7(a), 7(b), and 7(c), where the last represents
the logarithmic negativity as a function of an initial entan-
glement parameter �. We use the following set parameters:

λ = 702 nm, λp = 351.1 nm, Lz = 7.0 mm, σ =
√

Lpλp

6π
=

11.4 μm, d = 200 μm, β = 60 μm, z = 1 mm, and zτ =
70 mm. For a set of three increasing (a) and three decreasing
(b) values of logarithmic negativity in Fig. 7, we obtain the
same behavior for the visibility. In order to understand this ap-
parent inconsistency, we investigate the logarithmic negativity
as a function of the parameter � (c). Up to � ≈ 0.05 mm,
the logarithmic negativity EN increases monotonically, and
then decreases down to a constant value. This explains why
in Fig. 7(a) the visibility becomes wider both when the log-
arithmic negativity increases and decreases [Fig. 7(b)]. For
EN = 0.15, EN = 0.69, and EN = 0.85, EN grows in Fig. 7(c)
for � = 0.01 mm, � = 0.03 mm, and � = 0.05 mm, re-
spectively. On the other hand, for EN = 0.86, EN = 0.83,
and EN = 0.71, we have respectively � = 0.06 mm, � =
0.09 mm, and � = 0.28 mm.

The visibility of the biphoton in a double slit has a maxi-
mum value ν = 1 at the center r = 0 regardless of the value
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FIG. 7. The visibility ν has a maximum value ν = 1 at the center
x = 0 independent of the behavior of the logarithmic negativity EN

equation (11) at the detection screen, which is a characteristic of a
totally coherent system. On the other hand, outside the center r �= 0,
the visibility is influenced by the behavior of the entanglement EN .
(a) The visibility ν becomes less wide as the logarithmic negativity
increases; see the dash-dotted, dashed, and solid curves, respec-
tively, for EN = 0.15, EN = 0.69 and EN = 0.85. (c) The visibility
ν is wider for larger values of logarithmic negativity, for instance,
EN = 0.86, EN = 0.83, and EN = 0.71, dash-dotted, dashed, and
solid curves, respectively. As can be seen in panel (c), there are two
regions of �, where the EN increases and decreases, which marks
the same behavior for ν in the increasing and decreasing range of EN

values.

of EN at the detection screen, which is a characteristic of a
totally coherent system. On the other hand, outside the region
r �= 0, the visibility is influenced by the behavior of the entan-
glement. In fact, for the double-slit parameters chosen here,
outside the detector center r �= 0, the visibility can cover a
larger domain depending on the logarithmic negativity EN .

III. GOUY-PHASE DIFFERENCE AND LOGARITHMIC
NEGATIVITY FOR A TYPE-I SPDC BIPHOTONS

For a type-I SPDC biphoton diffraction through a double
slit, we have shown that one can access information about
the logarithmic negativity through values of the Gouy phase
(see the lower plot in Fig. 4). However, only a Gouy-phase
difference can be measured in a double-slit experiment. The
Gouy phases acquired by the biphoton propagating through
the upper and lower slits are equal if the slits have the same
width. Thus, in order to measure a Gouy-phase difference
at the detector, one has to consider an asymmetric, namely
different slit widths, double-slit setup. The Gouy-phase dif-
ference can be assessed by measuring the relative intensity
and the fringe visibility in an asymmetric double slit. In the
previous section, we have seen that for a judicious choice of

position correlations through a set of parameters, the contribu-
tion of two wave functions is suppressed in the intensity which
allows us to define the intensity and fringe visibility just as for
the case of single-particle interference.

From Eq, (16), the visibility is written as

ν(r) = Ir − 1

cos[φ(r)]
, (19)

and since we are considering an asymmetric double slit, the
phase

φ = (φuu − φdd ) + (ζ1 − ζ2) (20)

has a contribution from the Gouy-phase difference (ζ1 − ζ2).
Notice that the phase difference

φuu − φdd =
(

k0

cR+1
− k0

cR−2

)
r2 + (�1 + �2)r + (θ1 − θ2)

(21)
is given in terms of �1,2 and θ1,2. These new contributions
stem from different slit widths. The label 1 (2) refers to the
upper (lower) slit, and we have fixed q = 0; i.e., the two
photons strike the same position at the screen. The Gouy
phase difference can be obtained from Eq. (19), if the phase
difference (φuu − φdd ) = nπ rad (where n = 2, 4, 6, ...). In
this way, the only phase difference that contributes to the rel-
ative intensity is the Gouy-phase difference. Since the phase
difference (φuu − φdd ) depends on the setup parameters, one
can easily fulfill the requirement. The Gouy-phase difference
can be expressed as

(ζ1 − ζ2) = arccos

[
Ir (r) − 1

ν(r)

]
. (22)

If one has access to the relative intensity Ir and to the fringe
visibility ν(r) = (Imax − Imin)/(Imax + Imin) in a double-slit
experiment, the Gouy-phase difference can be measured. The
relative intensity Ir as a function of the position r (exhibited in
the upper plot of Fig. 8) for the four biphoton wave-function
contributions (represented by the dashed curve) matches Ir

using two wave functions only (solid curve), representing
the biphotons crossing the upper or lower slits. Thus, us-
ing an asymmetric double slit, we can neglect two wave
functions, without significant loss of accuracy in the de-
scription of our system. The behavior of the visibility ν at
the detection screen for photons passing through slits with
different widths can be seen in the lower plot of Fig. 8.
As a consequence of taking different slit widths, the visibil-
ity presents two maxima which are shifted from the center
r = 0. We consider the following set values of parame-
ters in Fig. 8: λ = 702 nm, λp = 351.1 nm, Lz = 7.0 mm,

σ =
√

Lpλp

6π
= 11.4 μm, z0− = k0σ

2 = 1.4 mm, where k0 =
2π/λ, � = 10σ , d = 200 μm, z = 2 mm, zτ = 70 mm, β1 =
60 μm, and β2 = 5 μm.

In order to single out the Gouy-phase difference in
the relative intensity, we have chosen (φuu − φdd = nπ ,
where n = 2, 4, 6, ...). This automatically selects the set of
parameters that fulfill this constraint. Notice that the interslit
distance d also appears in the definition of the Gouy-phase
difference written in Eq. (22) (as it does in the logarithmic
negativity) through the parameter Duu contained in the vis-
ibility equation (18). However, the condition (φuu − φdd =
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FIG. 8. (Top) The relative intensity Ir , as a function of the posi-
tion r, considering the four wave functions for all possibilities for
the photons to cross the double slit is represented by the dashed
curve Ir(4ψ ). The relative intensity taking into account only two wave
functions for the photons going through the same slit is represented
by the solid curve Ir(2ψ ). We can see that the two curves are ap-
proximately equal, so even for different slit widths, we can still
find a regime of parameters where two wave functions can be safely
neglected. (Bottom) The visibility ν as a function of the transversal
position at the screen r for an asymmetric double-slit experiment
with biphotons. As a consequence of the different slit width, the
visibility ν presents two maxima which are shifted from the center
of the position at the screen r = 0.

nπ , where n = 2, 4, 6, ...) eliminates automatically the depen-
dence on d in the Gouy-phase difference, which comes only
from the terms expressed in Eq. (21).

As a next step, consider the same parameters as used in
Fig. 8, except for the slit widths β1 and β2. In order to have
(φuu − φdd ) = nπ (where n = 2, 4, 6, ...), we set a value of
β1, which in turn requires a specific value of the position r at
the detection screen [see Eq. (21)]. For each value of β1, there
is one correspondent specific value of the Gouy phase differ-
ence |ζ1 − ζ2|, which is obtained from Eq. (22) by measuring
the relative intensity and the visibility. The corresponding
values of r, β1, and |ζ1 − ζ2| are shown in Table I. Thus, the
study of diffraction of a biphoton through its effective wave
function in a double slit enables us to measure the Gouy-phase
difference.

TABLE I. Gouy-phase difference as a function of the slit width β1.

r (mm) β1 (μm) |ζ1 − ζ2| (rad) EN = |ζ2−ζ1|−0.48
0.16

−0.123 10 0.105
−0.123 15 0.220
−0.123 20 0.315
−0.124 30 0.436
−0.124 36 0.486 0.0254
−0.124 40 0.515 0.206
−0.125 45 0.548 0.410
−0.125 50 0.578 0.598

Let us summarize our conclusions. The logarithmic nega-
tivity EN is an entanglement quantifier, which in the case of
a double Gaussian describing the biphoton, can be calculated
through its covariance matrix. It is known that the Gouy-phase
shift is given in terms of the covariance matrix elements as
well [6]. In the experiment reported in Ref. [38], the quantum
correlations of a biphoton-free evolution are related to their
Gouy phase. Likewise, we obtain a relation between these
two quantities for the case of a biphoton diffracting through
a double slit.

That being said, two crucial issues appear in this proposal.
First, the primarily measurable quantities in a double-slit ex-
periment are the relative intensity and the visibility of the
interference fringes. Second, the logarithmic negativity con-
sidered refers to the propagation through a single slit, and
thus it is not directly related to the measurable quantities in a
double-slit setup. It is exactly in this point that the Gouy-phase
difference plays a fundamental role. Because the Gouy-phase
difference for slits with the same width is zero, we may
employ slits with different apertures β1 and β2. Therefore,
we may fix β2 and vary β1 in order to relate the Gouy-phase
difference (encoded in β1) and the logarithmic negativity
(supposing that it was calculated for the wave function cor-
responding to slit 1, that is to say, through ψuu).

We set all the slit parameters, except one of the slit widths,
as mentioned before, so to modify the slit width β1 implies to
vary the Gouy-phase difference, which can be obtained from
Eq. (9). Thus, we can write the slit width β1 as a function
of |ζ2 − ζ1| and substitute it into EN Eq. (11). Therefore, we
obtain the relation between the logarithmic negativity and
the Gouy-phase difference of a biphoton diffracting through
a double-slit setup, which is represented by the solid curve
in Fig. 9 (upper plot). We emphasize that such a connection
between the logarithmic negativity and the Gouy-phase dif-
ference is possible for any set of parameters.

The Gouy-phase difference (data in Table I), numerically
calculated using the relative intensity and the visibility, is
illustrated in Fig. 9 (dotted curve in the lower left plot) as
a function of β1. The theoretical curve for the Gouy-phase
difference, represented by the solid curve, is obtained from
Eq. (9). For the plots in Fig. 9, we have used the parameters

λ = 702 nm, λp = 351.1 nm, Lz = 7.0 mm, σ =
√

Lpλp

6π
=

11.4 μm, z0− = k0σ
2 = 1.4 mm, where k0 = 2π/λ, � =

10σ , d = 200 μm, z = 2 mm, zτ = 70 mm, and β2 = 5 μm.
A suitable way to relate Gouy-phase difference measure-

ments and logarithmic negativity values in terms of the β1
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FIG. 9. (Upper) We can observe how the logarithmic negativ-
ity EN behaves in terms of the Gouy-phase difference substituting
|ζ2 − ζ1| in terms of β1 into the logarithmic negativity expression
equation (11), which gives us the solid curve. We have observed that
the behavior of EN for a small variation of Gouy-phase difference
can be reproduced by a linear relation; for instance, EN = |ζ2−ζ1|−0.48

0.16
(represented by the dashed curve) describes the behavior in the
range of 36 μm < β1 < 50 μm. (Lower left) Gouy-phase difference
|ζ2 − ζ1| as a function of the slit width β1: The solid curve is the
theoretical curve, and the dotted curve was obtained numerically
calculating the relative intensity and the fringe visibility for the
parameters that satisfy (φuu − φdd ) ≈ nπ (where n = 2, 4, 6, ...) (see
Table I). (Lower right) Logarithmic negativity EN as a function of the
slit width β1: the solid curve is the theoretical curve, and the curve
with boxes is the negativity values obtained from EN = |ζ2−ζ1|−0.48

0.16 ,
for each value of |ζ2 − ζ1| as a function of β1 in Table I. The slit
width is what essentially determines the variation of the logarithmic
negativity, just as for the Gouy-phase difference. Thus, we propose
to access values of EN through the slit width from |ζ2 − ζ1| measure-
ments in terms of β1.

(both depicted in Fig. 9 lower left and lower right plots), for
our experimental setup, is if a linear relation exists between
these two quantities at a certain interval of β1. In fact, there
are ranges of β1 where the variation of the Gouy-phase dif-
ference |ζ2 − ζ1| is small, and a linear relation reproduces
the theoretical behavior in the region considered. We con-
sidered the region where the slit width is 36 μm < β1 <

50 μm, which corresponds to 0.486 < |ζ2 − ζ1| < 0.578, and
the theoretical curve can be approximated by |ζ2 − ζ1| ≈
0.16EN + 0.48. Thus, it allows us to attain an expression
to extract the logarithmic negativity in terms of the slit
width, valid in the neighborhood of 36 μm < β1 < 50 μm,
from experimental indirect measurements of the Gouy-phase
difference.

Thus, straightforwardly, each measurement of |ζ2 −
ζ1| obeying the constraint (φuu − φdd ) ≈ nπ (where n =

2, 4, 6, ...) as a function of β1 in Table I gives an associated
EN value, through EN = |ζ2−ζ1|−0.48

0.16 , related to an equivalent
slit width β1. We notice in Fig. 9 (lower right plot) that the
behavior obtained for the logarithmic negativity from these
data (curve with square-shaped points) is in good agreement
with the theoretical curve (solid curve), calculated through the
symplectic eigenvalue equation (11). We have noticed that
values of EN for slit widths β1 < 36 μm provide negative
values of logarithmic negativity, so although we have Gouy-
phase difference for other β1 values, they are not convenient
for this analysis. Thus, we do not present them in the table, and
the plot starts from β1 = 36 μm. We show only some points
representing possible indirect measurements of |ζ2 − ζ1|, al-
though one may obtain many other points in this interval of β1

(satisfying to (φuu − φdd ) = nπ rad, where n = 2, 4, 6, ...),
which yield many other convenient logarithmic negativity
values through β1 in terms of |ζ2 − ζ1|. Notice that in Fig. 4,
the logarithmic negativity decreases as the Gouy-phase ζ in-
creases; in the present case, we have the opposite behavior,
where one increases as the other one increases as well. How-
ever, here we are considering the behavior of the logarithmic
negativity versus the Gouy-phase difference |ζ2 − ζ1|, which
increases monotonically.

Therefore, we have achieved our goal of obtaining the
quantum correlations behavior, encoded in the logarithmic
negativity, in terms of the Gouy-phase difference of a pair
of entangled photons diffracting through a double slit. In
addition, we considered a region of small variation of this
Gouy-phase difference as a function of the slit width, where a
linear relation between EN and |ζ2 − ζ1| is capable of repro-
ducing the theoretical curve, allowing one to obtain EN as a
function of β1 through indirect measurements of Gouy-phase
difference in terms of β1 as well. Although the Gouy-phase
difference variation is small, a large range of logarithmic
negativity values is obtained in that interval, as we have a wide
range of slit-width values.

IV. CONCLUSIONS AND FINAL REMARKS

We proposed a scheme to measure biphoton spatial cor-
relation as it propagates through a double slit. Our proposal
is based on measuring the biphoton Gouy-phase difference
and the logarithmic negativity in the double-slit experiment.
We considered an asymmetric double-slit experiment with
biphotons and calculated the wave functions at the detection
screen corresponding to the four possibilities of propagation
through the slits. Next, we calculated the logarithmic nega-
tivity at the detection screen and showed that it is dependent
on the initial entanglement and the geometrical parameters
of the double slit. We found conditions for which the inter-
ference pattern corresponds to the one produced by the two
wave functions corresponding to the propagation of photons
through the same slit. These conditions are related with the
behavior of the cross correlations at the double slit as well as
at the detection screen. Under such conditions, we calculated
the fringe visibility. We observed that the behavior of the
visibility is influenced by the behavior of the initial entangle-
ment created by the nonlinear crystal and the entanglement
modification imposed by the diffraction of the twin photons
through the double slit, encoded in the logarithmic negativity
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at the detection screen. Then we considered slits with differ-
ent widths in order to produce a Gouy-phase difference. We
expressed that Gouy-phase difference in terms of the relative
intensity and the visibility, showing that it can be experimen-
tally assessed. Finally, we obtained the quantum correlations
behavior, encoded in the logarithmic negativity, in terms of
the Gouy-phase difference (as the logarithmic negativity has
dependence on the slit width, which in turn can be written
in terms of the Gouy-phase difference) of a pair of entangled
photons diffracting through a double slit. Moreover, we found
conditions in which a linear relation between the logarithmic
negativity and the Gouy-phase difference is capable of repro-
ducing the theoretical behavior, allowing one to obtain the
logarithmic negativity, as a function of the slit width, from
indirect measurements of the Gouy-phase difference, in terms
of slit width as well. Therefore, measuring the Gouy-phase
difference allow us for accessing information about quantum
correlations at the detection screen as a function of the slit
aperture.

Spatially correlated photonic qutrit pairs were proposed
theoretically and experimentally tested in Ref. [50]. Those
qutrits were produced by parametric down-converted bipho-
tons passing through a three-slit apparatus and displayed a
high spatial correlation, with a Pearson coefficient of about
0.9. Such correlations are governed by geometrical parameters
such as the slit width, the interslit distance, and the nonlinear
crystal longitudinal length, which also characterize the Gouy
phases in our model. An important point raised in Ref. [50]
regards the truly quantum nature of qutrit correlations. Our
approach using the relation between the Gouy-phase differnce
and the logarithmic negativity can be an important tool to
evaluate the nature of the continuous variable correlations in
this case. Moreover, in Ref. [38], it was proposed theoretically
and experimentally that the relative phase of two different
Laguerre-Gauss modes of biphotons can be manipulated via
the Gouy phase. Their result suggests the Gouy phase as a new
tool to manipulate multidimensional photonic quantum states.
In our model, we explicitly demonstrate how to measure the
Gouy phase difference for a similar system and establish its
connection to the quantum correlations as encoded in the loga-
rithmic negativity. In addition, just as in Ref. [38], our scheme
is inherently nondestructive as the Gouy-phase difference is
established by a two-slit interference and assessed via the
visibility and the relative intensity as seen in the interference
pattern.
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APPENDIX A: BIPHOTON FREE PROPAGATION
WAVE-FUNCTION CONSTANTS

The photon pair state for a free propagation after a general
distance z, in terms of the relative coordinates r = (x1 + x2)/2
and q = (x1 − x2)/2, is given by [37]

ψ (r, q, z) = 1√
4πw(z)w̃(z)

exp

{
−

[
r2

w2(z)
+ q2

w̃2(z)

]}

× exp

{
−i

[
− k0

r+
r2 − k0

r−
q2 + ζ (z)

]}
, (A1)

where the wave-packet spread for the signal and idler beams
is written as

w2(z) = �2

[
1 +

(
z

z0+

)2]
, w̃2(z) = σ 2

[
1 +

(
z

z0−

)2]
.

(A2)

Respectively, the radius of curvature of the wave fronts and
the longitudinal distance are given by

r±(z) = z
[
1 +

( z0±
z

)2]
, z = ct . (A3)

Lastly, we can identify the Gouy phase, which is propaga-
tion distance dependent, and it carries the parameters of the
initial wave packet, as

ζ (z) = −1

2

{
arctan

[
z

(
z0+ + z0−

z0+z0− − z2

)]}
, (A4)

where the corresponding Rayleigh lengths are

z0+ = k0�
2, z0− = k0σ

2, and k0 = 2π/λ. (A5)

APPENDIX B: BIPHOTON DIFFRACTING THROUGH A
DOUBLE-SLIT WAVE-FUNCTION CONSTANTS

The state that describe the twin photons after diffracting a
double slit is given by

�uu(r, q) = 1√
πBB̃

exp

[
− (r − Duu/2)2

B2

]
exp

[
q2

B̃2

]

× exp

(
ik0

R+
r2 + ik0

R−
q2 + i�uur + iθuu + iζ

)
,

(B1)

where, using the same interpretation as the biphoton free prop-
agation, the wave packet spreads for the propagation through
the slit are written as

B2(z, zτ ) =
(

1
β2 + 1

w2

)2 + k2
0

(
1
zτ

+ 1
r+

)2

( k0
zτ

)2( 1
β2 + 1

w2

) (B2)

and

B̃2(z, zτ ) =
(

1
β2 + 1

w̃2

)2 + k2
0

(
1
zτ

+ 1
r−

)2

( k0
zτ

)2( 1
β2 + 1

w̃2

) . (B3)
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The radius of curvature of the wave fronts for the propaga-
tion through the slit are

R+(z, zτ ) = zτ

(
1
β2 + 1

w2

)2 + k2
0

(
1
zτ

+ 1
r+

)2

(
1
β2 + 1

w2

)2 + (
z

�2w2

)(
1
zτ

+ 1
r+

) (B4)

and

R−(z, zτ ) = zτ

(
1
β2 + 1

w̃2

)2 + k2
0

(
1
zτ

+ 1
r−

)2

(
1
β2 + 1

w̃2

)2 + (
z

σ 2w̃2

)(
1
zτ

+ 1
r−

) . (B5)

The wave-packet separation due to the slits is

Duu(z, zτ ) =
(
1 + zτ

r+

)
(
1 + β2

w2

)d, (B6)

and the phase that plays a role of wave number is given by

�uu(z, zτ ) = zτ�
2

z0+β2B2
d, (B7)

where z0± is the corresponding Rayleigh lengths.
The phase dependents of the propagation distance are

θuu(z, zτ ) = d2

4β4

k0
(

1
zτ

+ 1
r+

)
[(

1
β2 + 1

w2

)2 + k2
0

(
1
zτ

+ 1
r+

)2] (B8)

and the Gouy phase, identified as

ζ = − 1

2
arctan

[
f (z, zτ , β ) + g(z, zτ , β )

1 − f (z, zτ , β )g(z, zτ , β )

]
, (B9)

where

f (z, zτ , β ) =
z + zτ

(
1 + σ 2

β2

)
z0−

(
1 − zzτ σ 2

z2
0−β2

) (B10)

and

g(z, zτ , β ) =
z + zτ

(
1 + �2

β2

)
z0+

(
1 − zzτ �2

z2
0+β2

) . (B11)

Aiming to obtain the expressions for the wave function
that describes the two photons propagating through the lower
slit, �dd (r, q, z, zτ ), we just have to substitute the parameter d
with −d in the expressions corresponding to the two photons
propagating through the upper slit, i.e., in �uu(r, q, z, zτ ).

The wave function describing one photon propagating
through the upper slit while the another propagates through
the lower slit is given by

�ud (r, q) = 1√
πBB̃

exp

[
− r2

B2

]
exp

[
− (q − Dud/2)2

B̃2

]

× exp

(
ik0

R+
r2 + ik0

R−
q2 + i�ud q + iθud + iζ

)
,

(B12)

where

Dud (t, τ ) =
(
1 + zτ

r−

)
(
1 + β2

w̃2

)d, (B13)

�ud (t, τ ) = zτ�
2

z0−β2B2
d (B14)

and

θud (t, τ ) = d2

4β4

k0
(

1
zτ

+ 1
r−

)
[(

1
β2 + 1

w̃2

)2 + k2
0

(
1
zτ

+ 1
r−

)2] . (B15)

In order to obtain �du(r, q, z, zτ ), we need to replace d with
−d in �ud (r, q, z, zτ ).

APPENDIX C: LOGARITHMIC NEGATIVITY AND
COVARIANCE MATRIX TERMS FOR A TYPE-I SPDC PAIR

OF PHOTONS DIFFRACTING IN A DOUBLE SLIT

The logarithmic negativity in Eq. (11) is given by

EN = ln

[ √
2icBB̃R+R−√√−A1A2 + A3

]
, (C1)

where i is the imaginary unit and c is the speed of light
constant. B, B̃, R+, and R− are shown in Eqs. (B2), (B3), (B4),
and (B5), respectively. In the following,

A1 =
(

B2 + α1 + α3

2(α2 + α4)

)2

(α2 + α4) − (α1 + α3)2

4(α2 + α4)

+ α4

�2
uu

(B̃ + D2
uu),

in order to obtain A2, replace α1 and α2 with −α1 and −α2,
respectively. Next, we have

A3 = 4α5

(
B2 + α6

2α5

)2
−

(
α6

2

α5
+ 8α4

�2
uu

)
,

where

α1 = [(R− c�uu − Duu k0 )R+ + Duu R− k0]2B̃4

+ c2Duu
2R2

+R2
−,

α2 = c2R2
+R2

− + k2
0 (R+ − R−)2B̃4,

α3 = 2c2B̃2R2
+R2

−, α4 = α3�
2
uu

2
,

α5 = −2k2
0 (R+ − R−)2B̃4 − 2 c2R2

+R2
−

and

α6 = (−2 c2�uu
2R−2 − 4 ck0 Duu R+ �uu − 2 Duu

2k0
2
)

×
(

R− − k0 R+Duu

cR+�uu + k0Duu

)2

B̃4 − 2 c2Duu
2Ruu

2Rs2.

The covariance matrix elements employed to calculate the
logarithmic negativity, using the wave function in Eq. (7), are
written as

〈
x2

1

〉
�uu

= 〈
x2

2

〉
�uu

= 1
4

[
B2 + B̃2 + D2

uu

]
, (C2)

〈x1x2〉�uu = 〈x2x1〉�uu = 1
4

[
B2 − B̃2 + D2

uu

]
, (C3)

062430-13



DE BRITO, DA PAZ, ARAUJO, AND SAMPAIO PHYSICAL REVIEW A 104, 062430 (2021)

〈
p2

1

〉
�uu

= h̄2

4

[
1

B2
+ 1

B̃2
+ k2

0

c2

(
B2

R2+
+ B̃2

R2−

)
+

(
�uu + k0Duu

cR+

)2]
, (C4)

〈p1 p2〉�uu = h̄2

4

[
1

B2
− 1

B̃2
+ k2

0

c2

(
B2

R2+
− B̃2

R2−

)
+

(
�uu + k0Duu

cR+

)2]
, (C5)

〈x1 p2〉�uu = h̄

4

[
k0

c

(
B2

R+
− B̃2

R−
+ D2

uu

R+

)
+ Duu�uu

]
, (C6)

and

〈x1 p1 + p1x1〉�uu

2
= 〈x2 p2 + p2x2〉�uu

2
= h̄

4

[
k0

c

(
B2

R+
+ B̃2

R−
+ D2

uu

R+

)
+ Duu�uu

]
. (C7)
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