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Classical models with complex energy landscapes represent a perspective avenue for the near-term application
of quantum simulators. Until now, many theoretical works studied the performance of quantum algorithms for
models with a unique ground state. However, when the classical problem is in a so-called clustering phase, the
ground-state manifold is highly degenerate. As an example, we consider a 3-XORSAT model defined on simple
hypergraphs. The degeneracy of classical ground-state manifold translates into the emergence of an extensive
number of Z2 symmetries, which remain intact even in the presence of a quantum transverse magnetic field. We
establish a general duality approach that restricts the quantum problem to a given sector of conserved Z2 charges
and use it to study how the outcome of the quantum adiabatic algorithm depends on the hypergraph geometry. We
show that the tree hypergraph which corresponds to a classically solvable instance of the 3-XORSAT problem
features a constant gap, whereas the closed hypergraph encounters a second-order phase transition with a gap
vanishing as a power law in the problem size. The duality developed in this work provides a practical tool
for studies of quantum models with classically degenerate energy manifold and reveals potential connections
between glasses and gauge theories.
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I. INTRODUCTION

The quantum adiabatic algorithm [1], which can be viewed
as a generalization of quantum annealing [2–6], was con-
sidered as a perspective quantum algorithm since early days
of quantum computing. In this algorithm, the solution of a
classically hard combinatorial optimization problem [7] is
mapped onto a problem of finding a ground state of a classical
spin Hamiltonian. Such ground state is in turn obtained by
initializing a quantum spin system in a ground state of a
simple quantum Hamiltonian and then adiabatically interpo-
lating between the quantum and classical Hamiltonians. The
success of this algorithm, which is quantified by the overlap
between the final state after the evolution and the ground state,
is guaranteed, provided the spectrum features a finite gap
throughout the adiabatic evolution (see Refs. [8–11] for recent
reviews).

The performance of the algorithm was studied theoretically
for several optimization problems [12,13]. Remarkably, in
many cases the gap was shown to vanish polynomially or even
exponentially in the problem size [12,13], giving evidence of
the phase transition encountered in the annealing process. The
majority of models studied to date featured a unique ground
state. While such problems are convenient for numerical stud-
ies, in many interesting combinatorial problems one often
encounters a degenerate space of solutions. Classical prob-
lems with many possible solutions, where some are similar to
each other, while others are globally different, are said to be in
a “clustering phase” [14]. Classical optimization problems in
the clustering phase correspond to the spin Hamiltonians with
degenerate ground-state manifold, a situation that is often

explicitly ruled out in studies of quantum adiabatic algorithm
performance.

In this work we specifically focus on classical optimiza-
tion problem with degenerate space of solutions. To this end,
we use the “exclusive-or” satisfiability (XORSAT) problem
[15,16] for studies of quantum algorithm performance in
clustering phase. XORSAT is equivalent to a Boolean linear
algebra problem, hence, it is easily verifiable and solvable
in satisfiable cases. Restricting to the case where each ex-
clusive or condition involves exactly 3 variables, we obtain
so-called 3-XORSAT problem, that maps onto a classical spin
Hamiltonian with three-spin interactions specified by a certain
hypergraph. This spin model was studied in the literature,
where the existence of clustering phase was established for
random hypergraphs ensembles [14,16].

We focus on particular instances of the 3-XORSAT
problem, which provide an example of classically solvable
instances, yet feature a large degeneracy in the space of so-
lutions. We show that such degeneracy in the solution space
can be recast into the emergence of a set of Z2 conserved
charges that persists in the quantum model. To restrict the
problem to a particular sector, we generalize the duality intro-
duced in Ref. [13]. The application of duality to spin model
on a tree hypergraph results in an Ising-type model, facili-
tating numerical and analytical understanding. In particular,
we establish that the 3-XORSAT model on a tree hypergraph
does not feature a phase transition, guaranteeing the success
of the quantum adiabatic algorithm. On the other hand, the
closure of the tree hypergraph leads to an emergence of the
second-order phase transition encountered over the course of
adiabatic evolution.
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FIG. 1. (a) Matrix A that specifies 3-XORSAT problem with N = 7 variables and M = 5 conditions, and corresponding hypergraph where
vertices shown by green dots denote spins and black squares are the edges that correspond to three-spin interaction terms. (b) Illustration of
leaf removal algorithm that can find the solution of the classical problem. Starting from the original hypergraph in (a) at each step one removes
spins that enter in just one interaction (equivalently, are included only in one edge). At the first step one removes spins 4 and 7. Then, we can
remove either spins 2, 3 or spins 5, 6. At the last step, all three remaining spins can be removed. (c) Simultaneous flip of spins 2,3,4,7 (white
filled circles) does not change the energy of the system. Such degeneracy corresponds to the operator O that commutes with the classical
Hamiltonian.

The structure of this paper is organized as follows. In
Sec. II we briefly review the 3-XORSAT problem as well as
the quantum adiabatic algorithm. In Sec. III we illustrate the
duality mapping using specific instances of the 3-XORSAT
problem. For each of these instances, we find the dual
Hamiltonian, as well as discuss its energy spectrum and mini-
mal gap dependence with system size. We conclude in Sec. IV
with a brief discussion of our results and a summary of inter-
esting directions for future work.

II. CLASSICAL AND QUANTUM 3-XORSAT MODEL

In this section, we introduce the classical 3-XORSAT
model and associated spin Hamiltonian. We briefly review the
application of the so-called “leaf removal algorithm” [14] to
find the solution of a classical problem and highlight the emer-
gent degeneracy of the classical energy landscape. Finally, we
discuss the application of the quantum adiabatic algorithm for
finding the ground state of the classical 3-XORSAT model.
We show that even though the degeneracy of the classical
energy landscape is lifted in the presence of a transverse field,
a set of commuting integrals of motion remains.

A. Classical 3-XORSAT

Classical 3-XORSAT problem [15] consists in finding the
arrangements of binary variables x1, . . . xN that satisfy the set
of M distinct “exclusive-or” (XOR) clauses with only three
variables participating in each condition. Using equivalence
between XOR operator and binary addition, we can rewrite
the XOR clause x1 ⊕ x2 ⊕ x3 = b where b = 0, 1 as x1 + x2 +
x3 = b mod 2. This allows to map a 3-XORSAT problem onto
a system of linear equations:

Ax = y (mod 2), (1)

where A is a M × N matrix and y is an M-component vec-
tor with binary entries Aai ∈ {0, 1}, ya ∈ {0, 1}. Since we
restricted to clauses with only three variables, each row of
the matrix A contains exactly three ones with all other entries
being zero [see example in Fig. 1(a)]. Determining whether
the Boolean system of equations (1) admits an assignment of
the Boolean variables satisfying all the equations constitutes
the decision version of the 3-XORSAT problem. In general,

one is also interested in the set of solutions and its size.
Throughout this work our focus will be on quantum annealing
approach to finding the solution of the XORSAT problem.

The 3-XORSAT problem defined by means of a linear
system of equations with N variables and M equations can
be naturally mapped to the problem of energy minimization
for ensemble of N classical spins, σ z

i , with M three-spin
interactions [7]. Defining σ z

i = (−1)xi and Ja = (−1)ya one
can demonstrate that solution of Eq. (1) corresponds to a zero-
energy ground state of the following classical Hamiltonian:

Hc =
M∑

α=1

(
1 − Jασ z

iα
σ z

jα
σ z

kα

)
. (2)

In case when the system of Eq. (1) does not admit a solution
that satisfies all conditions (it is said to be UNSAT), the
ground state of the Hc corresponds to a bit assignment that
violates the minimal possible number of conditions.

The 3-XORSAT problem and corresponding classical
Hamiltonian are fully fixed by the pair of (A, y) or, equiv-
alently, the choice of three-spin interactions and a value of
couplings Jα = ±1. Interactions between spins can be con-
veniently visualized using the hypergraph, where vertices
correspond to spins, and edges (which now join three spins,
hence these are in fact hyperedges) correspond to interactions.
A particular instance of the 3-XORSAT problem and corre-
sponding hypergraph is illustrated in Fig. 1(a).

The hypergraph representation provides a visual way to
find the solution to the 3-XORSAT problem. The so-called
leaf removal algorithm [17] is illustrated in Fig 1(b) and
consists of removing the spins that enter only in a single
interaction. The insight is that if a given spin, say σ z

7 , appears
in the Hamiltonian only once, e.g. in the term σ z

2σ z
6σ z

7 for
the chosen example, we can always satisfy the corresponding
interaction term by adjusting the value of σ z

7 . Thus, we are
allowed to erase this spin and the corresponding interaction
term. Iterating such search and removal of spins that enter a
single interaction term (so-called leaves) on the hypergraph
is the essence of the leaf removal procedure. This procedure
halts if one removes all vertices and edges as is shown in
Fig. 1(b). This case corresponds to an instance of the 3-
XORSAT problem that is completely solvable by the leaf
removal algorithm. Another alternative is when in the process
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of iterating leaf removal procedure one fails to find any leaves.
The leaf removal algorithm halts at such an instance and the
remaining hypergraph is typically dubbed a “glassy core” [14]
[see an example of such hypergraph in Fig. 4(a)].

During the iterative process of the leaf removal algorithm,
one may encounter instances when more than two spins partic-
ipating in a given interaction term are simultaneously removed
[see Fig. 1(b)]. When such interaction edge and two associated
spins are removed, a degeneracy emerges. In the example in
Fig. 1(b) we remove simultaneously σ z

2 and σ z
3 , hence flipping

these spins simultaneously does not affect the energy of the
given interaction edge. At the level of the full Hamiltonian,
such instances lead to an emergence of global degeneracies:
in the example that we show the total energy does not change
if one flips spins 2, 3, 4, and 7. Depending on the geometry
of the problem, one may encounter many such degeneracies
with their number being a finite fraction of the total number
of spins: this is characteristic of the so-called clustering phase
[14,16]. Some of this degeneracy though originates from the
structure of the glassy core, which typically does not have a
unique solution (UNSAT) but instead has multiple degenerate
ground states.

B. Solving 3-XORSAT with quantum adiabatic algorithm

One approach to finding the ground state of the classical
Hamiltonian (2) or, equivalently, to finding the bit assignment
that violates the smallest possible number of equations in (1)
is provided by quantum adiabatic algorithm [1]. Supposing
that classical Hamiltonian (2) can be implemented on a quan-
tum simulator, we initialize the system in the ground state of
a quantum paramagnet Hamiltonian

Hq = −
N∑

i=1

σ x
i , (3)

and evolve this state under the following time-dependent
Hamiltonian:

HT (t ) =
(

1 − t

T

)
Hq + t

T
Hc, (4)

from time t = 0 to T . According to the adiabatic theorem, if T
is sufficiently large and Hq and Hc do not commute with each
other, the quantum simulator will remain with high fidelity in
the ground state for all times, resulting in a preparation of the
ground state of Hc at time T .

The running time T depends on the energy spectrum of
HT (t ). In particular, the time required for preparing the ground
state with high fidelity is bounded from below by the inverse
square of the minimum gap encountered throughout the time
evolution T � maxt |V10(t )|/[mint �(t )]2. Here, the gap is
defined as a difference between the energy of the ground
state and the first excited state �(t ) = E1 − E0, and V10 =
〈0|∂t H (t )|1〉 is the matrix element of the time-dependent part
of the Hamiltonian between ground state |0〉 and first excited
state |1〉. Due to this bound, many theoretical studies of the ef-
ficiency of quantum adiabatic algorithm focus on the behavior
of the minimum gap of HT (t ) [18,19].

C. Behavior of gap and degeneracies

The behavior of the gap for the so-called 3-regular 3-
XORSAT Hamiltonian, where each spin enters in exactly
three interaction terms, was considered previously [12,13]. It
was found that the system goes through a first-order quantum
phase transition, displaying an exponential decrease of the gap
with system size. However, these studies were restricted to
the instances of the classical 3-XORSAT problem that do not
have any degeneracy in the ground state. These instances are
said to have unique satisfying assignment, and their consid-
eration simplifies the study of the gap behavior [12,13]. For
the 3-XORSAT problem defined on a 3-regular ensemble of
random hypergraphs in the N → ∞ these instances form a
nonzero fraction (∼0.285) of the set of all instances [12]. Yet,
the behavior of instances that have degenerate ground-state
manifold was not studied.

In this work we provide results relative to systems with
degenerate ground states. We consider instances where de-
generacy of the ground state originates from the existence of
simultaneous spin flips that do not change the energy of the
classical Hamiltonian (see discussion in Sec. II A). We note
that the ground state may have additional degeneracy due to
the problem being UNSAT, which is not considered here. If si-
multaneous flipping of spins σ z

i1
→ −σ z

i1
, ..., σ z

ik
→ −σ z

ik
does

not change the energy of the system, the following operator

O = σ x
i1σ

x
i2 . . . σ x

ik (5)

commutes with classical Hamiltonian [O, Hc] = 0. Since the
quantum Hamiltonian Hq contains only σ x terms, any such
operator also commutes with the full HT (t ),

[O, HT (t )] = 0,

for any t , thus corresponding to an Abelian Z2 symmetry
present in the system. Moreover, as we mentioned above,
many typical instances of the 3-XORSAT problem may con-
tain a possibly extensive number of distinct operators {Ol},
l = 1, . . . , q, that commute not only with the Hamiltonian,
but also among themselves.

The presence of q distinct Abelian symmetries leads to
spectral degeneracy only for the classical Hamiltonian, i.e.,
only for HT (t ) at t = T . However, although these symmetries
do not give rise to spectral degeneracy when t < T , their pres-
ence fragments the 2N -dimensional Hilbert space of model
(4) into 2q distinct sectors, each labeled by ±1 eigenvalues
of corresponding Ol operator. The full Hamiltonian assumes
block-diagonal form when written in the basis that diagonal-
izes operators {Ol},

HT (t ) =
2q⊕

α=1

Hα (t ), (6)

where α runs over all 2q blocks.
The unitary evolution preserves the symmetries of the

Hamiltonian. This implies that the search for the minimum
gap is performed inside the block Hα (t ), which contains the
initial state |ψ (0)〉. Due to the reduced dimensionality of Hα ,
we can perform exact numerical calculations for a wide range
of system sizes.

One of the main results of this work is the duality trans-
formation which allows to explicitly obtain the form of the
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FIG. 2. (a) Example of the Hushimi tree at the level g = 2. A convenient choice of the set of independent conserved quantities is shown
by colored lines with different lines corresponding to individual conserved quantities, for instance, O1 = σ x

1 σ x
3 σ x

8 σ x
9 . (b) Dual degrees of

freedom live on the tree hypergraph with g − 1 generations. (c) Evolution of low-lying spectrum as a function of parameter s = t/T reveals
many crossings and large degeneracy in the spectrum of classical Hamiltonian at s = 1. (d) Spectrum of dual Hamiltonian in the sector
where all charges Ol = 1 has only avoided crossings demonstrating that application of duality resolves all symmetries. (e) Spectrum of the
dual Hamiltonian in the sector Ol = −1, where the dual model has an additional emergent Z2 symmetry, that is manifested in degeneracy of
ground-state manifold of the dual model for small values of s.

Hamiltonian Hα (t ) restricted to a given sector. In the next
section, we introduce this duality transformation using spe-
cific examples. This duality allows us to readily study the
behavior of the gap even in presence of extensive degeneracies
in the system and understand the fate of quantum adiabatic
algorithm.

III. DUALITY APPROACH TO QUANTUM
3-XORSAT MODEL

As discussed above, the duality provides a natural approach
to quantum 3-XORSAT Hamiltonian in presence of conserved
quantities. In this section we illustrate duality using specific
instances of 3-XORSAT model, whereas in Appendix A we
formulate the duality using the language of linear algebra
which allows to apply such transformation to the 3-XORSAT
problem on arbitrary graphs in an efficient manner.

A. Duality for tree hypergraph

The structure of degeneracies in the 3-XORSAT model is
determined by its connectivity. While often the 3-XORSAT
model is considered on random graphs [12,13], below we
consider an instance of the 3-XORSAT problem that is fully
solvable by the leaf removal algorithm. In particular, we
consider a tree hypergraph that may be thought of as a toy ex-
ample of the structure of the leaves of the generic 3-XORSAT
instances. We find that the dual Hamiltonian is an Ising model
and obtain that the energy gap remains constant in the ther-
modynamic limit.

1. Degeneracies and conserved charges

We consider the 3-XORSAT problem on the tree hy-
pergraphs with connectivity 2 and a varying number of
generations. An example of tree hypergraph shown in Fig. 2(a)
has g = 2 generations of spins and contains N = 3(2g −
1) = 9 vertices and M = 4 edges. Any such tree hypergraph
corresponds to a trivial solvable instance of 3-XORSAT: ap-
plication of leaf removal algorithm completely removes all
vertices and results in a solution.

In the process of a leaf removal iteration, one always
encounters pairs of spins that belong to the same edge and
are removed simultaneously. As explained in Sec. II A, this
leads to degeneracies. The tree hypergraph with g generations
is characterized by q = 3 × 2g−1 − 1 independent Z2 charges
(by independent Z2 charges we refer to a minimal set of
independent operators Ol such that any other string of σ x that
commutes with the Hamiltonian can be expressed as a product
of some of Ol from this set). For the particular hypergraph in
Fig. 2(a) this formula yields q = 5 charges, which are shown
by different colors in Fig. 2. A given symmetry sector can
be fixed by specifying the eigenvalues of all these charges.
In particular, the ground state of the quantum part of the
annealing Hamiltonian Hq in Eq. (3), |ψ (0)〉 = |→ · · · →〉,
corresponds to the values of all charges Ol = 1. We are in-
terested in performing a duality transformation that restricts
the Hamiltonian to a particular symmetry sector. Taking into
account that the ratio between the number of independent
charges and the number of spins q/N tends to the value of 1

2
in the thermodynamic limit g, N → ∞, the duality is capable
of drastically reducing the Hilbert space dimension from 2N

to approximately 2N/2.

2. Dual Hamiltonian

We explicitly construct the duality, by defining spins τ that
live at the edges of the hypergraph [see Fig. 2(b)]. The τ x

operators are expressed via original spins as

τ x
(i jk) = σ z

i σ z
j σ

z
k , (7)

where τ x
(i jk) is the dual spin located at the edge that was

connecting spins (i, j, k). In order to simplify notations, we
label the edges and dual spin operators τα by greek indices
as in Fig. 2(b); for instance, τ x

α=1 = τ x
(123) = σ z

1σ z
2σ z

3 . This
mapping converts the classical Hamiltonian Hc in Eq. (2) into
the simple sum of τ x

i operators

H̃c = −
∑
α∈V

Jατ x
α, (8)

where we omitted a constant term from Eq. (2). The tilde
emphasizes that this Hamiltonian acts in the Hilbert space of
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τ spins and index α runs over all vertices of the dual graph,
Fig. 2(b), denoted as V .

Similar to duality applied to discrete Abelian gauge theo-
ries [20], the relation between the τ z and σ x is nonlocal. The
τ z operators are defined via product of σ x operators on the
path from a certain “root vertex”:

τ z
α =

∏
m∈path to α

σ x
m. (9)

This root vertex is chosen as i = 9 in Fig. 2(a). Then for the
graph in Fig. 2(b) we have τ z

α=4 = τ z
(149) = σ x

9 , τ z
1 = σ x

9 σ x
1 ,

τ z
2 = σ x

9 σ x
1 σ x

3 , and τ z
3 = σ x

9 σ x
1 σ x

2 . This construction will result
in the simple expression for original spins σ x

1 = τ z
1τ

z
4 unless

they are located at the boundary of the graph. Thus, for the
bulk spins the dual H̃q of Hq coincides with an Ising model on
a tree

However, the situation is different for the boundary spins.
In order to obtain the expression for σ x

i at the boundary,
one must use the existence of the conserved charges. For
example, the spin σ x

4 cannot be expressed via the product
of any of the four τ z

α operators. However, we observe that
σ x

4 = (σ x
4 σ x

9 )σ x
9 = O1σ

x
9 = O1τ

z
4 . Remaining boundary spins

σ x
i with i = 5, . . . , 8 can be constructed in a similar way.

Dual spin operators τ x,z
α defined in such way obey the standard

Pauli commutation relations {τ z
α, τ x

α} = 0 and [τ z
α, τ x

β ] = 0 for
α 
= β.

Collecting all terms together and denoting s = t/T we
obtain the dual of the full Hamiltonian (4) as

H̃T (s) = − s
∑
α∈V

Jατ x
α − (1 − s)

∑
〈αβ〉∈V

τ z
ατ z

β

− (1 − s)
∑
α∈∂V

hz
α[O]τ z

α. (10)

The first two lines here correspond to the Ising model on
a Cayley tree [see Fig. 2(b)]. The last line encodes the de-
pendence of duality on the values of conserved charges, and
involves only τ spins at the boundary of the Cayley tree
∂V (τ z

2,3,4 in the present example). The effective symmetry-
breaking field coupled to boundary spins reads as

hz
α[O] = (1 + Omα

)
∏

m∈path from root

Om. (11)

Here, Omα
is the charge that involves only two spins, includ-

ing α, and product is over all charges encountered on the
path from the root. For instance, h4[O] = 1 + O5, h2[O] =
(1 + O3)O1 in notation of Fig. 2.

Remarkably, the first line in the dual Hamiltonian (10) is
the Ising model on the Cayley tree with connectivity equal
to three. This part of the dual Hamiltonian has global Z2

symmetry τ z → −τ z and does not depend on the values of
conserved charges (signs of Jα can be removed by the rela-
beling τ x → −τ x in the present case). However, in addition,
we also have the second line in Eq. (10) that imposes a
Z2-symmetry-breaking effective field on the dual degrees of
freedom at the boundary. The strength of these symmetry-
breaking fields depends on the sector of conserved charges
as we discuss below.

3. Energy spectrum and minimal gap of dual Hamiltonian

To illustrate the advantage of describing the system with
the dual Hamiltonian, we show the spectrum of the original
Hamiltonian (4) as a function of s in Fig. 2(c). The low-lying
energy levels become highly degenerate at s = 1, correspond-
ing to the degeneracy of the ground-state manifold of the
classical problem. Moreover, we observe multiple level cross-
ings between eigenstates that belong to different symmetry
sectors. The level crossings and degeneracy complicate the
determination of the minimal gap encountered throughout the
adiabatic algorithm.

In comparison, Figs. 2(d) and 2(e) demonstrate the spec-
trum of the dual Hamiltonian (10) for particular values of
conserved charges (also referred to as “sector”) has much
lower complexity. These energy levels are a subset of energy
levels shown in Fig. 2(c). The sector of conserved charges is
a property of initial state. The ground state of the quantum
paramagnet | →→ · · · →〉 is an eigenstate of all Om operators
with eigenvalue Om = 1. Thus, from Eq. (11) we obtain a
uniform magnetic field hz

α[O] = 2 for all α at the boundary of
the tree. The presence of this magnetic field leads to a strong
breaking of Z2 symmetry that would be otherwise present in
the dual Hamiltonian. Hence, it helps to avoid the second-
order phase transition in an Ising model, and Fig. 2(d) shows
that the finite gap of order one is present for all values of s.

The duality facilitates the determination of the gap on
several levels. First, it decreases the number of degrees of
freedom and allows us to study the problem in a smaller
Hilbert space. Second, it removes the degeneracies and explic-
itly resolves all symmetries present in the problem, making
the extraction of the energy gap more straightforward. As a
result, the duality allows us to study the finite-size scaling
of the gap for the family of tree hypergraphs with up to
g = 6 generations with N = 189 spins. We use the density-
matrix renormalization-group (DMRG) algorithm to obtain
the ground state and energy gap as a function of the param-
eter s. Previous works have studied the transverse-field Ising
model on the Cayley tree [22–24] with a global symmetry-
breaking field. In our study, we apply DMRG algorithm to an
Ising model with symmetry-breaking fields at the boundary,
corresponding to the energy spectrum encountered in the adia-
batic algorithm launched from the paramagnetic ground state.
The resulting behavior of the gap for different system sizes
N = 3(2g − 1) is shown in Fig. 3. Note that we do not include
data points corresponding to generations g = 1, 2 (N = 3, 9
spins) due to the presence of strong finite-size effects for such
small system sizes. In the dual picture, the first case corre-
sponds to a trivial system with a single degree of freedom. In
the second case, the number of dual spins is 4, however, three
dual degrees of freedom are located at the boundary of the
tree.

The finite-size scaling of the gap, shown in the inset
of Fig. 3, reveals that the gap approaches a constant value
with corrections that decay logarithmically in the number
of spins N . This is consistent with expectations that fi-
nite magnetic field applied to all boundary spins (these in
the case of the Cayley tree constitute the finite fraction
of all spins) destroys the phase transition. The presence of
a gap in the thermodynamic limit allows us to conclude
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FIG. 3. Behavior of energy gap as a function of s for open hy-
pergraphs with different number of generations in the sector Ol = 1
demonstrates that gap has minimal value around s ≈ 0.7. The finite-
size scaling in the inset shows that the gap approaches constant value
in the thermodynamic limit with corrections decaying as 1/ ln N .
Data are obtained with DMRG algorithm implemented in ITENSOR

[21] with truncation error 10−16, maximum bond dimension χ = 45,
and number of sweeps nsweeps = 30

that the quantum adiabatic algorithm can efficiently find the
ground state of the 3-XORSAT model on the considered
hypergraph.

Due to the degeneracy present in this model, one can arrive
at the ground state starting from a different initial state which
has values of O3,4,5 = −1 so that the symmetry-breaking field
vanishes. In the initial spin basis, this corresponds to choosing
an initial state where the pairs of outmost spins on the bound-
ary triangles have different spin values, i.e., σ x

i = −1 for
i = 4, 6, 8 while σ x

i = 1 for all remaining values of i. In this
case, however, we encounter a second-order phase transition
as a function of parameter s [see Fig. 2(e)]. This result is
in agreement with previous findings [22] of a second-order
phase transition at sc ≈ 0.5733 which is characterized by a
critical correlation length ξ = 1/ ln 2. This peculiar behavior
is due to the tree geometry of the lattice, and it is not observed
for systems on local lattices, where the correlation length is
known to diverge at the critical point.

B. Duality for closure of tree hypergraph

We continue the illustration of the duality by applying
it to a hypergraph without a boundary shown in Fig. 4(a).
This hypergraph can be thought of as the closure of the tree
hypergraph considered above. It corresponds to an instance
of the 3-XORSAT problem that does not admit a solution
by the leaf removal algorithm. Indeed, all spins enter into at
least two interaction edges, thus the leaf removal algorithm
cannot remove any leaves at all. This second example may
be considered as an example of the “glassy core” [14], and
the presence of nontrivial loops leads to the appearance of
nonlocal terms in the dual Hamiltonian. Using the duality we
will argue that the minimal gap vanishes polynomially in the
inverse problem size.

1. Degeneracies and conserved charges

The closure of the tree hypergraph with g generations has
q = 3 × 2g−1 independent conserved quantities. The choice of
Ol in Fig. 4(a) for the graph with g = 2 results in six con-
served charges that are in one-to-one relation with the spins
on the boundary. For example, O1 = σ x

1 σ x
3 σ x

8 σ x
9 σ x

14 includes
only one boundary spin σ14. Given that the total number of
spins is N = 3(3 × 2g−1 − 1) in the general case, we expect
that the dual Hamiltonian has Nτ = 3(2g − 1) spins. For the
particular instance of the graph in Fig. 4(a) this gives N = 15
and Nτ = 9.

In comparison with Sec. III A here the structure of the
ground-state manifold is more complicated. In particular, be-
fore we ignored the presence of couplings Jα since their
value could be always made positive. In the present case,
this is not possible anymore. Instead, we find that for any
set of the coupling constants Jα = ±1 it is possible to relabel
operators σ z → −σ z, so that either (i) all couplings Jα = 1,
or (ii) only one coupling is negative, JM = −1, and all re-
maining couplings are positive. The relabeling procedure does
not influence an overall parity, so option (i) is realized if∏M

α=1 Jα = 1, while (ii) holds when
∏M

α=1 Jα = −1. Below
we focus on case (i), where the system has a ground state
with energy E0 = −M, where M is the number of interaction
edges or, alternatively, the classical system of equations has
an assignment that satisfies all conditions. On the other hand,
in case (ii) the system is UNSAT and the ground-state energy

FIG. 4. (a) Closure of the tree hypergraph at level g = 2 removes the boundary and leads to a 3-XORSAT instance where no spins can be
decimated by leaf removal algorithm. The conserved charges labeled by O1,...,6 correspond to internal loops of the lattice. (b) Dual degrees of
freedom live on the closure of the tree hypergraph. The central τ spin shown by gray square is redundant. (c) The dependence of the minimal
gap on the system size is extracted from the DRMG algorithm.
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is E0 = M − 2. Furthermore, for the UNSAT case, the ground
state has an additional M-fold degeneracy compared to the
case (i). We reserve considerations of UNSAT case for future
studies.

2. Dual Hamiltonian

To perform the duality transformation, we associate the
τ spins with interaction edges [see Fig. 4(b)]. However, the
number of interaction edges is larger than the number of dual
spins: this is related to the fact that each σ spin enters into two
interaction edges. Thus, the product over all interaction edges,∏M

α=1 σ z
iα
σ z

jα
σ z

kα
= 1, results in an identity operator. We use the

same relation (7) to define the τ x
α operator via the product of

σ z
i spins in the corresponding interaction edge. The presence

of a constraint for the product of all interaction edges allows
expressing one of the τ spins via the remaining operators

M∏
α=1

τ x
α = 1, τ x

M =
M−1∏
α=1

τ x
α . (12)

While there is a freedom in choosing the “redundant” τ spin,
we fix it to be the central spin [see the shaded square in
Fig. 4(b)]. In what follows we do not explicitly express τM

spin via remaining spins to keep notation compact.
To define τ z

i operators we use the central site of the dual
lattice as a “root.” In particular, we define

τ z
i = σ x

i , for i = 1, 2, 3. (13)

Then, the remaining τ z can be written as the product of σ x
s∈Pi

,
where P corresponds to a path in the lattice starting from
the site i = 1, 2, 3. In order to write the quantum part of
Hamiltonian in the dual basis, we express σ x

i operators via
spins τ z

α . It is straightforward to see that σ x
i = τ z

ατ z
β where

edges α and β both share the spin i = 1, . . . , 9 (basically all
spins except the outer layer). For the spins at the outer layer of
the graph we again rely on the presence of conserved charges,
finding that σ x

i = Oliτ
z
ατ z

β where Oli is the charge that contains
spin i. For instance, σ x

15 = O5τ
z
6τ

z
7 in notations of Fig. 4.

With the above relations we can finally write the expression
for the dual Hamiltonian

H̃T (s) = − s
M∑

α=1

Jατ x
α − (1 − s)

∑
〈αβ〉

ηαβτ z
ατ z

β

− (1 − s)
3∑

α=1

τ z
α, (14)

where effective couplings between dual spins α, β depend on
the location of the spin as well as on the value of conserved
charges:

ηαβ =
{

1 if {α, β} /∈ ∂V,

Oli if {α, β} ∈ ∂V, τ z
α ∩ τ z

β = σ x
i .

3. Energy spectrum and minimal gap of dual Hamiltonian

As in the previous case, the value of all conserved charges
is fixed by the initial state on the physical basis. The ground
state of quantum Hamiltonian leads to all Ol having eigen-
value 1. The dual Hamiltonian in this sector corresponds to
Eq. (14) with all ηαβ = 1 supplemented by the expression for

FIG. 5. The finite-size scaling shows that the gap vanishes as
a power law in system size with a coefficient c = 0.77. Data are
obtained with DMRG implemented in ITENSOR [21] with truncation
error 10−16, maximum bond dimension χ = 279, and number of
sweeps nsweeps = 40.

τ x
M via remaining spins, Eq. (12). It is interesting to com-

pare Eq. (14) with (10). One difference is the appearance
of a nonlocal term in Eq. (14) that is implicitly encoded in
the τ x

M operator. More importantly, in the case of the tree
hypergraph, one could obtain a strong symmetry-breaking
magnetic field on the boundary by an appropriate choice of
conserved charges. This boundary field allowed to eliminate
the second-order phase transition, resulting in a finite value of
gap even in the thermodynamic limit. In the case of closure of
tree hypergraph, the symmetry-breaking field is only present
for a vanishing fraction of spins (more precisely, three spins
in the center for the present gauge choice), resulting in a very
different physics as we discuss below.

In Appendix B we demonstrate that Eq. (14) with all
ηαβ = 1 is equivalent to the transverse-field Ising model on
the closed lattice [see Fig. 4(b)] in an enlarged Hilbert space
that also includes spin τM as a physical degree of freedom:

H̃T (s) = −s
M∑

α=1

Jατ x
α − (1 − s)

∑
〈αβ〉

τ z
ατ z

β. (15)

The behavior of the transverse-field Ising model on the closure
of the tree hypergraph was not studied before to the best of
our knowledge. Due to the presence of loops, the analytical
methods applied in the case of the tree hypergraph cannot be
used in the present case. Therefore, we resort to numerical
simulations, using the same DMRG method as in Sec. III A 3.

We compute numerically the ground-state energy and the
gap to the next excited state as a function of s [see Fig. 4(c)].
Note that naïvely such gap vanishes in the Hamiltonian (15)
for values of s close to zero since the model is in symmetry-
broken phase. However, as we discuss in Appendix B, the
success of the quantum adiabatic algorithm depends on the
gap restricted to the even Z2-symmetry sector. The finite-size
scaling of the gap performed for systems with up to N = 69
spins (corresponding to M = 45 dual spins) in Fig. 5 shows
the gap vanishes as a power law with system size. This gives
strong evidence of a second-order phase transition encoun-
tered at s ≈ 0.65, which can be expected due to the presence
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of Z2 symmetry in dual Hamiltonian. We note that the fit
of the numerical data to a slow exponential decay is notice-
ably worse, as reflected by the Bayesian information criterion
(BIC), which for the power-law fit equals BIC = −25.4 while
for the exponential fit equals BIC = 1.99.

IV. DISCUSSION

Motivated by the fact that many interesting classical prob-
lems have degeneracy in solution space, in this paper we
studied the performance of quantum adiabatic algorithms ap-
plied to such problems. To this end, we introduced duality as a
generic tool that allows us to efficiently target such problems
and formulated it using the language of linear algebra in Ap-
pendix A. In the main text, we demonstrated the application of
duality to two different instances of the 3-XORSAT problem.

First, we applied the general duality to the 3-XORSAT
problem on a tree hypergraph, which may be thought of as
imitating the structure of the leaves of a generic 3-XORSAT
instance. Such an instance of the 3-XORSAT problem can
be efficiently solved by a classical algorithm in a polynomial
time. In Sec. III A we found that the dual Hamiltonian corre-
sponds to the Ising model with longitudinal magnetic fields
at the boundary of the graph. Thus, when starting the anneal-
ing process from the paramagnet state the gap saturates to a
constant value in the thermodynamic limit with corrections
decaying as 1/ ln N . This implies that the application of the
quantum adiabatic algorithm could yield a solution in a finite
amount of time, even in the thermodynamic limit.

As a more general example, we considered a 3-XORSAT
problem on the closure of the tree hypergraph, which may be
considered as a cartoon picture of a “glassy core.” Despite be-
ing nonamenable to the leaf removal algorithm, this instance
of the 3-XORSAT problem is still solvable in a polynomial
time by a classical algorithm. The presence of nontrivial loops
in this geometry translates into the appearance of nonlocal
terms in the dual quantum Hamiltonian. We found that the
minimal gap of the annealing Hamiltonian vanishes as a power
law with the problem size, implying the quantum adiabatic
algorithm would now require a time that is polynomial in the
problem size.

Despite considering only two toy examples of the 3-
XORSAT with extensive degeneracy of classical solution
space, the application of duality revealed an interesting con-
nection between the behavior of the minimum gap and the
structure of the lattice. In particular, we observed that by
closing the boundary of the tree hypergraph the minimum
gap changes from being constant in the thermodynamic limit
to decaying as a power law in system size. This suggests
that in the most complex case a first-order phase transition
may emerge, similarly to other instances of 3-XORSAT with
unique ground state considered previously [12,13]. In addi-
tion, duality may be used to obtain useful analytical results
for the entanglement spectrum. In particular, we expect the
entanglement spectrum of a given subregion to contain infor-
mation about conserved charges that are supported within the
subregion.

More generally, the two considered examples of the tree
hypergraph and its closure can be viewed as a basis of per-
turbation theory, as more typical hypergraphs can be obtained

by “decorating” the tree hypergraph with additional interac-
tions. In particular, changes to the hypergraph geometry that
add additional interaction terms typically break the formerly
conserved charges. This would correspond to the introduc-
tion of additional nonlocal degrees of freedom into the dual
Hamiltonian. Such an approach can be potentially used to
target more complex instances of the 3-XORSAT and possibly
relate the problem with classical clustering in the ground-state
manifold to instances of quantum clustering, that was recently
considered in the literature [25]. Additionally, these consid-
erations suggest that frustration that is brought by additional
interaction terms naturally corresponds to nonlocal interac-
tions in the dual language.

Finally, throughout this work, we focused on the ground-
state and low-lying excitations of the Hamiltonian used in
the quantum adiabatic algorithm to solve the classical 3-
XORSAT problem. The study of highly excited states of such
Hamiltonians remains an interesting problem, where duality
obtained in our work can bring useful insights. In particular, it
would be interesting to investigate if these models could allow
for a nonergodic phase similar to the one found in [26].
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APPENDIX A: GENERIC FORMULATION OF DUALITY

In the main text, we describe the duality procedure for two
particular instances of the 3-XORSAT problem. However, it
is desirable to formulate the general procedure of deriving the
dual Hamiltonian for general (possibly random) instances of
classical 3-XORSAT. In this section, we introduce a general
description of the duality transformation that uses the lan-
guage of linear algebra.

1. Algorithmic description of duality

The matrix A from Eq. (1) is the starting point of our
procedure. This formulation can be seen as an extension of
the duality mapping used in [13] for noninvertible A matrices.
Since {σ a

i } and {τ b
j } operators, with a, b ∈ {x, y, z} and i, j ∈

[1, N], belong to different Hilbert spaces, in what follows we
will use the symbol “ ≡′′ to refer to equivalences between
then.

a. Introducing linear algebra notations

In contrast to the particular case of duality in [13], which
required matrix A to be invertible, here we generally deal with
the matrix A that is not square and thus is not a full-rank
matrix. First, let us denote by r the rank (mod 2) of the matrix
A, rank2(A) = r. We further define matrices SA and S′

A, which
will be used to find τ x operators. The matrix SA contains all
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linearly independent rows of A,

SA = (v1, . . . , vr )T . (A1)

The matrix S′
A contains the remaining rows of A which by

construction can be obtained from those in SA. Hence, this
matrix can be written as a linear superposition of the vectors
v j ∈ SA,

S′
A = FSA, (A2)

encoded by the (M − r) × r matrix F .
In order to find the τ z operators we use a matrix Z

Z = (zi, . . . , zr )T , (A3)

that contains an orthonormal set of vectors zi, such that z j ·
vi = δi j . In practice, these vectors can be obtained by finding
the left inverse of transposed matrix SA from Eq. (A1), Z ·
ST

A = Ir×r .
Finally, the conserved charges are associated with the vec-

tors spanning the kernel (mod 2) of A. Since the basis of any
linear space is not uniquely defined, we use the following
choice of these kernel basis vectors:

O = [(
ST

A · Z
)

r+1 + êr+1, . . . ,
(
ST

A · Z
)

N + êN
)T

, (A4)

where êi is the unit vector of length N in the ith direction.
This choice leads to a particularly simple expression for the
dual version of quantum terms σ x

i .

b. Finding τx operators

To construct the τ x
α operators we use a set of linearly

independent rows of A matrix contained in matrix SA [see
Eq. (A1)]. Each row of A and SA contains exactly three entries
that are equal to one since we are dealing with the 3-XORSAT
problem. Therefore, we identify

τ x
α ≡

N⊗
l=1

(
σ z

l

)(SA )α,l = σ z
iα
σ z

jα
σ z

kα
, ∀ α ∈ [1, r] (A5)

where (iα, jα, kα ) are indices of nonzero entries of row α of
matrix SA. The remaining M − r rows are then expressed as a
linear combination of the vectors in SA as in Eq. (A2). This im-
plies that a product of σ z operators encoded by those vectors
can be obtained from τ x operators defined above. Specifically,
the product of σ z’s corresponding to a given row (S′

A)l , where
(S′

A)l = ∑r
k=1 Fl,k (SA)k , reads as

r∏
k=1

(
τ x

k

)Fα,k ≡ σ z
iα
σ z

jα
σ z

kα
, (A6)

where we imply that (τ x
k )Fα,k = τ x

k if Fα,k = 1 and (τ x
k )Fα,k = 1

if Fα,k = 0.
Finally, using Eqs. (A5) and (A6) we can express classical

Hamiltonian HC via dual operators as

H̃C =
r∑

α=1

Jατ x
α +

M∑
α=r+1

Jα

r∏
β=1

(
τ x
β

)Fα,β
. (A7)

c. Finding τz operators

Operators τ z
β can be constructed using matrix Z defined

in Eq. (A3) in a way similar to how operators τ x were con-

structed above. Specifically, we set

τ z
α ≡

N⊗
l=1

(
σ x

l

)Zα,l
, ∀ α ∈ [1, r]. (A8)

The important difference is that vectors zα contained in matrix
Z may contain a different number of nonzero entries. The
commutation and anticommutation properties of the {τ z

α, τ x
β}

operators follow directly from the orthogonality properties
between zα and vβ vectors:

zα · vβ = δαβ ⇒
{{

τ z
α, τ x

α

} = 0,[
τ z
α, τ x

β

] = 0 for α 
= β ∈ [1, r].

To find the dual operator of HX = ∑
i σ

x
i we have to invert

Eq. (A8) and find an expression for σ x operators via τ z. This
inversion procedure is straightforward for first r spins that
correspond to the invertible submatrix of SA. Thus, operators
σ x

i for i ∈ [1, r] read as

σ x
i ≡

N∏
l=1

(
τ z

l

)(SA )l,i
, ∀ i ∈ [1, r]. (A9)

To obtain an expression for remaining σ x
r+i with i ∈ [1, N − r]

we use the knowledge of conserved charges from Eq. (A4) and
find that

σ x
r+i ≡ Oi

N∏
l=1

(
τ z

l

)(SA )l,r+i
, (A10)

where the particular choice of conserved charges is used as
dictated by definition of O matrix in Eq. (A4):

Ol =
∏

i

(
σ x

i

)Ol,i
. (A11)

d. Dual Hamiltonian

Finally, joining Eqs. (A7), (A9), and (A10), we obtain the
expression for the dual Hamiltonian

H̃T (s) = − s

(
r∑

α=1

Jατ x
α +

M∑
α=r+1

Jα

r∏
β=1

(
τ x
β

)Fα,β

)

−(1−s)

(
r∑

i=1

N∏
l=1

(
τ z

l

)(SA )l,i +
N−r∑
i=1

Oi

N∏
l=1

(
τ z

l

)(SA )l,r+i

)
.

(A12)

2. Example

Let us now illustrate the abstract procedure defined above
using a specific example. We start from the matrix A corre-
sponding to an instance of the 2-regular 3-XORSAT model
with N = 6 and M = 4. The example considered here is
a particular instance of the closure of the tree hypergraph
[Fig. 4(a)] with g = 1, corresponding to the following A ma-
trix:

A =

⎛
⎜⎝

1 1 1 0 0 0
1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1

⎞
⎟⎠.
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Similar to the main text we restrict to the case with all cou-
plings Jα = 1.

For this particular case, it is easy to check that the rank
mod 2 of A is r = 3. To see this, for example, we could realize
that the first row is the sum (mod 2) of all the other rows. We
then pick a submatrix of A containing all linearly independent
rows as

SA = (v2, v3, v4)T =
⎛
⎝1 0 0 1 0 1

0 1 0 1 1 0
0 0 1 0 1 1

⎞
⎠.

Using Eq. (A5) we then obtain

τ x
1 ≡ σ z

1σ z
4σ z

6 , τ x
2 ≡ σ z

2σ z
4σ z

5 , τ x
3 ≡ σ z

3σ z
5σ z

6 .

The F matrix in this case corresponds to a row vector with
all r components being equal to one, F = (1, 1, 1). Using
Eq. (A6) we obtain

3∏
i=1

τ x
i = σ z

1σ z
2σ z

3 .

Hence, we can write the dual form of the classical Hamilto-
nian HC which reads as

H̃X = τ x
1 + τ x

2 + τ x
2 + τ x

1 τ x
2 τ x

3 .

We now focus on defining the τ z
α operators. For this partic-

ular case, it is easy to check that

Z =
⎛
⎝1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

⎞
⎠.

Using Eq. (A8), we get

τ z
α ≡ σ x

α , ∀ α = 1, 2, 3.

From the above point, we can already read the expression for
the σ x

i operators in terms of the τ z
i operators for i = 1, 2, 3.

Furthermore, to find the expression of the remaining σ x
i op-

erators (i = 4, 5, 6) we need to find the conserved charges of
the theory.

Computing the kernel (mod 2) of SA we obtain

O =
⎛
⎝1 1 0 1 0 0

0 1 1 0 1 0
1 0 1 0 0 1

⎞
⎠,

which in the spin language from Eq. (A11) corresponds to

O1 = σ x
1 σ x

2 σ x
4 , O2 = σ x

2 σ x
3 σ x

5 , O3 = σ x
1 σ x

3 σ x
6 . (A13)

Thus, it only remains to find the set of clauses in which the
spins i = 4, 5, 6 participate. From that and using Eq. (A13),
we find the dual expressions for the remaining σ x operators:

σ x
4 ≡ O4τ

z
1τ

z
2 , σ x

5 ≡ O5τ
z
2τ

z
3 , σ x

6 ≡ O6τ
z
1τ

z
3 .

The dual Hamiltonian follows directly from all the above
results:

HT (s) = − s

(
3∑

α=1

τ x
α + τ x

1 τ x
2 τ x

3

)
− (1 − s)

×
(

3∑
α=1

τ z
α + O4τ

z
1τ

z
2 + O5τ

z
2τ

z
3 + O6τ

z
1τ

z
3

)
. (A14)

APPENDIX B: ISING ON THE CLOSURE OF THE
TREE HYPERGRAPH

In this Appendix, we provide details on the procedure that
allows removing the nonlocal term τ x

M in the dual Hamilto-
nian (14). The approach we present here is inspired by the
one carried out in Ref. [27]. We engineer a Hamiltonian K̃T

with an Abelian Z2 symmetry, which is equivalent to H̃T

in a given symmetry sector (which we denote as physical
subspace). In addition, we request that in K̃T the nonlocal
term becomes equivalent to a single spin operator. For this,
we define the following projector P0 = ∑

v∈{0,1}M−1 | v+〉〈v+ |,
where

| v+〉 = 1√
2

(| v, 0〉 + | v, 1〉).

As a result, it is easy to check the following relations hold:

P0
(
τ x
α ⊗ 1

)
P0 = Xα, α ∈ [1, M − 1]

P0

(
M−1∏
α=1

τ x
α ⊗ 1

)
P0 = XM . (B1)

Equation (B1) indicates that when restricted to the physical
subspace the action of the Xi operators for i ∈ [1, M − 1] is
identical to that of the τ x

i operators. On the other hand, the
nonlocal term

∏M−1
i=1 τ x

i is now encoded in the XM operator
associated with a new degree of freedom. We then have all the
information needed to construct the Hamiltonian K̃T .

We note that Eq. (B1) directly implies that
∏M

i=1 Xi = 1,
which completely specifies the physical subspace. Further-
more, the form that the remaining terms of H̃T take can
be obtained from their (anti)commutation relations with the
nonlocal term

∏M−1
i=1 τ x

i . More specifically, we note that for
operators Oc commuting with the nonlocal operator the fol-
lowing holds:

P0

([
Oc,

M−1∏
i=1

τ x
i

]
⊗ 1

)
P0 = [P0(Oc ⊗ 1)P0, XM] = 0.

(B2)

Hence, it implies that P0(Oc ⊗ 1)P0 contains either the XM

operator or acts as the identity on the spin M. However,
using the definition of P0 we see that only the identity on
spin M is permitted. In the same spirit, we see that for op-
erators Oac anticommuting with the nonlocal term it holds
that

P0

({
Oac,

M−1∏
i=1

τ x
i

}
⊗ 1

)
P0 = {P0(Oac ⊗ 1)P0, XM} = 0,

(B3)
which in turns implies that P0(Oac ⊗ 1)P0 has to contain either
the ZM operator or the YM operator. Using again the definition
of P0 we see that only the ZM operator is permitted. In this
way, K̃T takes a form of transverse-field Ising model on the
closed lattice, Fig. 4:

K̃T (s) = −s
M∑

α=1

JαXα − (1 − s)
∑
〈α,β〉

ZαZβ. (B4)
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As a consistency check, we note that the subspace specified by
the constraint

∏M
α=1 Xα = 1 corresponds to the positive-parity

sector of K̃T (s) Hamiltonian with respect to Z2 symmetry
implemented by the operator

∏
α Xα .
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