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Semi-device-independent randomness from d-outcome continuous-variable detection
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Recently, semi-device-independent protocols have attracted increasing attention, guaranteeing security with
few hypotheses and experimental simplicity. In this paper, we demonstrate a many-outcome scheme with binary
phase-shift keying (BPSK) for a semi-device-independent protocol based on the energy assumption. We show in
theory that the number of certified random bits of the d-outcome system outperforms the standard scheme (binary
outcomes). Furthermore, we compare the results of two well-known measurement schemes, homodyne detection
and heterodyne detection. Taking into account the experimental imperfections, we discuss the experimental
feasibility of the d-outcome design, and finally, we experimentally validate this approach with an experiment
based on BPSK modulation and heterodyne detection.
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I. INTRODUCTION

In the information security age, data privacy and secure
communication are of paramount relevance. It is worth stress-
ing the role of genuine random numbers for privacy and
security applications. Nearly all of the protocols dealing with
privacy and security rely on random numbers, and a protocol’s
security is directly connected to the quality of the employed
random numbers [1]. Thus, owning certified random numbers
is a critical component for guarding the information. Pseudo-
random-number generators have been popular and widely
used in the past few decades. However, the generated numbers
are not truly random since the randomness source is based
upon a classical phenomenon that is deterministic. In general,
random-number generators (RNGs) can be classified into two
major groups, classical and quantum. Due to their determin-
ism, classical RNGs cannot offer high levels of security, while
quantum random-number generators (QRNGs) are qualified
candidates for generating genuine and unpredictable random
numbers based on the intrinsic randomness of quantum me-
chanics [2].

Despite the fact that quantum mechanics ensures the un-
predictability of the generated random numbers, experimental
imperfections of QRNGs can open a back door for eavesdrop-
pers to attack or manipulate the protocol [3]. For instance, the
generator’s apparatus can be correlated with an external party
or can deviate from the expected behavior. Hence, QRNGs
can be categorized into three subgroups, trusted-device, semi-
device-independent (semi-DI), and device-independent (DI)
QRNGs [4]. Although the trusted-device QRNGs are cheap,
fast, and more reliable than the classical generators, they can
be compromised due to the security loopholes resulting from
trusting the devices. On the other hand, the highest security
is achievable by DI QRNGs in which randomness is certified
by the violation of a Bell inequality, without any trust on any
devices [5].

Besides offering highly secure randomness, DI-QRNG
protocols are also robust against experimental imperfections.
Unfortunately, the experimental realization of a loophole-free
Bell test is extremely hard to accomplish, and only proof-of-
principle experiments have been realized, obtaining modest
generation rates [6–10]. Taking into account the complexity
of this protocol and the low bit rate, DI QRNGs are still very
far from being practical. Indeed, security and speed are the
two key features of RNGs, and both are needed in practical
applications.

Semi-DI protocols are an intermediate approach between
DI and trusted-device schemes, which offer an optimal
trade-off between generation rate, security, and ease of imple-
mentation [4]. Depending on the protocol needs, assumptions
can vary; for very secure protocols, there are fewer assump-
tions on the device, i.e., a single assumption on the overlap
or energy of the prepared states [11–17], assumptions related
to the dimension of the Hilbert space [18,19], and the re-
quirement of trusted measurement in the case of source-DI
protocols [20–23] or a trusted source and in measurement-DI
protocols [24,25]. Recently, a new class of protocols was
proposed, in which both the source and measurement are un-
trusted and only a single assumption on the overlap or energy
of the prepared states is required [11–16]. These protocols can
provide increased security since they reduce the number of
assumptions on the devices.

In this work, we investigate the impact of increasing the
number of outcomes of the measurement apparatus given a
binary-input semi-DI QRNG implemented with optical con-
tinuous variables (CVs) [15,16]. The protocol builds upon
the prepare-and-measure scheme, with a measurable con-
dition on the maximum energy of the prepared states that
implies a lower bound on the state’s overlap. The use of CVs
allows for high generation rates. Indeed, discrete-variable
(DV) implementations have the problem of single-photon
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detector saturation (megahertz bandwidth), while CV-
detection schemes could employ high-speed detectors with
gigahertz bandwidth. Therefore, while the generated bit per
measurement could be higher with DV implementations, the
absolute generation rate (bit/second) could be remarkably
higher with the CV detection schemes. This is the reason why
considering CV encoding can improve the absolute generation
rate.

The main contribution of our work is the demonstration
that by increasing the number of outcomes in the postprocess-
ing stage, i.e., without changing the experimental setup, it is
possible to improve the generation rate for two well-known
CV-detection schemes, homodyne and heterodyne. At first
sight, our result seems to be in contradiction to the results
reported in [26]. In [26] it was demonstrated that, for a semi-
DI QRNG with n inputs subjected to the overlap bound, no
more than log2(n + 1) random bits can be certified and the
measurement apparatus achieving the maximum randomness
is obtained by using an (n + 1)-outcome positive operator-
valued measure (POVM). So it could be expected that with
two inputs, no more than three outputs should be considered.
However, the optimal POVM cannot be easily implemented
with standard CV components, and we will show that, if the
measurement is realized by using a homodyne or heterodyne
detector, increasing the number of outputs to more than three
(for two inputs) will improve the generation rate.

In particular, we report the numerical results of the method
employed for randomness estimation, from 3 to 14 outcomes,
concerning both homodyne and heterodyne detections and
then compare them with the binary-outcome result. We will
also investigate the generation rate as a function of the ef-
ficiency of the used measurement device, showing that the
advantage of increasing the number of outcomes decreases
with lower efficiency.

II. SEMI-DI-QRNG MODEL

A. Randomness certification framework

The protocol is based on two devices: an untrusted mea-
surement and a partially trusted preparation station. For the
latter, we perform a single assumption corresponding to
an upper bound on the prepared state’s energy. Similar to
[11,13,16], we consider here the case in which the preparation
and measurement devices cannot share quantum correlation,
while they can be correlated classically.

The scheme of this protocol is shown in Fig. 1: a prepa-
ration device emits the unknown states ρx after receiving
the binary input x ∈ {0, 1} from the user. The measurement
device has d outputs b ∈ {0, 1, . . . , d − 1}. By running the
experiment N times it is possible to estimate the conditional
probabilities p(b|x).

The measurement device is considered a black box, whose
internal working principles are unknown to the user. The
preparation device is a “gray box”: the internal working
principles are unknown, although we assume there are no
correlations between the preparation device and any external
devices. Moreover, we assume that the prepared states are
identically and independently distributed (IID hypothesis).
The single experimentally verifiable condition on the prepa-

Preparation Measurement

x = {0,1}

FIG. 1. The general design of the QRNG protocol. Depending
on the input x, the unknown state ρ0 or ρ1 is transmitted from the
preparation part. A single assumption is present on the state’s energy.
The measurement device, with no assumptions, performs a generic
measurement and outputs b ∈ {0, . . . , d − 1}.

ration section is an upper bound on the energy of the prepared
states:

〈n̂〉ρx � μ. (1)

The above condition can easily be checked by using a power
meter on the prepared states.

As shown in [27], the conditional min-entropy, namely, the
amount of genuine random bits per measurement run, is given
by

Hmin = − log2 (Pg), (2)

where Pg is the guessing probability, namely, the highest prob-
ability that an attacker knowing the internal working principle
of the devices can guess the outcomes b, given the input x.
We note that, without loss of generality, we can assume that
the source generates pure states since mixed states do not
provide any advantage to an attacker and, indeed, will lower
the guessing probability of an adversary.

It is worth noting that the bound on the energy, whose
validity can be checked experimentally, implies a lower bound
on the scalar product between the emitted states [13,16], and
thus, the approach of [11] can be followed to obtain Pg from
the experimental data.

By generalizing the approach of [11] with d outcomes, Pg

can be found as the solution of the following semidefinite
programming (SDP):

maximize
Mλ0,λ1

b
P̃g = 1

2

1∑
x=0

d−1∑
λ0,λ1=0

〈
ψx

∣∣Mλ0,λ1
λx

∣∣ψx
〉

subject to Mλ0,λ1
b = (

Mλ0,λ1
b

)†
,

Mλ0,λ1
b � 0,

d−1∑
b=0

Mλ0,λ1
b = 1

2
Tr[

d−1∑
b=0

Mλ0,λ1
b ]1,

∑
λ0,λ1

〈
ψx

∣∣Mλ0,λ1
b

∣∣ψx
〉 = p(b|x) ∀ b, x, (3)

where Mλ0,λ1
b are 2 × 2 operators in the two-dimensional

Hilbert space spanned by the orthonormal vectors |0〉 and |1〉
and the states |ψx〉 are defined by

|ψ0〉 = |0〉,
|ψ1〉 = (1 − 2μ)|0〉 + 2

√
μ(1 − μ)|1〉. (4)
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The above states |ψx〉 saturate the bound |〈ψ0|ψ1〉| � 1 − 2μ

derived from (1) and can be used in the optimization without
loss of generality (see [12,16]). In Eq. (3) we assumed that
the input states are prepared with equal probability, namely,
px = 1/2.

The variables λ ≡ (λ0, λ1) represent the classical informa-
tion available to anyone knowing the internal workings of the
device. The operators Mλ0,λ1

b are related to possible physical
realizations of the measurement device that are compatible
with the observed probabilities p(b|x). More precisely, for
each value of the pair (λ0 λ1), the value qλ = 1

2 Tr[
∑

b Mλ0,λ1
b ]

represents the probability that the measurement device is
actually implementing the POVM defined by the operators
{�λ0,λ1

b }, where �
λ0,λ1
b = Mλ0,λ1

b /qλ.
It is worth noticing that the above approach is general and

does not depend on the actual implementation of the prepa-
ration and measurement devices. The min-entropy is directly
calculated by using only the value of the energy bound μ

and the measured output probabilities p(b|x), independent of
their physical realization. We observe that larger Hmin can be
obtained whenever the probabilities p(b|x) allow us to better
distinguish the two input states.

B. Implementation with continuous variables

We now illustrate the amount of randomness that can be
obtained by using single-mode optical continuous variables
defined by the creation operator â†.

1. Preparation

In the preparation part, we employed the binary phase-shift
keying (BPSK) system, in which the source, a continuous-
wave (CW) laser, emits two coherent states with the same
mean photon number and a π phase shift |ψ0〉 = |α〉
and |ψ1〉 = | − α〉. We can use the representation of a
coherent state in Fock space to define |α〉 as | ± α〉 =
e− μ

2

∞∑
n=0

(±√
μeiφ )n

√
n!

|n〉, where α = √
μeiφ , μ is the mean photon

number, and φ is the relative phase between the signal and the
local oscillator (LO). We here assume that the LO is chosen
such that φ = 0. Note that the input x should be uncorrelated
with λ and independent of the devices. Thus, they can be
generated from a standard RNG (e.g., pseudo-RNG). We note
that the mean photon number for each state |ψ〉 is upper
bounded by the quantity μ given in Eq. (1). We note that
states with nonvanishing overlap cannot be deterministically
distinguished, unlike orthogonal states.

2. Measurement

Homodyne and heterodyne tomographies are two primary
and well-established detection schemes for measuring CV
states of light (see Fig. 2). By homodyning, the quantum state
is measured from samples obtained from projected Wigner
functions, whereas heterodyne detection directly samples
phase-space coordinates from the Husimi Q function [28,29].
In regard to semi-DI QRNG protocols, both heterodyne and
homodyne detections have been employed on the receiver
side, as shown in [16] and [15], respectively. In these works,
the (potentially) infinite outcomes of the CV measurement

(b)

(c)

(a)

 

 

  

 

 

  

 

  

 

  

 

 

FIG. 2. Homodyne and heterodyne detections. (a) Representa-
tion of the two detection schemes. (b) Effects of the phase instability
on the received states. (c) Off-line phase compensation for hetero-
dyne detection.

were grouped into two disjoint sets, corresponding to a binary
outcome. Here we consider the more general case in which
the physical outcomes can be grouped into a larger number of
sets.

The POVMs of homodyne and heterodyne receivers can be
represented, respectively, by

�(hom)(X ) = |X 〉〈X |,

�(het)(β ) = 1

π
|β〉〈β|, (5)

where |X 〉 is the eigenstate of the X̂ = (â + â†)/
√

2 operator
and |β〉 is the coherent state with complex amplitude β.

The corresponding probability densities associated with
the measurement of the states | ± √

μ〉 are given by

P (hom)
± (X ) =

√
2

π
e−2(X∓√

ημ)2
,

P (het)
± (β ) = 1

π
e−(X∓√

ημ)2
e−Y 2

, (6)

with real X and Y and β = X + iY . In the above equations
we included the overall efficiency η of the channel and of
the receiver devices. In order to obtain d possible outcomes
b = 0, 1, . . . , d − 1 we need to partition the real line X or the
phase space β into d disjoint sets.

In the homodyne case, it is necessary to choose d − 1
increasing real numbers X1 < X2 < · · · < Xd−1 such that the
outcome probabilities for b = 0, . . . , d − 1 can be written as

p(hom)(b|x) = 1√
π

∫ Xb+1

Xb

e−[X−(−1)x√2ημ]2
dX

= 1

2
{erf[Xb+1 − (−1)x

√
2ημ]

− erf[Xb − (−1)x
√

2ημ]}, (7)
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TABLE I. Definition of the partitions of the real axis correspond-
ing to different output configurations for the homodyne detection.

d X0 X1 X2 X3 X4 X5 X6

2 −∞ 0 +∞
3 −∞ −L1 +L1 +∞
4 −∞ −L1 0 +L1 +∞
6 −∞ −L2 −L1 0 +L1 +L2 +∞

with the convention that X0 = −∞ and Xd = +∞. We note
that from Eq. (6) to Eq. (7) we have performed a change of
the integration variable.

In the heterodyne case, we may define a partition of the
phase space {�b} with d elements. The output probabilities
can be written as

p(het)(b|x) = 1

π

∫
�b

e−[X−(−1)x√ημ]2
e−Y 2

dXdY

= e−ημ

π

∫
�b

re−r2+2r(−1)x√ημ cos θdrdθ. (8)

In the following we will analyze the achievable ran-
domness by considering the above measurements. We will
consider cases with an increasing number of outcomes, and
we compare them with the results obtained with two outcomes
already reported in [15,16].

III. RESULTS

A. Homodyne detection

We start by considering the homodyne detection with per-
fect efficiency (η = 1). Due to the symmetry of the prepared
states, the partition of the real axis is optimal when it is
symmetric around the origin. For instance, the configurations
corresponding to two, three, four, and six outcomes are shown
in Table I and are illustrated in Fig. 3.

The number of extractable genuine random bits is esti-
mated by numerically solving the dual of the SDP optimiza-
tion problem given by Eq. (3), constrained by the conditional
probabilities phom(b|x), obtained from Eq. (7), together with
the energy-bound assumption μ. The results are further opti-
mized over the values Lk . The values of the min-entropy as a
function of the energy bound μ are shown in Fig. 4 for the
two-, four-, and six-outcome cases.

As shown in Fig. 4, by increasing the measurement out-
comes, the min-entropy monotonically increases over the
entire range of μ, meaning that more randomness can be cer-

FIG. 3. Homodyne measurement configurations.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

 H
m

in

Homodyne measurement

2 outcomes
4 outcomes
6 outcomes

Energy bound

FIG. 4. Min-entropy as a function of the energy bound μ for
homodyne detection and different numbers of outcomes.

tified. It is worth noting that, starting from the same physical
implementation (homodyne measurement) and changing the
postprocessing (namely, by changing the partitions of the out-
comes) different values of the min-entropy can be obtained.

One could ask what happens with a further increase in the
number of outcomes. As shown in Fig. 5, improvements are
obtained for small values of μ by increasing the number of
outcomes up to 14. In Fig. 6 the best min-entropy (with opti-
mized μ) is shown as a function of the number of outcomes.
The data suggest that larger min-entropy will be obtained by
further increasing the number of outcomes toward a seemingly
asymptotic value of 0.5. However, to rigorously prove the
above statement, further analysis, beyond the scope of the
present paper, will be needed. To better clarify the d-outcome-
approach improvement, we can consider an ideal (noiseless)
implementation with a 1.25-GHz repetition rate: in this case
the generation rate would be approximately 437 MHz for
the standard method (binary outcome). In contrast, with the
d-outcome approach, one can improve the generation rate up
to 625 MHz without any changes in the experimental setup.

We now present the results obtained with an inefficient sys-
tem, namely, by considering η < 1. The parameter η is used
to model the effect of different experimental imperfections,
such as the losses of the channel, the limited efficiency of the
receiver’s detectors, and the electronic noise of the detection
apparatus. We carried out the same analysis described above
by considering different values of η. We show in Fig. 7 the
min-entropy as a function of μ for different values of η and
for two and four outcomes. The corresponding optimal value

4 outcomes
5 outcomes
6 outcomes
9 outcomes

14 outcomes

Energy bound

H
m

in

0.3

0.35

0.4

0.45

0.5

0.02 0.04 0.06 0.08 0.1
μ

FIG. 5. Min-entropy for a large number of outcomes plotted for
small μ values. It should be noted that the curves correspond to the
legend from bottom to top.
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Outcomes
2 3 4 5 6 9 14 20 40

H
m

in

0.34

0.38

0.42

0.46

0.5
Homodyne

FIG. 6. Maximum min-entropy (with optimized μ and η = 1) for
the different numbers of outcomes for homodyne detection. Note
that the lines between the points do not return the min-entropy at
noninteger numbers.

of L1 for the four-outcome case is shown in Fig. 8. From the
figures, it can be seen that when the efficiency decreases, the
advantage of using more outcomes is less evident, but it is still
present.

We note that the “jumps” in the curves for L1 are due
to a “change” in the optimal strategy depending on the
value of μ. For each choice of Mλ0,λ1

b , the probability that a
given strategy labeled by (λ0, λ1) is used is given by qλ =
1
2 Tr[

∑d−1
b=0 Mλ0,λ1

b ]. A change in strategy means that the opti-
mal values of q(λ0,λ1 ) have a discontinuity, namely, an abrupt
change between two close values of μ. We note that jumps in
L1 correspond to singular points also for Hmin, in which the
derivative of Hmin is not defined. This is a clear indication of
a change in the optimal strategy. We also underline that such
singular points in Hmin are also present in the two-outcome
results, in which no optimization over L1 is present.

B. Heterodyne detection

Homodyne detection is sensitive to only one field quadra-
ture, e.g., Xφ sampling only a projection of the phase space.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5
Homodyne measurement

=100%
=75%
=50%
=25%
=12.5%

4 outcomes
2 outcomes

Energy bound µ

H
m

in

FIG. 7. Min-entropy as a function of the energy bound μ for the
homodyne detector. We compared the two-outcome (dashed lines)
and four-outcome (solid lines) schemes for different values of the
efficiency η. It should be noted that the curves correspond to the
legend from top to bottom.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

op
tim

um
  

L 1

Homodyne measurement (4-outcome case)

=100%
=75%
=50%
=25%
=12.5%

Energy bound µ

FIG. 8. Optimal value of L1 for the symmetric four-outcome
configuration for different system efficiencies η. It should be noted
that the curves correspond to the legend from bottom to top.

Heterodyne detection, on the other hand, performs a joint
“noisy” measurement of two conjugated field quadratures, X̃φ

and P̃φ , thus sampling the entire phase space. The number of
possible (and potentially optimal) partitions for heterodyne
detection is larger than for homodyne detection due to the
increased dimensionality of the measurement.

Like in the homodyne case, it is possible to choose a “strip”
partition, namely, the configuration illustrated in Fig. 3: the
phase space is subdivided in vertical strips whose boundaries
are defined by the increasing real numbers X1 < X2 < · · · <

Xd−1. Looking at Eqs. (7) and (8) it is possible to note that
a heterodyne measurement with this configuration and effi-
ciency η is equivalent to the homodyne measurement with
efficiency η/2. Thus, we can directly refer to Fig. 7 for the
results.

Other possible configurations are displayed in Fig. 9. By
running the SDP for all the configurations represented in
Fig. 9, we obtained a min-entropy that is always lower than
the one obtained with the configuration shown in Fig. 3.

IV. PRACTICAL CONSIDERATIONS

The main focus of this work is studying the influence of ex-
tending the number of outcomes on semi-DI QRNGs based on
an energy bound and homodyne or heterodyne detection. We
focused on homodyne and heterodyne detections because they
are the most common measurement schemes employed in CV
protocols. Moreover, recent experiments [15,16], employed
these measurement schemes to implement energy-bounded
semi-DI QRNG protocols. These works could benefit from
this analysis, without any modifications to the experimental

FIG. 9. Alternative partitions of the phase space for heterodyne
measurement.
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Efficiency
0.0 0.4 0.6 0.80.2 1.0

H
m

in

0.0

0.1

0.2

0.3

0.4

4 outcomes
2 outcomes

η

FIG. 10. Min-entropy as a function of efficiency η for the homo-
dyne detection concerning the two- and four-outcome configurations.
The mean photon number μ and range L are chosen in a way that the
min-entropy is maximized.

setup. In fact, the presented results show an enhancement of
the certifiable min-entropy with respect to the binary case for
ideal detection and no losses. However, we note that in practi-
cal implementations the expected improvement is reduced. In
fact, additional losses, limited detector efficiency and excess
noise of the receiver apparatus contribute to a reduction of the
correlations p(b|x), limiting the advantage of these schemes,
as shown in Fig. 10.

We experimentally investigated the d-outcome approach
by analyzing the data obtained in a previous experiment based
on the BPSK modulation scheme and heterodyne detection
reported in [16]. We also included some data sets that were
not presented in the previous paper. We note that in order to
implement the d-outcome approach, we need to adjust only
the postprocessing stage rather than the experiment setup.

Since the experimental setup was already presented in [16],
we refer to it for more experimental details, and we give
below the main elements. The setup consists of three parts:
source, receiver, and electronics. In the source, a CW laser
emits light into a Mach-Zehnder interferometer, where the
light is split into two parts: LO and signal. Based on the field-
programmable gate array outputs (with 1.25-GHz repetition
rate), a phase modulator applies either 0 or π phase shift to
the signal: in this way, either |α〉 or | − α〉 is generated. Part
of the signal is measured by using a beam splitter and a power
meter, allowing real-time measurement of the signal energy:
this measurement allows a real-time check of the energy as-
sumption and constitutes the only trusted part of the whole
experiment. The heterodyne detection then is implemented
by means of a 90◦ optical hybrid followed by two balanced
homodyne detectors. An oscilloscope with 4 GHz of analog
bandwidth at a sampling rate of 12.5 Gsps and 8-bit resolu-
tion collects the data and later sends it to the computer for
postprocessing. After phase recovery, obtained as discussed
in [16], we applied the strip configuration (see Fig. 3) to
the obtained data. Figure 11 presents the min-entropy as a
function of μ for binary- and quartet-outcome cases. Since we
used a heterodyne detector with 17.3% efficiency, we expect
a small improvement using the d-outcome approach for low
mean photon numbers μ. Indeed, as shown in the inset, there
is a slight increase in the min-entropy for the four outcomes
compared to two outcomes when μ is lower than 0.02. Green
and red dots represent the experimental data for two- and

Heterodyne detector (η = 0.173)

Experimental results 2 outcomes
Experimental results 4 outcomes

4 outcomes
2 outcomes

H
m

in

0.02

0.04

0.06

0.08

Energy bound
0.1 0.2 0.3 0.4 0.50.0

0.0

µ

FIG. 11. The min-entropy as a function of the mean photon num-
ber. The dash-dotted blue and solid orange curves are the numerical
predictions for the two- and four-outcome cases when the detector
efficiency is η = 0.173. The green and red points, however, are the
experimental data.

four-outcome cases, and they are in perfect agreement with the
theoretical predictions. The results show that considering the
approach presented here, it is possible to achieve a higher gen-
eration rate from the same experimental data. Despite the fact
that the improvement is small for our experiment with 17.3%
detection efficiency, this analysis validates the d-outcome
approach.

It is worth noting that the value of L1 is chosen a priori,
depending on the value of the assumed bound μ. While in
our calculation we assumed that the output of the heterodyne
measurement is continuous, any experimental realization in
fact implements a discretization of it. The latter effectively
implies a discretization of the possible values of L1. However,
as shown in Fig. 11, the discretization has a negligible impact
on the results since the experimental points (obtained with the
discretized heterodyne measurement) are very well modeled
by the continuous heterodyne measurement given in Eqs. (6)
and (8). Moreover, it can be checked that small deviations
from the optimal L1 values have a small impact on the value of
Hmin. For instance, in the four-output homodyne case, an error
of ±0.1 in the correct value of L1 lowers the min-entropy by
at most 4%.

We note that, as shown in Fig. 7, there is almost no
improvement when the general inefficiency of the experi-
ment η is lower than 12.5%. Any experimental realization
that would like to exploit the advantage of a many-outcome
configuration should be designed in order to achieve high
efficiency.

Although with homodyne detection higher randomness can
be certified with respect to heterodyne detection, the former is
susceptible to errors in the setting of the phase φ between the
signal and the LO. Indeed, phase errors induce information
loss in homodyne detection, whose magnitude depends on
the active phase stabilization response time and precision. It
is possible to show that a homodyne detection with phase
error δφ is equivalent to a homodyne detection with no phase
error and efficiency η = | cos(δφ)|. In Fig. 12 we show the
optimal min-entropy for a four-outcome homodyne detection
as a function of the phase error. As an example, if the phase
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FIG. 12. Optimal min-entropy as a function of phase error for
four-outcome homodyne detection.

error is below 15◦, the min-entropy may fluctuate between
0.47 and 0.4. On the other hand, heterodyne detection is robust
with respect to phase error as long as the sampling rate is
much larger than the phase drift: in the latter case, phase-
compensation techniques can be used to track and correct
phase fluctuations, with minimal impact on the min-entropy.
As described in [16], for the heterodyne detection phase drifts
can be compensated via software during the postprocessing of
the data [see also Fig. 2(c)].

V. CONCLUSION

We have demonstrated a semi-DI QRNG with d outcomes
for binary-encoded optical coherent states based on hetero-
dyne or homodyne detection. We compared our results with
the binary-outcome case, and we showed the number of cer-
tified random bits is improved by increasing the number of
outcomes. In this framework, we observed that the homodyne
receiver beats the heterodyne receiver in terms of gener-
ated randomness. Numerically, we found an asymptotic upper
bound of 0.5 as the number of random bits per measurement
in the limit of infinite outcomes.

Moreover, in the heterodyne case we found partitioning the
phase space into a vertical strip allows a higher generation rate
with respect to other configurations (see Fig. 7). Physically,
this could be interpreted as better discrimination between the
two input states with the strip configuration compared to other
phase-space partitions.

From previous analysis [26], it is known that the maxi-
mum entropy for a binary-input setup is log2(3) � 1.5849,
while our analysis seems to indicate that with homodyne and
heterodyne measurements one can never exceed 0.5 bit of
randomness per measurement. We leave for future works the
formal proof of the above observation.

It is worth noting that the improvement is significant for
perfect detection efficiency, while it decreases in the case
of losses. Hence, owning efficient and low-noise detectors is
essential for exploiting d-outcome configurations and obtain-
ing higher randomness with respect to the binary-outcome
setting. Finally, we illustrated how to apply the d-outcome
configuration to the experimental data.
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APPENDIX A: DUAL SDP

In the present section, we report how to dualize the primal
form of the SDP equation (3). The SDP duality gives an
approach to upper bound the optimal value of maximization
problems or a lower bound for minimization problems [30].
The dual SDP has several advantages over the primal version.
First, the dual-optimization problem returns an upper bound
on the guessing probability, while the primal problem returns
a lower bound. Thus, even if the solver does not converge
to the exact optimal point, the dual solution will never over-
estimate the true content of randomness, providing reliable
bounds. Second, for real-time operation, the dual problem
enables us to recompute (suboptimal) bounds without the
need to run a full optimization, reducing the resources needed
for the entropy estimation. Finally, in the dual problem the
finite-size effects can be taken into consideration efficiently,
thanks to the linear dependance of p(b|x) in the objective
function. Note that in a real experiment, the conditional
probabilities p(b|x) are calculated over finite raw data; thus,
finite-size effects must be accounted for when estimating the
bound.

By using the Lagrangian duality [30], with an approach
similar to the one used in [11], the dualized SDP can be
written as

P∗
g = min

Hλ0 ,λ1 ,νbx

[
−

∑
x=0,1

d−1∑
b=0

νbx p(b|x)

]
(A1)

subjected to

Hλ0,λ1 = (Hλ0,λ1 )†,×
∑

x

ρx

(
1

2

d−1∑
b=0

δλx,b + νbx

)

+ Hλ0,λ1 − 1

2
Tr[Hλ0,λ1 ]1 � 0, (A2)

where Hλ0,λ1
b are 2 × 2 Hermitian matrices.

As we can see, the objective function of dual SDP is a lin-
ear function of the conditional probability distribution p(b|x),
and it does not appear in the constraints. Hence, after solving
the dual SDP one time and obtaining a valid set of param-
eters ν∗

bx, it is possible to obtain a (suboptimal) bound for
a new set of experimental probabilities p(b|x) by evaluating
the objective linear function with the set of parameters ν∗

bx.
This estimation does not require the full optimization of the
SDP, which can be slow and could limit the rate in a real-time
operation. A similar approach is not possible with the primal
version that needs to run a full optimization of the SDP for
every new set of p(b|x).
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