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Here we put into practice the concept of blind client-server quantum computation, in which a client with
limited quantum power controls the execution of a quantum computation on a powerful server, without revealing
any details of the computation. In particular, it is a three-node setting in which an oracular quantum computation
can be executed blindly. In this Blind Oracular Quantum Computation (BOQC), the oracle (Oscar) is another
node, with limited power, who acts in cooperation with the client (Alice) to supply quantum information to the
server so that the oracle part of the quantum computation can also be executed blindly. We develop tests of this
protocol using two- and three-qubit versions of the exact Grover algorithm (i.e., with database sizes 4 � N � 8),
obtaining optimal implementations of these algorithms within a gate array scheme and the blinded cluster-state
scheme. We discuss the feasibility of executing these protocols in state-of-the-art three-node experiments using
nitrogen-vacancy diamond electronic and nuclear qubits.
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I. INTRODUCTION

While the promise of distributed quantum information
processing was already foreseen in theoretical work many
decades ago [1–3], we have finally entered a time when some
of these ideas can be implemented in the laboratory [4]. With
these developments, it is timely to look at the theoretical
situation in a new light and to evaluate what can be done with
the currently very limited resources that are available. Some
studies have already begun to assess the detailed resources
needed to implement quantum algorithms [5,6], but these
have not come to a point where any feasible, implementable
schemes have been proposed.

In this paper we lay out a concrete plan for putting sev-
eral different concepts in distributed quantum computing into
action. Blind quantum computation [7] is an example of a
protocol in which quantum physics gives unique security
properties in a distributed computing setting. It is a client-
server scheme, in which a client with limited computing
power wishes to make use of a powerful server, but in such
a way as to ensure that the server is “blind,” i.e., not able
to determine what computation the client is running, and not
able to come into possession of any intelligible input or output
data for this computation. It has been shown that an adaptation
of the technique of cluster-state quantum computation [8–10]
can achieve client-server blind quantum computation, and
one aspect of our work in this paper will be to lay out the
possibilities for achieving this in a distributed quantum device
involving diamond nitrogen-vacancy (NV) centers.

It has been standard for 20 years to use oracular algorithms
as test cases for quantum computing implementations. We
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will adopt this approach here as well, but we proposed in a
detailed paper on the cryptographic protocol [11], a different
approach to integrating oracular computations into the client-
server paradigm. In a distributed setting, it is meaningful
to consider the oracle to be a distinct node of a network.
In the case of the Grover quantum computation [12], this
means a node in possession of an actual physical database.
Thus we explore for implementation, a three-party distributed
computation setting: the client (Alice), who wants to know
the answer to a database-lookup problem; the oracle (Oscar),
who is in possession of this database and is willing to reveal
information about it to a server, but in a blinded fashion that
will be intelligible only to Alice; and finally the server itself
(Bob), in possession of a powerful quantum computer, with
the capacity to receive remote qubits from Alice and Oscar,
to perform entangling operations, and to broadcast the results
of quantum measurements, under instructions from Alice and
Oscar.

Of course, many experiments have achieved some imple-
mentation of the two-qubit Grover algorithm. For instance,
Refs. [13–15] used the nuclear magnetic resonance (NMR)
technique, Refs. [16,17] used trapped ions, Ref. [18] used
superconducting qubits, and Ref. [19] used Abelian anyons (in
a simulation). Moreover, Refs. [20,21] demonstrated the algo-
rithm with the one-way quantum computer [8,9], and within
the blind computation scheme of Ref. [7] was demonstrated
in Ref. [22] with just four photonic qubits. But we believe
that current developments in the quantum technology of dis-
tributed processing using remote NV centers [4,23] make our
three-party version of blind client-server quantum computa-
tion feasible for a full implementation study.

We can indicate precisely how this implementation can be
achieved for the standard two-qubit Grover problem (and will
do so in the final section), but we will primarily use the present
study to analyze the implementation of scaled-up oracle
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problems. Thus, we will examine in detail the possible real-
izations of three-qubit Grover. It is already known that going
from two to three qubits adds challenges for the implemen-
tation: two calls to the oracle are needed rather than one.
In addition, the original Grover procedure does not give an
error-free identification of the database state, except in the
single case of the two-qubit case [24]. This problem was
solved by subsequent modifications of Grover’s procedure
[25–28], and we take account in the present work of these
modifications needed to make the database search an “exact”
algorithm.

Given the various inconvenient features of three-qubit
Grover—two oracle calls, lack of exactness, necessity for
two-qubit gates at all stages of the algorithm—it is not sur-
prising that there has been only a limited set of attempts to
implement in the laboratory, and never in a distributed or
blind setting. Reference [29] illustrated implementation with
cavity quantum electrodynamics, an experiment using NMR
was performed in Ref. [30], and Ref. [31] demonstrated using
trapped atomic ions for different number of queries. However,
to maintain the certainty in going from two-bit to three-qubit
Grover, more complex gates are required. Only one experi-
ment so far demonstrated the three-qubit exact Grover, which
used a magnetic resonance system [32].

But as we show below, “three-qubit Grover” in fact encom-
passes a very large set of potential algorithms, and we explore
these possibilities systematically here, with the objective of
identifying the easiest implementations in the NV-center set-
ting. The multiplicities of these Grover algorithms come in
several forms. First, the number of database entries can be as
many as N = 23 = 8, but it can be fewer. Each of the new
cases N = 5, 6, 7, and 8 is a separate problem, and we con-
sider all of these here. While for N = 8 all of the three-qubit
states are in use, for N < 8 only a subset are used; the exact
choice of this subset is another variable that we have studied
one by one.

There is a final variation of the algorithm that, to our
knowledge, has not been exploited before. It is not necessary
that the number of distinct entries in the database of Oscar be
equal to the number of entries used in the quantum register.
For example, suppose that Oscar has five database entries,
A, B, C, D, and E. He and Alice may agree on an encoding
in which A can correspond to marking either the three-qubit
memory location 000 or 001, while the other four have a
unique location, say, B → 010, C → 011, D → 100, and E →
101. Then, if Alice’s final measurement reveals either 000 or
001, she infers that datum A is stored in Oscar’s database. The
algorithm will also be successful even if Alice cannot reliably
distinguish between the 000 and 001 outcomes, so long as they
are reliably distinguished from the others. For this reason, we
refer to this approach below as the “positive operator-valued
measure (POVM) strategy.”

We have also exhaustively optimized over possible POVM
strategies. We find that the most economical three-qubit
Grover algorithm to implement is in fact exactly the one that
we have just given as an example! It is perhaps surprising
that using N = 6 with only five data is preferable to simply
using N = 5, but we find that the POVM freedom allows for
reduction of the gate complexity of the implementation, and
thus in the cluster state implementation.

An unfortunate message is that even this most economical
case among all the three-qubit Grover algorithms is still much
more resource intensive than the two-qubit Grover algorithm.
This increase is modest in the number of physical qubits used
(four vs three), but very large in the number of gate operations
and repeated reuse of physical qubits (approximately 10×
more), and correspondingly large in its coherence demands.
Thus, it appears that within the Grover family of algorithms,
a large jump in the implementation is unavoidable. To make
these jumps smaller, it will be necessary to look at other
families of oracle algorithms.

II. THEORETICAL BACKGROUND

A. One-way quantum computer

In this study, we consider one-way quantum computer
(1WQC) [8] as the framework underlying quantum compu-
tations. By contrast to conventional quantum computation,
viz., the gate model, a 1WQC computation implements unitary
maps via a series of projective measurements on a stabilizer
state, i.e., cluster state [8]. The measurements are done with
respect to some ordering and are performed adaptively de-
pending on the previous measurement outcomes. Therefore,
in the 1WQC scheme, a cluster state defines the quantum
computer, and consecutive measurements define quantum op-
erations. Note that we use the convention of Ref. [7] to
represent 1WQC computations.

A 1WQC computation can be represented as a set
{(G, I, O), �φ, ρ}, where G = (V, E ) is a connected graph for
vertices V and edges E , I ⊂ V is a set of input nodes, O ⊂
V is a set of output nodes, ρ is a quantum input assigned
to nodes I , and �φ is a set of angles parametrizing projec-
tive measurements on the nodes, where φi ∈ [0, 2π ) for a
node i. The cluster state is formed by assigning states to all
noninput nodes followed by entangling operations (CPHASE
gates) with respect to the edges E . Thus, the cluster state is∏

{i, j}∈E CPHASEi, j
⊗

i∈Ic |+〉i. The measurement projectors

have the form {|+φ〉〈+φ|, |−φ〉〈−φ |}, where |±φ〉 := |0〉±eiφ |1〉√
2

;
these are measurements with bases lying on the xy-plane of
the Bloch sphere. Note that here we care only about classi-
cal inputs and outputs; thus, we measure all nodes in V . A
classical input cn . . . c1c0 is initialized as

⊗
i∈I |+πci〉, where

ci ∈ {0, 1}. Moreover, in this study, we consider only input ze-
ros 0 . . . 0; thus, we represent a computation as {(G, I, O), �φ}
instead.

In addition to information {(G, I, O), �φ} to represent
a computation, we also need a correction scheme. Since
quantum measurements unavoidably introduce indeterminacy,
adaptive measurements are performed to obtain deterministic
quantum operations. A measurement angle φ j can be X - or
Z-dependent on previous outcome i, which means correcting
φ j to (−1)siφ j or φ j + siπ , respectively. Here si ∈ {0, 1} is the
outcome of measurement i. This correcting scheme is nicely
captured by the notion of flow [33], that is, a map f :Ic 	→ Oc

following certain criteria (Ac means the complement of set A).
Thus, measuring j, f ( j) determines X correction, and neigh-
bors of f ( j), denoted as NG ( f ( j)), determine Z corrections.
Flow of a graph induces a partial ordering 
 over nodes V ,
such that the measurement order is consistent with 
.
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FIG. 1. Communications within the BOQC protocol (Protocol 1 in the Appendix). The protocol takes classical inputs, has classical outputs,
and is adapted to Bob’s qubits being memory-like (posses permanence and can be rapidly reinitialized). Initials A, B, and O denote Alice, Bob,
and Oscar, respectively. The protocol begins with step 0 , where Alice and Oscar share a random bit string �r via a secure key channel

(dashed double line). Given that there are n nodes, the computation has n rounds: 1 – n . Each round comprises the following: (a) Alice
and Oscar transmit the fresh qubits A( j) [Eq. (1)], (b) Bob entangles the corresponding qubits by applying operator E>

jNG ( j) [Eq. (2)], and

(c) Bob measures qubit j according to the instructed angle (� j or δ j) and shares his outcome b̃ j via insecure classical channels (double
solid lines).

B. Blind oracular quantum computation

We employ a client-server setting scheme blind oracular
quantum computation (BOQC) [11] to realize secure oracular
quantum computations. BOQC is proven to be composable
blind [11], which means the blindness is also maintained
as a part of a more extensive cryptographic system. BOQC
provides a means to solve the following situation.

Alice is a client who wants to run an oracular quantum
algorithm; she has no quantum computer nor the capacity
to evaluate her oracle function. Oscar is another client who
owns oracles and is willing to cooperate with Alice to run
her oracular algorithm. Bob is a server who owns a powerful
quantum computer on which Alice and Oscar can run the
algorithm. However, Bob is curious, and he is to be prevented
(“blinded”) from acquiring knowledge of the algorithm or its
output. For example, as previously illustrated, in a situation
when Alice wants to run a Grover algorithm, and Oscar is in
the possession of the database and helps Alice to discover the
marked datum in the database by implementing the Grover
oracle (or its Høyer variant), without leaking this information
to Bob or to any other parties.

There are several variants of the BOQC protocols provided
in [11]; we use the one where input and output are classical
in which Bob’s qubits are memory-like: they possess perma-
nence and can be rapidly reinitialized. For instance, NV-center
qubits are memory-like. Note that BOQC protocols that use
memory-like qubits are called BOQC-optimized (BOQCo) in
Ref. [11]. To avoid unnecessary introduction of names, we
address BOQCo as BOQC here. For the BOQC variant with
classical input-output, the communication resource needed
comprises a secure-key channel between Alice and Oscar,
one-way quantum channels between Alice or (and) Oscar and
Bob, and insecure classical channels between Alice or (and)
Oscar and Bob; these resources are illustrated in Fig. 1.

Before running the BOQC protocol, Alice and Oscar per-
form the following steps, the so-called preprotocol [11]. First,
Alice and Oscar determine an integer b to construct a set
covering all measurement angles: � = { πk

2b−1 }0�k<2b . Second,
given Alice’s graph A and that she needs m oracle queries,

she marks the oracles as black boxes. Thus, Oscar’s graph,
O, is a graph with m components. Oscar sends Alice his
graph together with the flow {O, fO}. Alice obtains the whole
graph G = A ∪C O for a connection C, and she computes the
total flow (
, f ). Finally, Alice informs Bob {G,VA,VO,
,

>, b} =: �, where VA denotes Alice’s nodes, VO denotes Os-
car’s node, and > is a total measurement ordering that is
consistent with 
. Now every party has the necessary infor-
mation to run the BOQC scheme.

It turns out that � is the only information that leaks to Bob
from the scheme no matter how malicious Bob is. However,
knowledge of � restricts Oscar’s graph to be identical for
all Alice’s query. For instance, if Oscar’s oracle provides
a database with items {a, b, c}, Oscar’s graph O must be
identical for all items a, b, and c. Such a graph is called a
BOQC-compatible graph in Ref. [11].

Let Alice’s computation be {A, �	} and Oscar’s compu-
tation be {O, �φ}; they keep measurement angles (	,φ) to
themselves. Given the total graph G = (V, E ) with a flow
(
, f ), total ordering >, input nodes I , and output nodes O,
running the computation on the BOQC scheme is done as the
following.

The scheme is initiated with Alice and Oscar sharing a
random bit string �r, where ri ∈ {0, 1}. All parties run the
computation by parts that consist of m rounds, where m =
|V |. Each round of computation may comprise qubit trans-
missions, qubit entanglements, and a measurement. Qubit
transmissions are done by Alice or Oscar, and Bob performs
the rest. Each round i runs as follows.

First, Bob needs to receive fresh qubits that correspond to
nodes

A(i) := NG (i) \ (∪ j<iNG[ j] ) (1)

from Alice or (and) Oscar, where NG[i] indicates closed
neighborhood of i, namely, nodes adjacent to i including
i itself. Let us consider a node k ∈ A(i). If k ∈ VA, Alice
generates θk ∈ � at random and sends Bob 1√

2
(|0〉 + eiθk |1〉);

if k ∈ VO, Oscar generates �k ∈ � at random and sends Bob
1√
2
(|0〉 + ei�k |1〉). Second, Bob entangles the unmeasured
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neighborhood by applying entangling operator

E>
iNG (i) :=

∏
k∈NG (i),k>i

Eik, (2)

where NG (i) denotes neighborhood and Eik denotes the
CPHASE gate applied to qubits that correspond to nodes i and
k. For i ∈ VA, Alice tells Bob the measurement angle �i :=
	′

i + �i + πri; otherwise (i ∈ VO) Oscar tells Bob δi := φ′
i +

θi + πri, where 	′
i and φ′

i are the corrected measurement
angles according to the 1WQC scheme. Bob measures qubit
i accordingly, then informs his clients upon the measure-
ment outcome s̃i, where s̃i ∈ {0, 1}. Finally, Alice and Oscar
reveal the correct measurement outcome si = s̃i ⊕ ri. We pro-
vide an explicit form of this protocol in the Appendix in
Protocol 1.

Note that the hiding protocol of BOQC is adapted from
the Universal Blind Quantum Computation (UBQC) scheme
introduced in [7]. However, the UBQC has one client instead
of two. The BOQC promises the same security as UBQC with
minimal communication between clients, which is almost
none. Communications among players in the BOQC protocol
are illustrated in Fig. 1. The figure shows that Alice and Oscar
communicate only in the beginning, namely, via a secure key
channel.

C. The exact Grover-Høyer search algorithm

The optimality of the Grover algorithm is well known [34];
high success probability is achieved with the fewest itera-
tions. As the number of items in the database N increases,
the success probability approaches one, whereas for small N
the error is appreciable. For instance, success probabilities
(pN ) running three-qubit Grover are p5 = 0.968 with one
iteration, p6 = 0.907 with one iteration, p7 = 0.871 with two
iterations, and p8 = 0.945 with two iterations. Because of
this problem, many workers devised modifications or gen-
eralizations of the Grover algorithm to achieve probability
one. For instance, Chi and Kim [25] proposed a single query
search for cases when marking one-quarter of the database,
and Høyer [26] introduced arbitrary phase rotation in quan-
tum amplitude amplification; while Høyer’s phase matching
condition is approximate without manipulating the initial con-
dition, Long et al. [35] preceded an exact phase matching
condition, which then generalized in Ref. [36] where Høyer’s
condition can be acquired. Long also contributed an exact
quantum search algorithm in Ref. [27] for an arbitrary size
of databases and multiple marked items. Much later, Liu
[28] also proposed the generalization for an arbitrary size
and combination of databases. This section provides details
of the so-called Grover-Høyer algorithm, which combines
previous Grover and Høyer procedures to achieve probability
one, and later we develop an algorithm based on that, which
also features oracle separation, blindness, and measurement
freedom.

Suppose n qubits are used to represent all indices x =
{0, . . . , 2n−1}. One may arbitrarily choose N elements of x
that represent indices of a database w, thus w ⊂ x, where
|w| = N , and we will consider the case 2n−1 < N � 2n.
Without loss of generality, we start from a product of zero
states |0〉⊗n. We consider an operator A that maps a product

state into an equal superposition of N states, thus A|0〉⊗n =
(1/

√
N )/

∑
j∈w | j〉 =: |�in〉. Suppose we have marked items

in the database τ ⊂ w—we are interested in a special case
where |τ | = 1, thus τ ∈ w. Given an oracle that evaluates a
function f ( j) that indicates if j indexes a marked item of
database, f induces a partition in the Hilbert space into “so-
lutions” (τ ) and “nonsolutions” (w \ τ ) subspaces. Rewrite
the state |�in〉 = √

a|�̃1〉 + √
1 − a|�̃0〉, where a = 1/N and

|�̃1〉 and |�̃0〉 are the normalized states corresponding to
|�1〉 := ∑

j∈τ | j〉 and |�0〉 := ∑
j∈w\τ | j〉. Henceforth, we

will work in the Hilbert space defined as the subspace spanned
by basis {|�̃0〉, |�̃1〉}.

Using previously described variables, running Algorithm I
within database w will reveal the marked item τ with proba-
bility one. The main idea of the algorithm is to combine the
Grover algorithm with Høyer’s arbitrary phase rotation (also
known as Høyer amplitude amplification), which performs the
necessary rotation to bring the state vector exactly into the so-
lution space. The modified iteration introduces new operators
{O(ϕ + u), D(ψ )}, where

O(ϕ) = −I + (1 − eiϕ )|τ 〉〈τ |, (3)

D(ψ ) = −I + (1 − eiψ )|�in〉〈�in|. (4)

The algorithm comprises two stages: classical processing,
where a compatible set of operations for every required uni-
tary is obtained:

{A,O(π ),D(π ),O(ϕ + u),D(ψ )} =: B, (5)

and quantum processing, where the quantum computation
is performed on the quantum computer; every opera-
tor in B respectively corresponds to unitary matrices in
{A, O(π ), D(π ), O(ϕ + u), D(ψ )}. When we say that we have
a compatible set of operations A corresponding to the unitary
operator A (and similarly for all elements of B), we mean
that we specify an explicit implementation of A as a sequence
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of operations A that can be performed for some model of
quantum computation, e.g., in the form of quantum gates or
operations on a cluster state. For instance, our result in Fig. 3
works on a quantum computer which performs CNOT and
arbitrary one-qubit gates.

The Høyer amplitude amplification is described by an oper-
ator Q(ϕ,ψ ) = D(ψ )O(ϕ), which rotates a state closer to the
solution space by as much as θ , where | sin(θ )| � sin(2θ0),
θ0 = arcsin(1/

√
N ). Høyer found ϕ and ψ such that Q(ϕ,ψ )

performs the desired rotation:

ψ = arccos

(
1 − sin2(θ )

2a(1 − a)

)
,

ϕ =2 arctan[tan(ψ/2)(1 − 2a)],

u = arg((1 − eiψ )
√

a(1 − a))

− arg(−a(1 − eiψ ) − eiψ ). (6)

Using those angles, Q(ϕ,ψ ) rotates the state by angle θ up to
some phases ±u:

Q(ϕ,ψ ) =
(

1 0
0 eiu

)(
cos θ − sin θ

sin θ cos θ

)(
1 0
0 e−iu

)
. (7)

The unwanted phases ±u can be canceled by performing
the sequence P(−u)Q(ϕ,ψ )P(u), where P(α) = −I + (1 −
eiα )|τ 〉〈τ |. Since the form of operator P is identical to that of
O, O(ϕ)P(u) = O(ϕ + u) (see step 14 of Algorithm 1). When
Høyer amplitude amplification is applied in the last iteration
of the Grover algorithm, the state is entirely aligned to the
solution space after the application of P(−u)Q(ϕ,ψ ). Thus,
applying P(u) afterward will change only the global phase
of the state. This is the reason for omitting the last phase
correction in Algorithm 1. Note that Algorithm 1 is an explicit
implementation of the exact search algorithm mentioned by
Høyer in Ref. [26].

III. NUMERICAL SEARCH AND OPTIMIZATION

A. Exhaustive search for the most economical
exact Grover algorithm

The challenge in realizing the Grover-Høyer algorithm—
apart from running the quantum processing with arbitrarily
small error—is the optimization of the circuit preparation
indicated on line 9 of Algorithm 1, where the desired unitary
map must be written out as a set of quantum gates that can
be run in the quantum computer. We develop an approach
based on DiVincenzo and Smolin [37] (DS94) to overcome
this challenge; such a challenge will appear again later when
we need to obtain a graph state. This section mainly reviews
DS94.

DS94 is a systematic, exhaustive approach: given the de-
sired unitary map M, where M ∈ SU(8), a set of two-qubit
gates networks are optimized over, where every two-qubit
gate is in SU(4). We refer to “topology” of a two-qubit gate
network as a configuration of those two-qubit gates. As we are
concerned here with a three-qubit operations, as was also the
case in the study of DS94, the notations of DS94 are used:
qubits are indicated with numbers 1, 2, and 3; a two-qubit
gate is indicated with the number of the untouched qubit. A
topology is denoted by numbers within parentheses, where

each number represents the corresponding two-qubit gate. So,
for example, topology (321) indicates two-qubit gates applied
on qubits: {1, 2}, {1, 3}, and {2, 3}; note that the order of gates
here is relevant, since these gates do not commute.

To obtain an exhaustive set of topologies, all possible
topologies of two-qubit gate networks are enumerated, then
the equivalent ones are eliminated. Two different topologies
can be equivalent for the following reasons [37]: time-
reversal, which means placing the gates in time-reversed
order, e.g., (12123) = (32121); bit-relabeling, e.g., relabeling
qubit 1 and 2, thus (12123) = (21213); and conjugation by
swapping, which means swapping of the states of any pair of
bits, e.g., (12123) = (13123) = (12323) = (12313). For the
systems with an unused subspace in the Hilbert space—thus
for N < 8, where N is the dimension of the Hilbert space—
the reordering must preserve the state space. For instance,
database w = {0, 1, 2, 4, 7} is conserved with permutation of
every element in S3; this is easiest seen by writing this set
w in three-bit notation, w = {000, 001, 010, 100, 111}. On
the other hand, database w = {0, 1, 2, 3, 4} is conserved only
with one permutation of S3: (1 2 3

1 3 2).
The nonlinear minimization Broyden-Fletcher-Goldfarb-

Shanno (BFGS) [38] is used for the optimization in DS94 with
the objective function defined as f = ∑

i

∑
j |Mi j − Si j |2,

where M is the desired SU(8) unitary, and S is the matrix
resulting from composing the two-qubit gate network. The
minimization is over the parameters of the individual SU(4)
matrices describing the two-qubit gates. It is successful if
f = 0 to a reasonable accuracy; thus a two-qubit gate network
that implements M is found.

B. Circuits for Grover-Høyer algorithm

In this section, we present a strategy to obtain quantum
circuits that run the Grover-Høyer algorithm. We will specifi-
cally explore cases where the database is encoded within three
qubits, where N = 5, 6, 7, and 8. The strategy essentially is
seeking every circuit in B [Eq. (5)] using DS94 optimization.
The main challenges are the abundance of database choices
and two-qubit gate networks to be tried; note that ( 8

N ) database
choices are possible for each N . A strategy to group those
choices into a small number of equivalent sets will also be
presented here.

We seek quantum circuits using Algorithm 2—for N ∈
{5, 6, 7, 8}, for all unique database combinations w, and all
marked items τ ∈ w—by finding all operations in Bw,τ [see
Eq. (5)], that is, the required operators to run the Grover-
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Høyer algorithm for a database w and a marked item τ . Note
that this search of circuits is done separately—one may do
it for the whole Grover-Høyer algorithm and obtain smaller
circuits—in order to obtain a BOQC-compatible circuit.

We will see that many database choices are equivalent by
considering the role of the Grover oracle. For convenience,
rewrite a database set w = {d1, d2, . . . , dN } ≡ d1d2 . . . dN ,
where d j ∈ {0, 1, 2, 3, 4, 5, 6, 7}. One is given three bits |i jk〉
to encode w, where i, j, k ∈ {0, 1}, and a set of oracle oper-
ators where each of them “marks” one element by phase eiϕ .
Two sets of database w1,w2, where |w1| = |w2|, are equiva-
lent if a set of oracles that can mark for all τ1 ∈ w1 can also
mark for all τ2 ∈ w2 up to some global phases.

By this means, while considering their bit representations,
w1 is equivalent to w2 if they are identical up to permutation
and bit complementation. For instance, consider two equiv-
alent databases with their bit representations (in little-endian
format): 01234 = {000, 001, 010, 011, 100}, 10543 = {001,
000, 101, 100, 011}. One can be obtained from another by
complementing the third bit and permuting the first and the
second bits.

In the gate model, it means their oracles are equivalent up
to some operations:

(8)

where O01234 and O10543 represent the oracle opera-
tors for databases 01234 and 10543 respectively. With
these equivalences, all databases are covered by the set
D :={01234, 01247, 01256, 012345, 012347, 012567,
0123456, 01234567}. Set D is obtained by picking the small-
est partition of all possible five-database sets (see Table III
in the Appendix for the complete partitions of all possible 3-
qubit databases). Note that this strategy works for an arbitrary
number of bits, not only for three.

As one may freely define a set of quantum gates that
compose gate networks [for instance, DS94 considered the set
of all U(4) matrices], we compose the gate networks into the
operations {CNOT,U (α, β, γ )}α,β,γ∈[0,2π ), where U (α, β, γ )
is a unitary matrix drawn from a family of gates in SU(2) that
has the form

U (α, β, γ ) =
(

eiβ cos(α) eiγ sin(α)
−e−iγ sin(α) e−iβ cos(α)

)
, (9)

where α, β, γ ∈ [0, 2π ) are free parameters; these will be the
optimization parameters below. We define l to be the number
of CNOTs in our three-qubit network. For l = 0, the network
is simply three one-qubit gates; for every additional CNOT
gate, two one-qubit gates are added after. Thus, 6l + 9 free
parameters will be available for the optimization for a network
with size l . All networks for l = 0 and l = 1 are shown in
Fig. 2.

Again, not all networks are distinct; we obtain a minimal
set of representative networks by enumerating all possible net-
work topologies, followed by two eliminations: we eliminate
ones that have more than three consecutive CNOT gates, and
we eliminate the ones that are topologically equivalent [37]
(also discussed in Sec. III A). The first elimination is based

U1

U2

U3

(a)

U1

U2 • U4

U3 U5

U1 • U4

U2

U3 U5

U1 • U4

U2 U5

U3

(b)

FIG. 2. Two-qubit gate networks for l = 0 and l = 1. (a) Net-
work size l = 0 has topology (0). (b) Network size l = 1 has
topologies (1), (2), and (3), shown from the left to the right, re-
spectively. Operators Uj ≡ Uj (α j, β j, γ j ) are one-qubit gates as in
Eq. (9).

on the fact that an arbitrary SU(8) can be constructed using
three CNOT gates and eight one-qubit gates [39]. Thus, for
example, topology (133331) is eliminated since (133331) =
(13331).

We use DS94 optimization within Algorithm 2 to find the
gate networks. A BFGS solver of the Python SciPy library
[40] is employed in our program. To speed up optimizations,
we define more relaxed objective functions than DS94:

fb =
∑

i, j∈w,Mi j �=0

|Mi j − Si j |2,

fp =
∑

i∈w,Mi0 �=0

|Mi0 − Si0|2, (10)

where M is the desired unitary matrix and S is the resulting
matrix from the tested network (G); fp is used if M = A;
that is, the preparation block in Bw,τ , and fb is used for other
blocks in Bw,τ \ {A}. While the Ms are assumed to be unitary
matrices here, it is sufficient to consider only the nonzero
elements within the subspace that is induced by w. Note that
fp is appropriate for M = A because we start from the all-zero
state |0〉⊗n.

Success in optimization is defined as fp � ε or fb � ε,
where ε is a chosen error bound. We define ε such that the suc-
cess probability is approximately one: given δ, there exists an
ε such that ps � 1 − δ, where ps is the success probability of
running Algorithm 1 while replacing block M with the tested
network G. For the nonoracle cases, M �= O, we take the worst
ps among all obtained ps from different marked items.

Table I shows the size of the network for every operator
in Bw,τ , for all unique database sets w ∈ D, and for all valid
marked items where δ = 10−4. We obtain εp � 4.8×10−11 for
preparation blocks and εb � 2.5×10−8 for other blocks. The
complete tables that show values of success probabilities ps

are shown in the Appendix, Table IV. While this does not
complete our analysis of the three-qubit Grover algorithms,
these preliminary calculations indicate that the most efficient
network will be achieved for N = 6 and w = 012345 (and not
the smaller N = 5).

At this point, we complete the classical processing stage
of Table I. Since the blocks are prepared independently, this
result can be adapted to develop the full BOQC scheme.
However, for N < 8, the straightforward implementation of
the oracles would require different network sizes for different
marked items τ . This would allow Bob to learn about Al-
ice’s request to Oscar. In the next section, we complete our
exact quantum search algorithm, taking care that networks of
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TABLE I. The number of CNOT gates for all distinct combinations of (w, τ, M ) for all w ∈ D, τ ∈ w, M ∈ {A, Ow (π ), D(π ), Ow (φ +
u), D(ψ )}, and N ∈ {5, 6, 7, 8}. The angles ϕ, ψ , and u refer to the Høyer exact-Grover technique; see Algorithm 1. The boldface indicates
the least number of CNOT gates among the combinations, where the oracles with the largest number of CNOT gates are taken into account.

w A O(π ) D(π ) O(ϕ + u) D(ψ )

[N = 5, ϕ + u = 0.1707, ψ = 0.4510]
01234 0 1 2 3 4 0 1 2 3 4
CNOT 2 1 1 1 1 0 7 2 2 2 2 0 8
01247 0 1 2 4 7 0 1 2 4 7
CNOT 2 0 1 1 1 1 7 0 2 2 2 2 8
01256 0 1 2 5 6 0 1 2 5 6
CNOT 3 0 1 1 1 1 8 0 2 2 2 2 9

[N = 6, ϕ + u = 1.861, ψ = 0.841]
012345 0 1 2 3 4 5 0 1 2 3 4 5
CNOT 1 2 2 1 1 1 1 4 4 4 2 2 2 2 6
012347 0 1 2 3 4 7 0 1 2 3 4 7
CNOT 2 2 1 1 2 1 1 6 4 2 2 4 2 2 7
012567 0 1 2 5 6 7 0 1 2 5 6 7
CNOT 3 1 1 1 2 1 1 8 2 2 2 2 2 2 8

[N = 7, ϕ + u = 2.0277, ψ = 1.2056]
0123456 0 1 2 3 4 5 6 0 1 2 3 4 5 6
CNOT 3 3 2 2 1 2 1 1 8 4 4 6 2 4 2 2 9

[N = 8, ϕ + u = 2.2143, ψ = 1.5708]
01234567 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
CNOT 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

identical structure are created for each value of τ , ensuring the
blindness of the protocol.

C. The exact quantum search algorithm with blind oracles

Here we introduce an algorithm called the blind exact
quantum search algorithm (BEQS), given in Algorithm 3,
which is an improvement of the Grover-Høyer algorithm: it is
compatible with the BOQC scheme, and it involves a general
scheme for storing information in the database. Achieving
the first means obtaining identical oracles for all marked
items, whose measurement angles are adjusted accordingly.
The latter means permitting several marked items τ to stand
for a single database entry; we do this by making the fi-
nal measurement of the Grover algorithm an incomplete or
POVM measurement. For instance, consider two-bit Grover
algorithm with database w = 0123, N = 4, and database en-
tries {A,B} (Ñ = 2). Note that here we distinguish between
the database size (N) and the number of database entries (Ñ).
Alice and Oscar agree ahead of time that either outcome 0
or 1 corresponds to entry A, and outcome 2 or 3 corresponds
to entry B; this is attainable by defining measurement oper-
ators {|0〉〈0| + |1〉〈1|, |2〉〈2| + |3〉〈3|}. We will refer to such
a scheme as a “POVM measurement strategy.” Physically, it
is possible to still do the full projective measurement, then
classically associate the measurement outcomes with database
entries.

While it is hard analytically to obtain an identical form—
in our case using gate networks—of oracles for all marked
items, the BEQS provides a numerical method to obtain all
those oracles using a single numerical procedure. The key lies
in the objective function OBJPOVM in Subroutine 1, which

includes two constraints: (C1) the success probability must
be one, and (C2) the resulting operator must preserve the
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state space. Recall that database choice w induces the state
space.

The first constraint, C1, implemented at line 9 of Subrou-
tine 1, imposes a successful computation within the defined
POVM measurement for all permitted marked items—notice
that the loop goes for all τ ∈ w. Constraint C2, implemented
at line 9 of Subroutine 1, ensures a block diagonal matrix,
which is critical when there is a free subspace in the full
2n-dimensional Hilbert space for an n-qubit system. This con-
straint is imposed by requiring that the sum of the absolute
values of the elements outside diagonal block be zero:

fobd =
∑

i∈x, j∈x\w,i �= j

|Si j |2 +
∑

i∈x\w, j∈w

|Si j |2, (11)

where w is the database index, x are all possible indices that
can be accommodated, and S is the matrix from evaluating
a network Gj (�ϕτ ). All constraints are quantified within the

objective value ov. It is worth mentioning that the obtained
operator Õ forms a block diagonal matrix that necessarily
resembles neither the Grover nor the Høyer oracles.

Unfortunately, OBJPOVM requires more resources than
fp and fb [Eq. (10)]; therefore for reasons of economy, we
set a fixed oracle in every query, which results in fewer
optimization parameters. One possible improvement is re-
stricting the legitimate marked items q ⊂ w to cut the loop
at line 2 of Subroutine 1. Returning to the previous example
where w = 0123, MPOVM = {|0〉〈0| + |1〉〈1|, |2〉〈2| + |3〉〈3|},
and the database entries are {A,B}, we simply set q = {0, 2}.
Whereas previously Oscar would randomly mark item 0 or
1 to reveal A and would randomly mark 2 or 3 to reveal B,
now Oscar marks only 0 to reveal A and marks 2 to reveal B.
This amount of speedup resulting from this strategy depends
on how small q compared to w.

We test the BEQS for three-qubit cases, obtaining quantum
algorithms within the gate model and the 1WQC model (this
takes care of the BOQC model also), where w = 012345 and
MPOVM = {|0〉〈0| + |1〉〈1|, |2〉〈2|, |3〉〈3|, |4〉〈4|, |5〉〈5|}, thus
N = 6 and Ñ = 5. We choose this configuration based on
its potential to result in the smallest gate network based on
the study of Table I. We obtain Fig. 3 for the gate model,
that is, a circuit comprising {CNOT,U (α, β, γ )}α,β,γ∈[0,2π ),
where U (α, β, γ ) has a form of Eq. (9). Our result in Fig. 3
might appear to be overparameterized for an operation SU(8);
however, one must consider the unitary as an individual in
{A, Õ, D(π ), Õ, D(ψ )}, because of the blindness requirement
in preparing a BOQC-compatible graph.

To enable direct conversion of quantum gates into a
graph state, we perform another optimization that de-
composes the result in Fig. 3 into another set of
gates, namely, {CPHASE, H, Rz(α)}α∈[0,2π ), where Rz(α) =

U1 • U4 U8 • U11 • U13 U15 • U18 • U20 • U24 U8 • U11 • U13 U26 • U31 • U33 • U37 • U39

U2 U5 U6 • U9 U12 U14 U16 U19 • U22 U25 U6 • U9 U12 U14 U27 • U29 U32 • U35 U38

U3 U7 U10 U17 U21 U23 U7 U10 U28 U30 U34 U36 U40

A Õ D(π) Õ D(ψ)

Gate α β γ
U1 2.1863 3.4700 3.4700
U2 2.5159 3.3937 2.1618
U3 5.4978 4.7124 1.5708
U4 1.5708 1.8160 5.0408
U5 5.6584 2.8913 5.3000
U15 0.3929 1.9270 1.9237
U16 0.7011 2.8271 1.0836

U17 4.7124 2.7614 1.5708
U18 5.0204 1.3905 5.2465
U19 0.8541 2.7177 2.1142
U20 2.8341 0.3039 3.7996
U21 1.5708 4.2914 1.5708
U22 5.5189 5.6770 4.3625

U23 0.0000 3.1416 4.0531
U24 1.9641 2.6566 0.4818
U25 3.9010 1.9380 5.8626
U26 4.3149 5.8000 2.8293
U27 4.1749 1.0410 4.8345
U28 3.3519 4.7124 0.0000

U29 5.3865 0.4235 2.8814
U30 2.5762 0.2296 4.8464
U31 2.3073 5.0124 4.7439
U32 1.5708 3.3484 3.1416
U33 1.9640 4.5092 3.5709
U34 0.9027 4.5151 4.5872

U35 2.2493 2.3631 0.7364
U36 3.1416 3.1416 5.0640
U37 5.5892 4.5517 5.0515
U38 1.0992 1.0522 2.5764
U39 4.2518 5.6790 6.1262
U40 1.4576 1.4573 4.4534

τ = 0
U6 0.0000 5.2267 2.4690
U7 0.0000 4.7124 2.3946
U8 0.8805 5.0403 1.9146
U9 2.9266 0.4472 2.0889
U10 4.7124 4.6003 1.5708
U11 5.2427 0.2804 1.5793
U12 4.9284 3.4651 4.2091
U13 2.5244 4.1733 4.6219
U14 3.8309 4.1770 2.3886

τ = 1
U6 0.0000 2.2951 1.0317
U7 4.7124 4.5527 3.1416
U8 3.1416 4.4256 3.1266
U9 1.5234 1.1716 0.8384
U10 3.1416 4.7124 3.7358
U11 0.0000 4.0069 2.5518
U12 2.7625 2.4785 4.1532
U13 0.0000 5.0886 2.9811
U14 5.1326 4.2242 0.7998

τ = 2
U6 1.5708 5.5013 2.2216
U7 0.1287 3.2740 5.7062
U8 4.1648 3.5317 5.6437
U9 2.7877 5.7409 5.7010
U10 6.1545 2.4033 5.1003
U11 1.9797 5.6191 1.5769
U12 4.9201 2.2995 2.3634
U13 5.7356 4.4452 2.8675
U14 1.7632 0.0188 3.8868

τ = 3
U6 1.5708 0.7393 1.9242
U7 5.3911 3.3728 2.8631
U8 2.4257 0.0141 1.7221
U9 0.3262 3.4474 4.6704
U10 5.3911 1.5255 4.6197
U11 5.6475 2.6774 1.5045
U12 4.1456 4.2234 4.1602
U13 0.6915 1.0830 2.5152
U14 6.2190 0.9305 3.3521

τ = 4
U6 0.0000 1.8189 4.4016
U7 1.7606 5.7840 5.8093
U8 2.3289 0.1070 3.0468
U9 2.9211 1.0980 3.6533
U10 6.0934 5.6116 3.4430
U11 1.9619 1.6645 2.0202
U12 3.6540 3.1061 0.6672
U13 5.5116 5.2363 5.8918
U14 4.7451 4.3359 0.4896

τ = 5
U6 0.0000 2.7690 1.7284
U7 5.2442 3.6695 5.6213
U8 3.8175 6.0993 4.1414
U9 0.3776 5.1356 5.8965
U10 3.6734 2.9525 6.2280
U11 2.6959 3.5218 0.4414
U12 1.2797 5.6970 2.5852
U13 5.5732 0.2160 0.9320
U14 1.6530 0.2316 0.0389

FIG. 3. A three-qubit BEQS (see Algorithm 3) within the gate model for w = 012345 and MPOVM = {|0〉〈0| + |1〉〈1|, |2〉〈2|, |3〉〈3|,
|4〉〈4|, |5〉〈5|}. Outcomes 0 and 1 refer to the same data, thus N = 6 and Ñ = 5. The circuit is composed of {CNOT,U (α, β, γ )}α,β,γ∈[0,2π ),
where U (α, β, γ ) is a SU(2) matrix and has the form of Eq. (9). The gray blocks indicate blind oracles; their parameters (see tables below) are
different for each marked item τ . The circuit has success probabilities ps � 1 − 10−4 for all marked items τ ∈ w.
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2
1

1
1

3
2

4
3

5
3

7
4

8
4
11

5

6
3

13
6

9
4

10
5

20
10

12
6

23
11

15
7

14
7

16
8

17
8

18
9

19
9

27
12

22
10

21
10

25
11

24
11

26
12

28
12

31
13

29
13

30
13

32
14

34
14

33
14

35
15

36
15

38
16

37
16

39
16

41
17

42
17

43
18

45
18

47
19

40
17

49
20

44
18

46
19

55
24

48
20

57
25

50
21

51
21

52
22

53
22

59
25

54
23

60
26

61
26

56
24

63
27

58
25

66
28

62
26

69
29

64
27

65
27

67
28

70
30

68
29

73
31

71
30

74
32

72
31

76
33

78
34

75
32

81
35

77
33

79
34

83
36

80
35

84
37

82
36

86
38

85
37

89
39

94
40

87
38

88
38

91
39

90
39

93
40

92
40

Alice
A

Oscar
O

Alice
D(π)

Oscar
O

Alice
D(ψ)

parameter angles
φ1 213π/512
φ2 97π/128
φ3 471π/256
φ4 719π/512
φ5 155π/128
φ7 915π/512
φ8 299π/512
φ26 3π/2

φ28 π/2
φ29 π/4
φ30 π/2
φ31 3π/4
φ32 39π/128
φ33 π/2
φ34 39π/128
φ35 π
φ36 π
φ37 217π/128

φ38 π/2
φ39 89π/128
φ41 7π/4
φ42 7π/4
φ43 3π/2
φ45 3π/2
φ62 129π/256
φ64 π/4
φ65 0
φ66 535π/512

φ67 767π/512
φ68 991π/512
φ69 281π/512
φ70 613π/512
φ71 387π/512
φ72 467π/512
φ73 π
φ74 255π/512
φ75 125π/256
φ76 1001π/512

φ77 π
φ78 π/256
φ79 π
φ80 535π/512
φ81 45π/512
φ82 3π/2
φ83 495π/512
φ84 π
φ85 479π/512
φ86 497π/256

φ87 641π/512
φ88 313π/256
φ89 643π/512
φ90 π
φ91 π/2
φ92 53π/128
φ93 257π/256
φ94 53π/128

τ = 0
φ11/47 249π/512
φ6/40 275π/256
φ13/49 33π/64
φ9/44 217π/128
φ10/46 115π/128
φ20/55 963π/512
φ12/48 971π/512
φ23/57 617π/512
φ15/50 973π/512
φ14/51 701π/512
φ16/52 399π/256
φ17/53 79π/64
φ18/59 359π/256
φ19/54 1007π/512
φ27/60 719π/512
φ22/61 211π/128
φ21/56 319π/256
φ25/63 125π/256
φ24/58 121π/256

τ = 1
φ11/47 71π/128
φ6/40 3π/2
φ13/49 51π/32
φ9/44 π/2
φ10/46 755π/512
φ20/55 759π/512
φ12/48 863π/512
φ23/57 π
φ15/50 751π/512
φ14/51 491π/512
φ16/52 777π/512
φ17/53 581π/512
φ18/59 87π/128
φ19/54 205π/256
φ27/60 1015π/512
φ22/61 505π/512
φ21/56 177π/512
φ25/63 777π/512
φ24/58 317π/256

τ = 2
φ11/47 527π/512
φ6/40 133π/256
φ13/49 769π/512
φ9/44 21π/32
φ10/46 235π/512
φ20/55 931π/512
φ12/48 769π/512
φ23/57 151π/128
φ15/50 887π/512
φ14/51 π/16
φ16/52 51π/128
φ17/53 89π/128
φ18/59 859π/512
φ19/54 455π/256
φ27/60 175π/512
φ22/61 31π/256
φ21/56 511π/256
φ25/63 513π/512
φ24/58 257π/512

τ = 3
φ11/47 69π/128
φ6/40 461π/512
φ13/49 641π/512
φ9/44 π/64
φ10/46 253π/256
φ20/55 391π/256
φ12/48 279π/256
φ23/57 257π/512
φ15/50 7π/256
φ14/51 1013π/512
φ16/52 387π/256
φ17/53 959π/512
φ18/59 249π/256
φ19/54 795π/512
φ27/60 31π/64
φ22/61 641π/512
φ21/56 267π/512
φ25/63 59π/128
φ24/58 181π/128

τ = 4
φ11/47 461π/512
φ6/40 31π/16
φ13/49 391π/256
φ9/44 333π/512
φ10/46 97π/64
φ20/55 397π/512
φ12/48 347π/256
φ23/57 927π/512
φ15/50 487π/512
φ14/51 479π/512
φ16/52 23π/64
φ17/53 107π/64
φ18/59 401π/256
φ19/54 51π/32
φ27/60 89π/128
φ22/61 47π/32
φ21/56 113π/64
φ25/63 453π/512
φ24/58 439π/512

τ = 5
φ11/47 79π/128
φ6/40 941π/512
φ13/49 257π/512
φ9/44 419π/256
φ10/46 113π/64
φ20/55 231π/256
φ12/48 3π/2
φ23/57 439π/512
φ15/50 73π/64
φ14/51 673π/512
φ16/52 297π/256
φ17/53 667π/512
φ18/59 97π/256
φ19/54 419π/512
φ27/60 211π/512
φ22/61 897π/512
φ21/56 87π/512
φ25/63 513π/512
φ24/58 0

FIG. 4. The three-qubit BEQS (see Algorithm 3) for w = 012345 and MPOVM = {|0〉〈0| + |1〉〈1|, |2〉〈2|, |3〉〈3|, |4〉〈4|, |5〉〈5|}; thus, N = 6
and Ñ = 5. Gray nodes indicate blind oracles controlled by Oscar; white nodes indicate Alice’s computation. Here the input nodes are Alice’s
first layer (I = {1, 2}) with input zeros, and the output nodes are Alice’s last layer (O = {92, 93, 94}). The measurement angles, which are
specified to 10 bits, for each node are shown in the table; the measurement order is indicated with the node numbers. This computation has
success probabilities ps � 1 − 10−4 for all queries τ ∈ w.

|0〉〈0| + eiα|1〉〈1|. Then we transform the result into a graph
state in Fig. 4, which is runnable within the BOQC model,
whose measurement angles, along with the α parameters,
are the optimization parameters. Our transformation follows
Ref. [33]; a few examples of such a transformation are
shown in Fig. 5. In our optimization, we set δ = 10−4 for
both decompositions, resulting in precisions ε < 2.1×10−9

α β γ
= Rz(α) Rx(β) Rz(γ) H

α

β

=
Rz(α)

Rz(β)

H

H

=
Rz(α)

Rz(β)

Rz(γ)

Rz(δ)

H

H

H

H

α

β

γ

δ

FIG. 5. Equivalent comparison between the gate model and
1WQC computations. The angles below nodes denote measure-
ment angles; measurements are performed from left to right. The
right-hand side of each graph denotes the equivalent gate model
computation, assuming all measurement outcomes zero.

for the gate model and ε < 1.2×10−10 for the BOQC
model.

We have demonstrated that BEQS obtains exact quantum
search algorithms with blind oracles for two computation
models. Moreover, BEQS has reduced the size of computation
for a five-entry database (Ñ = 5) from using 19 CNOT gates
(see Table I) to 17 CNOT gates (see Fig. 3). Our work estab-
lishes the unfortunate fact that the implementation complexity
grows very rapidly for the Grover algorithm in the BOQC
model. As a comparison, we obtain a cluster state for the
two-qubit Grover algorithm in Fig. 6, where Ñ = 4 and w =
0123. Going from a four-element database to a five-element

2 1

1 1

3 2

4 2

6 3

5 3 8 4

7 4

O D(π)

parameter angle

φ1 0
φ2 0
φ5 0
φ6 0
φ8 π
φ7 π

τ = 0
φ3 π
φ4 π

τ = 1
φ3 π
φ4 0

τ = 2
φ3 0
φ4 π

τ = 3
φ3 0
φ4 0

FIG. 6. The two-qubit Grover algorithm within the BOQC
scheme, with N = Ñ = 4, w = 0123, and MPOVM = {|0〉〈0|, |1〉〈1|,
|2〉〈2|, |3〉〈3|}; for notations, follow Fig. 4. Here the input nodes
are I = {1, 2} with implicit input zeros, and the output nodes are
O = {7, 8}.
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FIG. 7. Optimized BOQC protocol using three NV-center nodes; implementations of three-qubit BEQS (the 94-node graph) and two-qubit
BEQS (the 8-node graph) are presented. Within the diamonds, the black node represents an electron spin and other colors represent nuclear
spins; the node in the graph state will be assigned to the nuclear spin that has the same color. Bob uses his electron spin for multiple purposes:
(1) as an interface to create a quantum channel with the clients, (2) as a medium to perform CPHASE gates between nuclear spins, and (3) as
an ancilla to measure his nuclear spins. Alice and Oscar alternately control the computation, which comprises n rounds of steps 1–4 with the
ordering shown as node numbers, where n is the number of nodes in the graph. The following sequence describes a round of Alice’s moves.
1 RSP: Alice and Bob perform a heralded entanglement [44,45] to share a singlet state |�−〉 = 1√

2
(|01〉 − |10〉) between their two electron

spins. Alice has in mind that she wishes to deliver state |+� j 〉 to Bob. She accomplishes this by measuring her electron spin (i.e., her half
of the singlet state) in � j ; depending on her measurement outcome s j , Bob receives 1√

2
(|0〉 + ei(� j+s jπ )|1〉), where he knows neither � j nor

s j . 2 Bob swaps the electron spin with the nuclear spin according to the color. Bob buffers all the required qubits by repeating steps 1–2,
which can also be from Oscar. 3 Bob applies CPHASE gates—connecting the nodes in the graph—according to the subgraph; he connects
only the nearest neighbor of the node that he is going to measure. 4 Bob measures qubit j in � j—as instructed by Alice—and then announces
measurement outcome bj using a public broadcast channel. The angle � j is computed by Alice taking account all the corrections. The same
procedure applies to Oscar for his computations. This process is repeated until all nodes are measured. It is worth mentioning that the gray
numbers represent a partial ordering induced by flow, which was computed using an algorithm of Ref. [46]. Indeed, the total ordering may be
selected arbitrarily as long as the partial ordering is respected.

database for an exact quantum search algorithm within the
BOQC scheme, means going from an eight-node to a 94-node
cluster state.

IV. NV CENTER IMPLEMENTATION

Here we introduce our proposal to implement a BOQC
computation using NV centers. We propose a direct realiza-
tion of the results shown above: a physical implementation
of three-qubit BEQS (Fig. 4) and of the two-qubit Grover
algorithm (Fig. 6). The main challenges for physical imple-
mentation are the sizable physical resources—we need 94
qubits to run three-qubit BEQS—and the high-fidelity trans-
mission of encrypted qubits from Alice or Oscar to Bob. We
think that these challenges can be at least largely overcome:
To deal with the large size, we note the possibility of “reusing”
the qubits [11,41] (see Sec. II B for the implementation). To
accomplish reliable transmission, we propose using remote
state preparation (RSP) [42] as a quantum channel. The reuse
strategy drastically decreases the number of qubits: from 94
to four qubits for three-qubit BEQS and from eight to three
qubits for two-qubit Grover. Moreover, RSP is understood to
be very efficient for the family of states to be transmitted [43];
for RSP in our setting no additional classical communication
at all is needed, automatically maintaining the blindness of the
scheme.

For the BOQC implementations that we propose, the
total graphs together with measurement angles are shown
in Fig. 4 for three-qubit BEQS and Fig. 6 for the two-
qubit Grover algorithm. Given that Alice and Oscar have
successfully shared the key �r, and all parties agreed upon a

total ordering and graphs, they thus run the protocol shown
in Fig. 7. In this implementation, the BOQC protocol (see
Fig. 1) is optimized to perform the computations per partition.
Moreover, every partition is divided into smaller subgraphs
with size four (three for two-qubit Grover). This strategy
assumes that measured qubits can be reset and reused. For
clarity, we tabulate in Table II the processing at each step in
the BOQC (subgraphs, transmitted qubits, entanglement, and
measurement angles) of the two-qubit Grover algorithm using
the notation used in Sec. II B. Processing a computation of a
subgraph is described as steps 1–4 in Fig. 7. Compared to the
UBQC scheme, an additional set of corrections �s appears as a
result from the RSP.

Based on state-of-the-art technologies [23,47,48], we es-
timate the total computation time for three-qubit BEQS to
be 3 s, where the time for each step is t1 ≈ 25 ms, t2 ≈
1.5 μs, t3 ≈ 3.5 ms, t4 ≈ 0.5 ms; assuming every two-bit op-
eration requires 0.5 ms, and all the operations on the nuclear
spins are performed by coupling the electron spin. For in-
stance, given nuclear spins {n1, n2} and electron spin e,
one applies the CPHASE gate between n1 and n2 as fol-
lows: SWAP(n1, e)-CPHASE(e, n2)-SWAP(n1, e), where each
SWAP gate is implemented with three CNOT gates. For the
two-qubit Grover algorithm, the total run time is estimated to
be 244 ms.

Processing one subgraph, that is, executing steps 1–4, re-
quires one or two heralded entanglements and one or two
CPHASE operations, which, on average, is completed within
31 ms for both computations. After measuring a qubit, some
qubits are idle until being measured. For the three-qubit
BEQS, the idling qubits need to maintain their coherence for
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TABLE II. The steps on running two-qubit Grover for τ = 0; that
is, in this example, Alice will find database value 0 (see Fig. 6) within
the BOQC scheme. On each step i , Alice or Bob transmits fresh
qubits A(i) [Eq. (1)], then Bob creates the corresponding subgraph by
applying entangling operator E>

iNG (i) [Eq. (2)]. Finally, Alice or Oscar
computes the corrected measurement angle φ′

i from φi depending on
some measurement outcomes (before Alice or Oscar encrypts φ′

i and
sends it to Bob).

around 121 ms, while around one RSP and other operations
are performed on the electron spin. The worst idle case hap-
pens at node 20 and 55, with idle time 377 ms while 10 RSPs
are performed on the electron spin. For the two-qubit Grover,
the idle average is 91 ms, while around one RSP and other
operations are performed on the electron spin; the worst idle
happens at node 4, which is 178 ms, while four RSPs are
performed on the electron spin. We observe that the ordering
we have shown here is not the optimum strategy from the
point of view of the idling. It would be possible to insert some
redundant nodes to reduce the idle time.

Nuclear spins on NV centers have been reported to possess
coherence time of more than 1 s, even at room temperature
[49,50]. Moreover, high-fidelity one- and two-bit gates op-
eration on the nuclear spins have been demonstrated [51].
While the coherence time seems sufficient, the activities on
the electron spins can decohere the idle nuclear spins, espe-
cially during the heralded entanglement attempts. Moreover,
our time estimation uses the best rate known of heralded
entanglement, with the nodes separated by 2 m [23]. However,
the obtained heralded-entanglement fidelity is still low, hence
a distillation scheme would be needed. We conclude that the
current technology is still not yet ready to implement the
algorithms in Fig. 7, but foreseeable improvements would
make it possible.

V. CONCLUSION

We sought three-qubit and two-qubit exact quantum search
algorithms within the blind oracular quantum computation
scheme. Increasing the four-element database (two-qubit)
into a five-element database (three-qubit) grows physical
qubit requirements: from eight qubits to 94 qubits. Given
that the qubits possess permanence and can be rapidly
reinitialized—like NV-center qubits, the physical qubits re-
quirement reduced to four qubits for three-qubit exact Grover
and three qubits for two-qubit exact Grover. Finally, we pro-
vided an explicit implementation of the algorithms and the
BOQC scheme on an NV-center platform. We estimate the co-
herence time required on the qubits to run such computations.
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APPENDIX

1. An explicit BOQC protocol

The following protocol shows a BOQC protocol with
classical inputs and classical outputs, where Bob’s quantum
computer is a solid state system whose qubits possess perma-
nence and can be rapidly reinitialized. In Ref. [11], such a
protocol is called BOQCo (BOQC-optimized) with classical
inputs and outputs. Moreover, here we set inputs to be zeros.

2. The arbitrary step of search iteration

This section supplements Sec. II C, namely, finding the
angles ψ, ϕ of the Høyer amplitude amplification within
the operator Q(ψ, ϕ) [26]. Whereas in the Grover algorithm
one iteration is restricted to the rotation by 2θ0, the Høyer
amplitude amplification allows a rotation within the range
[−2θ0, 2θ0], where θ0 is the initial angle.

Suppose that we employ n qubits and start with an equal
superposition of N basis states |�init〉 where 2n−1 � N � 2n.
Let x be the indices that can be realized by n qubits, x =
{0, . . . , 2n − 1} and W be a set of all possible subsets of the N-
element database, D = {w ⊆ x : ‖w‖ = N}, and let w ∈ W ,
then

|�init〉 = 1√
N

∑
j∈w

| j〉. (A1)

Assume that we have an oracle that implements some func-
tion f that can distinguish weather a state is the target. Let y
be the set of targets, the action of f be

f ( j) =
{

1, if j ∈ y
0, if j ∈ x \ y.

(A2)
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Protocol 1. [11]BOQC-optimized with classical input-output

Alice’s input: {(G, I, O), f, Φ} in
A = n

i=1 |0 0|
Oscar’s input: {φ}
Alice’s output for an honest Bob: ρout

A = E(ρin
A ) out

A is a diagonal matrix
Assumptions and conventions:
(I) Alice (A) and Oscar (O) have performed pre-protocol steps; Bob knows {(G, VA, VO, , >, b}. Recall Ω = { πk

2b−1 }0≤k<2b .

(II) invf(i) ≡ f−1(i), sinvf(i) = 0, ∀i ∈ I, and z(i) := k≺i,i∈NG(f(k)) sk.

0 Pre-preparation
1: Alice and Oscar receive a key r via a secure key channel, where ri ∈ {0, 1}, for i ∈ Oc.

1 BOQC by parts
2: for i ∈ V with ordering > do
3: for k ∈ A(i) do see Equation (1)
4: if k ∈ VA then
5: Alice prepares |+Θk k and sends it to Bob, Θk ∈ Ω is chosen at random.
6: else if k ∈ VO then
7: Oscar prepares |+θk k and send it to Bob, θk ∈ Ω is chosen at random.
8: end if
9: end for

10: Bob applies entangling operation E>
iNG(i). See Equation (2)

11: if i ∈ VA then
12: Alice computes Φi = (−1)sinvf(i)Φi + z(i)π.
13: Alice computes Δi := Φi + πri + Θi and sends Bob Δi.
14: Bob measures i in |±Δi basis.
15: else if i ∈ VO then
16: Oscar computes ψi = (−1)sinvf(i)φi + z(i)π.
17: Oscar computes δi := φi + πri + θi and sends Bob δi.
18: Bob measures i in |±δi basis.
19: end if
20: Bob sends Alice and Oscar the measurement outcome s̃i.
21: Alice and Oscar set si = s̃i ⊕ ri.
22: end for

The function f induces a subspace spanned by “good
state” |�1〉 = 1√

N

∑
{ j: f ( j)=1} | j〉 and “bad state” |�0〉 =

1√
N

∑
{ j: f ( j)=0} | j〉. Thus, the initial state can be rewritten as

|�init〉 = |�1〉 + |�0〉. Let us search for M targets. In the
normalized basis of good and bad states, we rewrite again the
initial state

|�init〉 = √
a|�̃1〉 + √

1 − a|�̃0〉, (A3)

where |�̃1〉 = 1√
M

|�1〉, |�̃0〉 = 1√
N−M

|�0〉, and a = M
N ≡

sin2(θ0).
Let Q(ϕ,ψ ) be the operator that performs search iteration

with parameters ϕ,ψ ∈ [0, 2π )

Q(ϕ,ψ ) ≡ −AS0(ψ )ASy(ϕ), (A4)

where A is the preparation operator that transforms state |0〉⊗n

into the equal superposition state A|0〉⊗n = |�init〉. In the
Grover algorithm of database size 2n, A basically consists
of Hadamards. Note that we can prepare |�init〉 from any
convenient starting state. For simplicity, we start with zero
state |0〉⊗n.

Essentially, Q(ϕ,ψ ) consists of one oracle call Sy(ϕ) and
a diffusion operator D(ψ ) ≡ AS0(ψ )A. The oracle call Sy(ϕ)
“marks” the targets y by eiϕ , and it can be defined as

Sy(ϕ) := I − (1 − eiϕ )|�̃1〉〈�̃1|. (A5)

The operator S0(ψ ) marks the state before preparation (in our
case was |0〉⊗n) with phase eiψ . Thus, the diffusion operator

follows

D(ψ ) = A[I − (1 − eiψ )(|0〉〈0|)⊗n]A

= I − (1 − eiψ )|�init〉〈�init|. (A6)

By using basis {|�̃0〉, |�̃1〉}, we can represent Q in matrix
form

Q(ϕ,ψ ) =
[ −a(1 − eiψ ) − eiψ (1 − eiψ )eiϕ√

a(1 − a)

(1 − eiψ )
√

a(1 − a) a(1 − eiψ )eiϕ − eiϕ

]
.

(A7)

Now, the question is: How can one implement an arbitrary
rotation θ from |�init〉 by applying Q(ϕ,ψ )? We need to find
what ϕ and ψ are, given θ . By imposing some conditions on
ϕ and ψ , we can find them by using some tricks.

Note that we are working only with two-dimensional
Hilbert space spanned by the complex vectors {|�̃0〉, |�̃1〉}.
Therefore, we may associate Q with some general form of
two-dimensional unitary operator.

Given an arbitrary unitary operator U with four parameters
δ, ϕ1, ϕ2, θ ∈ [0, 2π ),

U = ei δ
2

(
eiϕ1 cos(θ ) eiϕ2 sin(θ )

−e−iϕ2 sin(θ ) e−iϕ1 cos(θ )

)
. (A8)
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Let us transform the parameters into the following. Let ϕ1 =
μ + ν and ϕ2 = μ − ν + π , thus

U = ei δ
2

(
eiμ+iν cos(θ ) −eiμ−iν sin(θ )

e−iμ+iν sin(θ ) e−iμ−iν cos(θ )

)
. (A9)

We impose the condition that the diagonal elements be
equal, that is, fulfilled if and only if ϕ1 = −ϕ1. This implies
ϕ1 = 0 and thus ν = −μ. Let us call this matrix Ũ . Later we
reparameterize Ũ by setting δ/2 = v and 2μ = u, thus

Ũ = ei δ
2

(
cos(θ ) −ei2μ sin(θ )

e−i2μ sin(θ ) cos(θ )

)

= eiv

(
cos(θ ) −eiu sin(θ )

e−iu sin(θ ) cos(θ )

)
. (A10)

We factorize Ũ in the following way:

Ũ = eiv

(1 0

0 e−iu

)(
cos(θ ) − sin(θ )

sin(θ ) cos(θ )

)(1 0

0 eiu

)
. (A11)

In this form, it is easy to see that Ũ performs a real rotation up
to some conditional phases. The aim is to associate our search
operator Q with Ũ .

We set Q such that its diagonal elements are also equal,
which means −a(1 − eiψ ) − eiψ = a(1 − eiψ )eiϕ − eiϕ. From
the Høyer’s result [26], suppose ϕ �= π ; then this condition is
fulfilled if and only if

tan(ϕ/2) = tan(ψ/2)(1 − 2a). (A12)

Given Q̃, which is the matrix Q with equal diagonal ele-
ments, at this point, it is straightforward to parameterize Q̃.
We can find parameters ψ and ϕ in the following manner:

‖(1 − eiψ )
√

a(1 − a)‖ = sin(θ ),

ψ = arccos

(
1 − sin2(θ )

2a(1 − a)

)
, (A13)

ϕ = 2 arctan[tan(ψ/2)(1 − 2a)]. (A14)

Now we are able to perform an arbitrary rotation θ on a
state |�init〉 with initial angle θ0 = arcsin(

√
a) using Q̃(ϕ,ψ ),

up to some conditional phases. Thus, we may relate Q and Q̃
by canceling its conditional phases:

Q = e−iv

(
1 0
0 eiu

)
Q̃

(
1 0
0 e−iu

)
. (A15)

Two additional parameters are necessary in order to have
a correct rotation, thus Q = Q(ϕ,ψ, u, v). By knowing ψ ,
the phases u and v can be obtained straightforwardly, for
instance,

v = arg(−a(1 − eiψ ) − eiψ ), (A16)

u = v − arg((1 − eiψ )
√

a(1 − a)). (A17)

Since one rotation is limited to θ ∈ [−2θ0, 2θ0], we need
to split it into several iterations if ‖θ‖ > ‖2θ‖. Suppose we
perform m > 1 iterations for which each iteration rotates θ̃ =
θ/m with parameters ũ, ṽ; thus

Qm = e−imṽ

(1 0

0 eiũ

)(
cos(θ̃ ) − sin(θ̃ )

sin(θ̃ ) cos(θ̃ )

)m(1 0

0 e−iũ

)
.

(A18)

For the identical iterations, the phase corrections need only be
performed once at the beginning and end, since they will be
canceled out in the intermediate stages.

3. The exhaustive search circuits

This section provides details on the numerical results. First,
Table III shows the equivalences of databases for three-qubit
cases, related by bit permutation and bit complementation.
Then, for each partition, we pick one combination of a
database and compute the success probability of the BEQS al-
gorithm by restricting the number of CNOT gates (Table IV).

TABLE III. All possible three-qubit database combinations for 5 � N � 8. The set is partitioned by equivalence of bit permutation and bit
complementation. Each partition is placed in the same row, e.g., the five-database (N = 5) has three partitions, namely, three unique database
combinations. Simply put, each row contains equivalent database combinations .

N Equivalent combinations of database

01234, 01235, 01236, 01237, 01245, 01246, 01345, 01357, 01456, 01457, 02346, 02367, 02456,
02467, 04567, 12357, 12367, 13457, 13567, 14567, 23467, 23567, 24567, 34567

5 01247, 01356, 02356, 03456, 03567, 12347, 12457, 12467

01256, 01257, 01267, 01346, 01347, 01367, 01467, 01567, 02345, 02347, 02357, 02457, 02567,
03457, 03467, 12345, 12346, 12356, 12456, 12567, 13456, 13467, 23456, 23457

012345, 012346, 012357, 012367, 012456, 013457, 014567, 023467, 024567, 123567, 134567,
234567

6 012567, 013467, 023457, 123456

012347, 012356, 012457, 012467, 013456, 013567, 023456, 023567, 034567, 123457, 123467,
124567

7 0123456, 0123457, 0123467, 0123567, 0124567, 0134567, 0234567, 1234567

8 01234567
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TABLE IV. The success probability of three-qubit exact Grover (expected probability is 1) for all possible unique database combinations,
approximated with various size CNOT gates. In particular, the success probability of the three-qubit BEQS algorithm is obtained by
approximating each unitary with multiple numbers of CNOT gates. Each operator in {A, O(π ), D(π ), O(u + φ), D(ψ )} is approximated with
the corresponding number of CNOT gates (on the left side), while the rest of operators are in the exact unitary form. For example, in the
first row and second column of this table means: running BEQS for database choice w = 01234, where operator A is approximated with zero
CNOT gates—while the rest of the operators O(π ), D(π ), O(u + φ), D(ψ ) are using the exact form—gives success probability of finding the
database 0.7449. The approximation of each operator is obtained by optimization method DS94.

N = 5, ζ + ϕ = 1.7076, ψ = 0.4510, w = 01234

CNOT A O(π ) D(π ) O(u + ϕ) D(ψ )

0 1 2 3 4 0 1 2 3 4

0 0.7449 0.3463 0.8592 0.5187 0.8197 0.4388 0.2380 0.4388 0.8428 0.4449 0.8375 1.0000 0.9604

1 0.8575 1.0000 0.8062 1.0000 0.6723 1.0000 0.3114 1.0000 0.6790 1.0000 0.7084 0.9236

2 1.0000 1.0000 1.0000 0.5350 1.0000 1.0000 0.9525

3 0.7062 0.9329

4 0.7715 0.9845

5 0.8948 0.9832

6 0.9781 0.9973

7 0.9999 0.9990

8 1.0000 0.9999

9 1.0000

N = 5, ζ + ϕ = 1.7076, ψ = 0.4510, w = 01247

0 1 2 4 7 0 1 2 4 7

0 0.6500 1.0000 0.8006 0.5706 0.9271 0.5950 0.2233 0.5950 0.9507 0.6047 0.9005 0.6313 0.9446

1 0.6581 0.9647 1.0000 0.7872 1.0000 0.1646 1.0000 0.7268 1.0000 0.7588 1.0000 0.3315

2 1.0000 1.0000 1.0000 0.3310 1.0000 1.0000 0.9543

3 0.4529 0.8952

4 0.6318 0.9766

5 0.7458 0.9731

6 0.9251 0.9912

7 1.0000 0.9979

8 0.9999

N = 5, ζ + ϕ = 1.7076, ψ = 0.4510, w = 01256

0 1 2 5 6 0 1 2 5 6

0 0.6542 1.0000 1.0000 0.3625 0.8350 0.3108 0.2221 0.3108 0.8432 0.4082 0.8533 0.2448 0.9604

1 0.8575 1.0000 0.7236 1.0000 0.2538 1.0000 0.6802 1.0000 0.6979 1.0000 0.9279

2 0.9397 1.0000 0.3660 1.0000 1.0000 0.9717

3 1.0000 0.5617 0.8967

4 0.8184 0.7715 0.9778

5 0.9326 0.8026 0.9835

6 0.9482 0.9293 0.9979

7 1.0000 0.9996 0.9986

8 1.0000 0.9998

9 0.9999

N = 6, ζ + ϕ = 1.8605, ψ = 0.8411, w = 012345

0 1 2 3 4 5 0 1 2 3 4 5

0 0.8024 0.3570 0.9079 0.3721 0.7899 0.4035 0.7407 0.2733 0.7407 0.3683 0.8720 0.3966 0.8621 0.2421 0.9248

1 1.0000 0.3702 0.6940 0.4278 0.7054 1.0000 0.6414 0.1892 0.6414 1.0000 0.6663 1.0000 0.6932 1.0000 0.8756

2 1.0000 0.6434 1.0000 0.6617 1.0000 0.6892 1.0000 1.0000 1.0000 0.9077

3 0.7156 0.7156 0.8268 0.8481

4 1.0000 1.0000 1.0000 0.9698

5 1.0000 0.9806

6 1.0000
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TABLE IV. (Continued.)

N = 6, ζ + ϕ = 1.8605, ψ = 0.8411, w = 012347

0 1 2 3 4 7 0 1 2 3 4 7

0 0.7714 0.3917 0.6254 0.3942 0.8433 0.3907 0.8684 0.2694 0.8684 0.4236 0.6345 0.4249 0.8374 0.4950 0.8914

1 0.8024 0.5393 0.6601 1.0000 0.8211 1.0000 0.7526 0.3086 0.7526 0.5410 0.6788 1.0000 0.6773 1.0000 0.1893

2 1.0000 1.0000 0.5921 1.0000 1.0000 0.5476 1.0000 1.0000 0.5958 1.0000 0.9077

3 0.7175 0.6324 0.7258 0.8295

4 1.0000 0.7424 1.0000 0.9641

5 0.8726 0.9641

6 1.0000 0.9824

7 1.0000

N = 6, ζ + ϕ = 1.8605, ψ = 0.8411, w = 012567

0 1 2 5 6 7 0 1 2 5 6 7

0 0.7500 0.2580 0.7261 0.2841 0.7444 0.4075 0.7368 0.1925 0.7368 0.2322 0.7099 0.3807 0.7493 0.3878 0.9251

1 0.7714 1.0000 0.7025 1.0000 0.7219 1.0000 0.7394 0.3731 0.7394 1.0000 0.7227 1.0000 0.7042 1.0000 0.4771

2 0.8293 1.0000 1.0000 1.0000 0.2278 1.0000 1.0000 1.0000 0.8899

3 1.0000 0.2181 0.9037

4 0.6049 0.9617

5 0.6229 0.9631

6 0.8257 0.9813

7 0.9596 0.9996

8 1.0000 0.9999

N = 7, ζ + ϕ = 2.0277, ψ = 1.2056, w = 0123456

0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 0.8836 0.5210 0.5794 0.0810 0.4744 0.1625 0.7817 0.4387 0.2131 0.4387 0.6534 0.4318 0.6674 0.4507 0.6005 0.3290 0.8685

1 0.8890 0.4903 0.3747 0.4384 0.4728 0.3949 0.4527 1.0000 0.4133 1.0000 0.6564 0.4652 0.4527 1.0000 0.6774 1.0000 0.4798

2 0.9149 0.5569 0.4636 1.0000 0.6999 1.0000 0.7098 0.5111 1.0000 1.0000 0.6985 1.0000 0.8905

3 1.0000 1.0000 0.6879 0.7345 0.7156 0.6613 0.7136 0.8905

4 1.0000 1.0000 0.7825 0.7016 1.0000 0.9282

5 0.9111 0.7621 0.8409

6 1.0000 0.8239 0.9754

7 0.9719 0.9690

8 1.0000 0.9762

9 1.0000

N = 8, ζ + ϕ = 2.2143, ψ = 1.5708, w = 01234567

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1.0000 0.6193 0.7487 0.3517 0.2817 0.3698 0.7262 0.5016 0.3434 0.0156 0.3434 0.1804 0.6695 0.5933 0.3568 0.3061 0.2336 0.5389 0.8565

1 0.6296 0.3980 0.1596 0.3178 0.6412 0.3159 0.0864 0.4831 0.7656 0.4831 0.6222 0.5543 0.5685 0.3384 0.1113 0.4132 0.6278 0.6171

2 0.5042 0.5089 0.3309 0.5023 0.3055 0.5090 0.6350 0.3895 0.5312 0.3895 0.4382 0.3703 0.6321 0.3730 0.6548 0.4884 0.1716 0.8902

3 0.6278 0.7276 0.5495 0.7781 0.5509 0.6162 0.6740 0.7633 0.5312 0.7633 0.5554 0.6200 0.4793 0.6200 0.4275 0.6542 0.7253 0.8902

4 0.5383 0.6945 0.6470 0.7831 0.5704 0.6847 0.4877 0.8043 0.8902 0.8043 0.4531 0.5539 0.6574 0.6994 0.7421 0.6840 0.5769 0.9619

5 0.7407 0.7961 0.7369 0.8875 0.7333 0.8747 0.7372 0.8763 0.8902 0.8763 0.7409 0.8778 0.7286 0.8762 0.7159 0.8760 0.7217 0.9619

6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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