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Generalized transitionless quantum driving for open quantum systems
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A general approach for transitionless quantum driving in open quantum systems is introduced. Under the
assumption of adiabatic evolution for time-local master equations, we derive the generalized transitionless Lind-
bladian required to implement a shortcut to adiabaticity in an open-system scenario. The general counterdiabatic
Lindbladian obtained accounts for a phase freedom, which translates into a set of free parameters throughout
the dynamics. We discuss how our generalized approach allows us to recover the transitionless Lindbladian
introduced by Vacanti et al. [G. Vacanti et al. New J. Phys. 16, 053017 (2014)]. We show how to engineer
time-independent master equations that provide the same dynamics as the time-dependent master equation
provided by the standard transitionless quantum driving in open systems. We illustrate our results by applying
them both to the adiabatic Deutsch algorithm under dephasing and to the Landau-Zener Hamiltonian under a bit
phase flip.
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I. INTRODUCTION

Inverse quantum engineering is a useful approach to drive
quantum systems through some desired path in parameter
space and hence achieve a target final state [1–7]. Within
a number of different approaches for inverse engineering,
one can highlight the adiabatic dynamics as an important
strategy, with successful applications in quantum control
[8,9] and quantum computation [10,11]. However, the re-
quirement of a sufficiently long evolution time may lead the
system to undesired phenomena due to decoherence [12–16].
This has strongly motivated the investigation of methods
for speeding up the adiabatic process (more precisely, to
mimic the adiabatic behavior). In this scenario, transition-
less quantum driving (TQD) [17–19] has been established
as a widely used method for yielding shortcuts to adiabatic-
ity, where additional fields are used to inhibit any diabatic
transition between energy levels of the Hamiltonian. Transi-
tionless quantum driving has provided numerous applications
in different branches of physics [20–32], with many recent
experimental realizations [33–37].

In a real physical scenario, where the quantum system
is coupled with its surrounding environment, the adiabatic
approximation requires a reformulation so that it is applicable
to a nonunitary evolution. In that case, the closed-system
adiabatic picture of a decoupled evolution of the Hamiltonian
eigenspaces with distinct energy eigenvalues is replaced by
a decoupled evolution of Lindblad-Jordan eigenspaces with
distinct eigenvalues of the Lindbladian superoperator [13]
(for alternative but similar reformulations, see Refs. [38,39]).
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This notion of adiabaticity has been consistently applied in
different scenarios, such as quantum computation [40], eigen-
state tracking of open quantum systems [14], and quantum
thermodynamics [41]. As a further application, this open-
system adiabatic approximation has also been used to build
a theory of shortcuts to adiabaticity via transitionless evo-
lutions, as shown by Vacanti et al. [42]. As an extension
of closed-system TQD, the open-system TQD is established
for time-local master equations by adding a counterpart to
the relevant Lindbladian governing the dynamics. In turn, it
requires the ability to control both fields and decohering rates
so that environment engineering is taken as a tool to drive
the system along an open-system adiabatic path. Recently,
this protocol has been investigated experimentally in circuit
quantum electrodynamics [43].

In this work we generalize the theory of TQD for open
systems introduced in Ref. [42] for the case of shortcuts to
adiabaticity exhibiting a phase (gauge) freedom. This brings
to the realm of open systems the generalized TQD approach
for closed systems theoretically proposed in Ref. [44] and
experimentally realized in Ref. [34]. By considering the adi-
abatic dynamics in open systems and by taking the phases
accompanying the evolution as free parameters, we derive
a general counterdiabatic Lindbladian implementing arbi-
trary paths in a nonunitary evolution. We then show that, in
addition to the path acceleration expected in the TQD dy-
namics, this set of free parameters can considerably simplify
the underlying master equations allowing, for example, the
derivation of time-independent Lindbladians. Moreover, as
shown for closed systems, the phase freedom is potentially
able to provide smooth energy requirements for local fields
and interactions throughout the system dynamics [44]. This
comes at the expense of convenient environment engineer-
ing, which may be achieved by employing suitable quantum
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control techniques. We then discuss the feasibility of the
method through its illustration in the Deutsch quantum algo-
rithm and the Landau-Zener Hamiltonian.

The paper is organized as follows. In Sec. II A we review
some elements of the generalized TQD in closed systems,
where we highlight the usefulness of the generalized phases
introduced in Ref. [44]. In Sec. II B we analyze the results
obtained in Ref. [42]. Building upon this previous work,
we rewrite here the counterdiabatic Lindbladian introduced
by Ref. [42] in terms of the right and left eigenbases of
the Lindbladian superoperator. In Sec. III we discuss how
the generalized phases can be employed to implement TQD
for time-local master equations. In Sec. IV we illustrate our
results through some applications in quantum control and
quantum computation.

II. PRELIMINARY RESULTS

A. Transitionless quantum driving in closed systems

Consider a DS-dimensional Hilbert space HS describing
a quantum system driven by a time-dependent Hamiltonian
H (t ) acting on HS, whose instantaneous eigenvectors are
|n(t )〉 and their corresponding energies En(t ). Under suffi-
ciently slow evolution [45–47], the system will follow an
adiabatic dynamics governed by the adiabatic evolution op-
erator

Uad(t ; t0) =
DS−1∑
n=0

exp

(
−i
∫ t

t0

θ ad
n (ξ )dξ

)
|n(t )〉〈n(t0)|, (1)

where θ ad
n (t ) is the adiabatic phase that accompanies the evo-

lution of the nth eigenstate, which is given by [48]

θ ad
n (t ) = En(t )

h̄
+ i〈ṅ(t )|n(t )〉, (2)

with the overdot denoting time derivative (this denotation is
adopted throughout the paper). We can speed up such evolu-
tion through TQD methods [17–19]. Indeed, we can achieve
the dynamics provided by the operator Uad(t ; t0) at arbitrary
finite time [24]. This occurs by letting the system evolve under
the action of the standard TQD Hamiltonian

HTQD(t ) = H (t ) + ih̄
DS−1∑
n=0

[|ṅ(t )〉〈n(t )|

+ 〈ṅ(t )|n(t )〉|n(t )〉〈n(t )|], (3)

where the first term is the original Hamiltonian, whose spec-
tral decomposition reads H (t ) = ∑

n En(t )|n(t )〉〈n(t )|, and
the second term is the so-called counterdiabatic Hamiltonian
Hcd(t ), whose effect is to inhibit the typical diabatic behavior
brought by fast evolutions. In particular, there are a number of
situations in which the system is initially prepared in a single
eigenstate |ψ (t0)〉 = |k(t0)〉 of the Hamiltonian H (t0). In these
cases, the adiabatic dynamics yields the evolved state

|ψ (t )〉 = Uad(t ; t0)|ψ (t0)〉 = exp

(
−i
∫ t

t0

θ ad
k (ξ )dξ

)
|k(t )〉,

(4)

where the quantum adiabatic phase θ ad
k (t ) works as a global

phase. Therefore, it can be neglected in many applications,
such as the realization of quantum gates. For these cases, it
means that any phase that appears during the evolution does
not contribute to the TQD evolution. It is then possible to
derive an alternative TQD protocol with arbitrary quantum
phases [not necessarily the adiabatic phase θ ad

n (t )]. This intro-
duces a phase freedom and constitutes the generalized TQD
dynamics [44]. Thus, we can define the generalized TQD
evolution operator

U gen
TQD(t ; t0) =

DS−1∑
n=0

exp

(
−i
∫ t

t0

θn(ξ )dξ

)
|n(t )〉〈n(t0)|, (5)

where {θn(t )} is a set of arbitrary phases to be freely adjusted
according to the desired dynamics. From such an operator,
we derive the generalized TQD Hamiltonian that drives the
system through this path as [44]

Hgen
TQD(t ) = ih̄

DS−1∑
n=0

[|ṅ(t )〉〈n(t )| − iθn(t )|n(t )〉〈n(t )|]. (6)

The potential benefits of this approach have been illustrated in
quantum computation and quantum control. Generalized TQD
can provide feasible time-independent TQD Hamiltonians,
which can be applied to implement quantum gates through
controlled evolutions and to speed up the dynamics of two-
level atomic systems under Landau-Zener transitions [44].
Experimentally, generalized TQD has been used to design
energy-enhanced TQD microwave fields to implement short-
cuts to adiabaticity in trapped ion systems [34] and nuclear
magnetic resonance [49].

B. Standard transitionless quantum driving in open systems

We assume a time-local open-system dynamics described
by a superoperator L[•], which governs both the unitary
(coherent) dynamics and the nonunitary contribution (due to
the coupling with the reservoir). The master equation under-
lying the system evolution is provided by ρ̇(t ) = L[ρ(t )].
In the context of the open-system adiabatic dynamics, it is
convenient to rewrite the master equation in the superoperator
formalism as [13] (see Appendix A)

|ρ̇(t )〉〉 = L(t )|ρ(t )〉〉, (7)

where the vector |ρ(t )〉〉 and the Lindbladian superopera-
tor L(t ) are written in a matrix basis composed of (DS ×
DS)-dimensional traceless matrices σn satisfying the rela-
tion Tr{σnσm} = DSδnm. Then we have that |ρ(t )〉〉 is a
D2

S-dimensional coherence vector in Hilbert-Schmidt space
[50], whose components are �n(t ) = Tr{ρ(t )σ †

n } and a (D2
S ×

D2
S)-dimensional superoperator L(t ) with matrix elements

Lki(t ) = (1/DS)Tr{σ †
kL[σi]}. The inner product between two

coherence vectors associated with density operators ξ1 and ξ2

is given by 〈〈ξ1|ξ2〉〉 = (1/DS )Tr{ξ †
1 ξ2}, where the conjugate

coherence vector 〈〈ξ1| has components given by Tr{ξ †
1 σn}. In

particular, for a two-level system, the Hermitian Pauli basis
Otls = {1, σx, σy, σz} is a convenient choice, but we can adopt
alternative bases depending on the application [51].
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In the formalism of superoperators, the adiabatic dynam-
ics is defined from the instantaneous decoupled evolution of
Jordan blocks of L(t ). As shown in Ref. [52], the adiabatic
dynamics is well characterized by the open-system evolution
operator Vad(t, t0) = ∑N−1

β=0 Vβ (t, t0), where each element
Vβ (t, t0) reads

Vβ (t, t0) = exp

(∫ t

t0

λβ (ξ )dξ

) Nβ∑
nβ=1

Nβ∑
mβ=1

vnβ mβ
(t )
∣∣Dnβ

β (t )
〉〉

× 〈〈
Emβ

β (t0)
∣∣, (8)

with the elements vnβmβ
(t ) accounting for inner transitions

within a single Jordan block [52] and λβ (t ) being the in-
stantaneous eigenvalue associated with the βth block, whose
right and left quasieigenvectors |Dmβ

β (t )〉〉 and 〈〈Emβ

β (t )|, re-
spectively, obey

L(t )
∣∣Dnα

α (t )
〉〉 = ∣∣D(nα−1)

α (t )
〉〉+ λα (t )

∣∣Dnα

α (t )
〉〉
, (9a)〈〈

Enα

α (t )
∣∣L(t ) = 〈〈

E(nα+1)
n (t )

∣∣+ 〈〈
Enα

α (t )
∣∣λα (t ), (9b)

with |D(0)
α (t )〉〉 and 〈〈E(Nα+1)

α (t )| denoting vanishing vectors.
The sets {|Dnα

α (t )〉〉} and {〈〈Enα
α (t )|} satisfy the biorthonor-

malization condition 〈〈Eβ
m(t )|Dα

n (t )〉〉 = δmnδβα . For one-
dimensional Jordan-block decomposition of the Lindbladian
L(t ), we have block dimension Nα = 1 ∀α. In this case,
we define |D(1)

α (t )〉〉 ≡ |Dα (t )〉〉 and 〈〈E(1)
α (t )| ≡ 〈〈Eα (t )|. Then

Vad(t, t0) becomes

V1D
ad (t, t0) =

N−1∑
α=0

exp

(∫ t

t0

�α (ξ )dξ

)
|Dα (t )〉〉〈〈Eα (t0)|,

(10)

with �α (t ) = λα (t ) − 〈〈Eα (t )|Ḋα (t )〉〉 the generalized adia-
batic phase accompanying the dynamics of the nth eigenvector
[52].

In the same direction as the TQD for closed systems, the
TQD can be introduced here to mimic the adiabatic dynam-
ics, but in this case the adiabatic behavior is dictated by its
generalized version for open systems. In Ref. [42] Vacanti
et al. provided an interesting and useful discussion of how we
should deal with TQD in such systems. Similarly as provided
for closed systems, the idea is to define a counterdiabatic
term which, when added to the original Lindbladian, provides
open-system TQD at finite time. To this end, the authors
defined a transformation C(t ) which depends on the set of
instantaneous right quasieigenstates of the Lindbladian. From
this approach, it is then possible to find the counterdiabatic
Lindbladian Lcd(t ) in terms of C(t ). By following a gener-
alized path, we can show here how to formulate Lcd(t ) in
notation analogous to that used for counterdiabatic Hamilto-
nians in closed systems [19].

First, let us briefly review the proposal for speeding up
an adiabatic dynamics via TQD as originally proposed in
Ref. [42]. The idea is based on achieving the perfect decou-
pling of Jordan-Lindblad eigenspaces, in complete agreement
with the definition of adiabaticity. To this end, we consider
the similarity transformation LJ(t ) = C−1(t )L(t )C(t ), with
LJ(t ) denoting the Jordan canonical form of L(t ) and the

superoperator C(t ) defined by

C(t ) =
N−1∑
μ=0

Nμ∑
nμ=1

∣∣Dnμ

μ (t )
〉〉〈〈

σ
nμ

μ

∣∣, (11)

where {〈〈σ nμ

μ |} is a set of time-independent vectors corre-
sponding to a basis of traceless orthogonal matrices {σn}.
From this transformation, Eq. (7) becomes

[LJ(t ) + Ċ−1(t )C(t )]|ρ(t )〉〉J = |ρ̇(t )〉〉J, (12)

with |ρ(t )〉〉J = C−1(t )|ρ(t )〉〉. Then, following Ref. [42], we
obtain

[LJ(t ) + L′
J(t ) + L′

nd(t )]|ρ(t )〉〉J = |ρ̇(t )〉〉J, (13)

where the operator Ċ−1(t )C(t ) has been split into two parts,
a block-diagonal operator L′

J(t ) and a second off-diagonal
contribution L′

nd(t ) given, respectively, by

L′
J(t ) =

N−1∑
μ=0

Nμ∑
nμ=1

Nμ∑
lμ=1

Cnμlμ
μμ (t )

∣∣σ nμ

μ

〉〉〈〈
σ

lμ
μ

∣∣, (14)

L′
nd(t ) =

N−1∑
ν �=μ

Nν∑
nν=1

N−1∑
μ=0

Nμ∑
nμ=1

Cnνnμ

νμ (t )
∣∣σ nν

ν

〉〉〈〈
σ

nμ

μ

∣∣, (15)

with coefficients Cnνnμ

νμ (t ) = 〈〈σ nν
ν |Ċ−1(t )C(t )|σ nμ

μ 〉〉. The op-
erator L′

nd(t ) is associated with a transition between Jordan
blocks. In order to inhibit the effects of L′

nd(t ), we introduce
an additional operator Lcd(t ) given by

Lcd(t ) = −C(t )L′
nd(t )C−1(t ). (16)

Thus, the standard TQD Lindbladian reads

LSTQD(t ) = L(t ) + Lcd(t ). (17)

This superoperator was obtained in Ref. [42] as the counter-
diabatic Lindbladian to implement TQD in open systems. As
a further step, we can go beyond Ref. [42] at this point and
rewrite Eq. (16) in a more convenient way as (see Appendix
B)

Lcd(t )=
N−1∑
μ=0

Nμ∑
nμ=1

⎡
⎣∣∣Ḋnμ

μ

〉〉〈〈
Enμ

μ

∣∣− Nμ∑
kμ=1

Gnμkμ

μμ

∣∣Dnμ

μ

〉〉〈〈
Ekμ

μ

∣∣
⎤
⎦, (18)

where Gnμkμ

μμ (t ) = 〈〈Enμ

μ (t )|Ḋkμ

μ (t )〉〉. Notice the formally iden-
tical structure for Lcd(t ) in comparison with the standard
counterdiabatic Hamiltonian Hcd(t ) in Eq. (3). Equation (18)
is the first contribution of our work. The dynamics induced
by the Lindbladian LSTQD(t ) will here be referred to as the
standard TQD evolution, since it allows for the exact mimick-
ing of the adiabatic path in open systems (see Appendix B).
In particular, for a one-dimensional Jordan-block decomposi-
tion, we have

L1D
cd (t ) =

N−1∑
α=0

|Ḋα (t )〉〉〈〈Eα (t )| − Gα (t )|Dα (t )〉〉〈〈Eα (t )|, (19)

with Gα (t ) = 〈〈Eα (t )|Ḋα (t )〉〉, so that

L1D
STQD(t ) = L(t ) + L1D

cd (t ) (20)

is the one-dimensional standard TQD Lindbladian.
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III. GENERALIZED TQD IN OPEN SYSTEMS

In closed quantum systems, we can design a Hamiltonian
H (t ) that implements a target unitary evolution by the method
of inverse engineering (see, e.g., Refs. [3,5]). This can be
achieved by using H (t ) = ih̄U̇ (t )U †(t ), with U (t ) denoting
the evolution operator. Equivalently, we can show that we can
perform inverse engineering for Lindbladian superoperators
in nonunitary dynamics. To this end, we assume open systems
driven by invertible dynamical maps, with the evolved den-
sity operator |ρ(t )〉〉 provided by a nonunitary superoperator
V(t, t0) as |ρ(t )〉〉 = V(t, t0)|ρ(t0)〉〉. We can then introduce
an inversely engineered Lindbladian LIE(t ) implementing the
dynamics induced byV(t, t0) by taking (see Appendix C)

LIE(t ) = V̇(t, t0)V−1(t, t0). (21)

Since the evolution is encoded in the superoperator V(t, t0),
TQD can be directly approached by this strategy. In particular,
by using an engineered Lindbladian LIE(t ) from Eq. (21), we
could drive the system through an adiabatic path so that the
transitions among Jordan blocks are suppressed [52]. Further-
more, we can design LIE(t ) capable of implementing shortcuts
to the nonunitary adiabatic evolution through general TQD
protocols.

A. Generalized TQD for one-dimensional Jordan blocks

Let us consider the case of one-dimensional Jordan de-
composition for the original Lindbladian L(t ). By requiring
the decoupling of the Jordan blocks and by allowing arbitrary
phases throughout the evolution, we write a generalized TQD
evolution operator as

V1D
GTQD(t, t0) =

N−1∑
α=0

exp

(∫ t

t0

�α (ξ )dξ

)
|Dα (t )〉〉〈〈Eα (t0)|,

(22)

where the function �α (t ) ∈ C is a free generic phase. From
Eq. (21) we can then show that the generalized TQD Lindbla-
dian for one-dimensional Jordan decomposition is given by
(see Appendix D)

L1D
GTQD(t ) =

N−1∑
α=0

[|Ḋα (t )〉〉〈〈Eα (t )| + �α (t )|Dα (t )〉〉〈〈Eα (t )|].

(23)

As expected, we can choose �α (t ) to recover the adiabatic
phase. However, by letting �α (t ) be a free parameter, we can
achieve an infinite family of TQD evolutions mimicking the
adiabatic dynamics up to a quantum phase. As we will show,
this phase freedom may simplify the physical implementa-
tion. Notice also that the set of parameters {�n(t )} cannot
be considered completely arbitrary because we usually do not
prepare the system in a particular eigenstate of L(t ) at the
beginning of the evolution. Such a result will be illustrated
in Sec. IV. Nonetheless, we can already provide some ad-
vantages of the generalized phases concerning the feasibility
of the operator L1D

GTQD(t ). Indeed, it is possible to derive a
theorem that tells us about the situations for which we could
obtain a time-independent TQD Lindbladian.

Theorem 1. Let L(t ) be a Lindblad superoperator that
admits one-dimensional Jordan-block decomposition, with

noncrossing eigenvalues λα (t ) associated with right and left
eigenvectors |Dα (t )〉〉 and 〈〈Eα (t )|, respectively. If the sets
{|Dα (t )〉〉} and {〈〈Eα (t )|} obey

〈〈Eη(t )|Ḋβ (t )〉〉 = 〈〈Eη(t0)|Ḋβ (t0)〉〉

× exp

(∫ t

t0

[Gη(ξ ) − Gβ (ξ )]dξ

)
(24)

for every η and β, then we can derive a time-independent
TQD Lindblad superoperator L1D

GTQD by adopting generalized
phases given by

�η(t ) = −〈〈Eη(t )|Ḋη(t )〉〉 (25)

for every η.
The proof is provided in Appendix E. Such a theorem is po-

tentially useful when we have limited ability of implementing
(or simulating) reservoir effects and/or when we do not have
optimal control of the time-dependent external parameters that
act on the system. As a by-product, if the sets {|Dα (t )〉〉} and
{〈〈Eα (t )|} obey the particular condition

d

dt
[〈〈Eη(t )|Ḋβ (t )〉〉] = 0 (26)

for every η and β, then a time-independent Lindbladian can
be set by choosing �η(t ) such that

�η = �β = const ∀ η, β. (27)

The proof is also provided in Appendix E. Concerning this last
result, we notice that, whenever we have a time-independent
eigenvector |Dν〉〉, the corresponding generalized phase �ν

that provides a time-independent Lindbladian does not depend
on the rest of the parameters �β (t ), with β �= ν. This means
that the choice of �ν can be made independently of the re-
maining sectors for the case of a time-independent eigenvector
|Dν〉〉.

B. Generalized TQD for multidimensional Jordan blocks

In order to implement the generalized TQD approach for
multidimensional Jordan blocks, we start by introducing the
evolution operator

VGTQD(t, t0) =
N−1∑
α=0

Nα∑
nα=1

Nα∑
mα=1

qnαmα

α (t )
∣∣Dnα

α (t )
〉〉〈〈
Emα

α (t0)
∣∣,
(28)

where the coefficients qnαmα
α (t ) can be suitably adjusted

throughout the dynamics. From Eq. (28) we can see that
VGTQD(t, t0) drives the system under a transitionless path, but
it does not necessarily mimic the exact adiabatic solution. The
generalized TQD Lindbladian LGTQD(t ) then reads

LGTQD(t ) = V̇GTQD(t, t0)V−1
GTQD(t, t0). (29)

By using Eq. (28) in Eq. (29), we obtain (see Appendix F)

LGTQD(t, t0) =
N−1∑
α=0

Nα∑
nα=1

Nα∑
kα=1

Nα∑
lα=1

q̇nαkα

α (t )q̃kα lα
α (t )

∣∣Dnα

α (t )
〉〉

× 〈〈
Elα

α (t )
∣∣+ N−1∑

α=0

Nα∑
nα=1

∣∣Ḋnα

α (t )
〉〉〈〈
Enα

α (t )
∣∣, (30)
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where the coefficient q̃kα lα
α (t ) is associated with the operator

V−1
GTQD(t, t0), which satisfies VGTQD(t, t0)V−1

GTQD(t, t0) = 1.
It is also possible to prove that the coefficient q̃kα lα

α satisfies
(see Appendix F)

Nκ∑
mκ=1

qlκ mκ

κ q̃mκ iκ
κ = δlκ iκ . (31)

The TQD Lindbladian LGTQD(t, t0) generalizes the results
presented in Sec. II A. While in the standard case the feasi-
bility of the TQD Lindbladian depends on the spectrum of the

original Lindbladian L(t, t0), in the generalized approach the
implementation of LGTQD(t, t0) depends on both the spectrum
of L(t, t0) and the free parameters qnαmα

α (t ) and q̃kα lα
α (t ). Those

parameters can be used to optimize a TQD evolution provided
the experimental setup available.

Let us analyze now the particular case qnαmα
α (t ) =

exp[
∫ t

t0
λα (ξ )dξ ]vnαmα

(t ), such as in Eq. (8). Then we have
VGTQD(t, t0) = Vad(t, t0), so the standard TQD Lindbladian
in Eq. (17) is expected to be recovered. Indeed, by using the
adiabatic choice for qnαmα

α (t ), we obtain the generalized TQD
Lindbladian (see Appendix G)

Lq=v

GTQD(t ) =
N−1∑
α=0

Nα∑
nα=1

λα (t )
∣∣Dnα

α (t )
〉〉〈〈
Enα

α (t )
∣∣+ ∣∣Ḋnα

α (t )
〉〉〈〈
Enα

α (t )
∣∣+ N−1∑

α=0

Nα∑
nα=1

Nα∑
kα=1

Nα∑
lα=1

v̇nαkα
(t )ṽkα lα (t )

∣∣Dnα

α (t )
〉〉〈〈
Elα

α (t )
∣∣, (32)

where we used the existence of the inverse evolution superoperatorV−1
ad (t, t0) such thatVad(t, t0)V−1

ad (t, t0) = 1. Explicitly, we
writeV−1

ad (t, t0) = ∑N−1
α=0 V−1

α (t, t0), where [52]

V−1
α (t, t0) = exp

(
−
∫ t

t0

λα (ξ )dξ

) Nα∑
nα=1

Nα∑
mα=1

ṽnαmα
(t )
∣∣Dnα

α (t0)
〉〉〈〈
Emα

α (t )
∣∣, (33)

where the coefficients ṽnαmα
(t ) and vnβ mβ

(t ) satisfy the relation

Nν∑
jν=1

v�ν jν (t )ṽ jνmν
(t ) =

Nν∑
jν=1

ṽ�ν jν (t )v jνmν
(t ) = δ�νmν

. (34)

Equation (34) comes from fact that the operator Vad(t, t0) is identified as the superoperator that block diagonalizes the
Lindbladian. Although we cannot write a spectral decomposition to Lq=v

GTQD(t ), since it is in general nondiagonalizable, it is
possible to write a quasispectral decomposition for an arbitrary L(t ) as

L(t ) =
N−1∑
α=0

Nα∑
nα=1

[∣∣D(nα−1)
α (t )

〉〉〈〈
Enα

α (t )
∣∣+ λα (t )

∣∣Dnα

α (t )
〉〉〈〈
Enα

α (t )
∣∣], (35)

whence it is possible to verify the quasieigenvalue equations
given by Eq. (9). Since Lq=v

GTQD(t ) has to exactly mimic the
adiabatic dynamics, the functions vnαkα

(t ) and ṽkα lα (t ) must
obey (see Appendix G)

Nα∑
kα=1

v̇nαkα
(t )ṽkα lα (t ) = δnα (lα−1) − 〈〈

Enα

α (t )
∣∣Ḋlα

α (t )
〉〉
. (36)

Therefore, Eq. (32) yields

Lq=v

GTQD(t ) = L(t ) + Lcd(t ) = LSTQD(t ), (37)

which shows how the generalized version of TQD can recover
the standard TQD as provided in Ref. [42].

IV. APPLICATIONS

A. Deutsch algorithm under dephasing

Our first application is the Deutsch algorithm under de-
phasing. The problem addressed in Deutsch’s algorithm [53]
is to determinate whether a dichotomic real function f : x ∈
{0, 1} → f (x) ∈ {0, 1} is either constant [the output f (x) is
the same regardless of the input value x] or balanced [the out-
put f (x) assumes different values according to the input value
x]. We denote by O f the oracle operator, which is capable of

computing f . The oracle O f is given by [40]

O f = (−1) f (0)|0〉〈0| + (−1) f (1)|1〉〈1|. (38)

Thus, we can write the Hamiltonian that implements the adia-
batic solution for the problem as

HDA(t ) = Uf (t )H0U
†
f (t ), (39)

where H0 = −h̄ωσx and Uf (t ) = exp(i π
2

t
τ
O f ), with 0 � t �

τ . At t = 0, we have HDA(0) = H0, so the initial input ground
state is written as |ψinp〉 = |+〉 = (1/

√
2)(|0〉 + |1〉). When

the evolution is slow enough, we can write the output state
as the ground state of HDA(t ), which reads

ρDA
CS (t ) = 1

2 [1 + gc(t )σx − gs(t )σy], (40)

where gc(t ) = cos(πFt/2τ ) and gs(t ) = sin(πFt/2τ ), with
F = 1 − (−1) f (0)+ f (1) and the subscript CS denoting that
ρDA

CS (t ) is obtained from the adiabatic solution for closed sys-
tems.

1. Deutsch adiabatic dynamics

Let us consider an open-system dynamics governed by
Markovian phase damping, with rate γ (t ). The evolution is
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driven by a Lindblad master equation, which is given by

ρ̇(t ) = − i

h̄
[HDA(t ), ρ(t )] + γ (t )[σzρ(t )σz − ρ(t )]. (41)

Let us now rewrite Eq. (41) in the superoperator formalism,
yielding

|ρ̇(t )〉〉 = LDA(t )|ρ(t )〉〉, (42)

where

LDA(t ) =

⎡
⎢⎣

0 0 0 0
0 −2γ (t ) 0 2ωgs(t )
0 0 −2γ (t ) 2ωgc(t )
0 −2ωgs(t ) −2ωgc(t ) 0

⎤
⎥⎦. (43)

The right eigenvectors of LDA(t ) are (the superscript T de-
notes transpose)∣∣DDA

0 (t )
〉〉 = [1 0 0 0]

T
, (44a)∣∣DDA

1 (t )
〉〉 = [0 −gc(t ) gs(t ) 0]T, (44b)∣∣DDA

2 (t )
〉〉 = [

0 − 2ωgs (t )
�+(t ) − 2ωgc(t )

�+(t ) 1
]T

, (44c)

∣∣DDA
3 (t )

〉〉 = [
0 − 2ωgs (t )

�−(t ) − 2ωgc(t )
�−(t ) 1

]T
(44d)

and the left eigenvectors are〈〈
EDA

0 (t )
∣∣ = [ 1 0 0 0], (45a)〈〈

EDA
1 (t )

∣∣ = [0 −gc(t ) gs(t ) 0], (45b)

〈〈
EDA

2 (t )
∣∣ = 1

�(t )

[
0 ωgs(t ) ωgc(t ) �+(t )

2

]
, (45c)

〈〈
EDA

3 (t )
∣∣ = 1

�(t )

[
0 −ωgs(t ) −ωgc(t ) −�−(t )

2

]
, (45d)

with eigenvalues λ0(t ) = 0, λ1(t ) = −2γ (t ), λ2(t ) = �−(t ),
and λ3(t ) = �+(t ), where �±(t ) = −γ (t ) ± �(t ) and
�(t ) =

√
γ 2(t ) − 4ω2. The nondegenerate spectrum

of LDA(t ) shows that LDA(t ) can be written in the
one-dimensional Jordan-block form. By writing the density
matrix for the initial state as ρDA(0) = |ψinp〉〈ψinp| =
|+〉〈+| = 1

2 (1 + σx ), we can show that the initial state is a
linear combination of the vectors |DDA

0 (0)〉〉 and |DDA
1 (0)〉〉,

yielding

|ρDA(0)〉〉 = [1 1 0 0]T = ∣∣DDA
0 (0)

〉〉− ∣∣DDA
1 (0)

〉〉
.

(46)

Hence, if we let the system evolve adiabatically, we can write
the evolved state as [52]∣∣ρDA

ad (t )
〉〉 = ∣∣DDA

0 (t )
〉〉− exp

(
−2

∫ t

t0

γ (ξ )dξ

)∣∣DDA
1 (t )

〉〉
,

(47)

where we used the adiabatic phase �1(t ) = λ1(t ) = −2γ (t ).
Now, by rewriting Eq. (47) as a vector in the superoperator
formalism, we get

∣∣ρDA
ad (t )

〉〉 = [
1 exp

(
−2

∫ t

t0

γ (ξ )dξ

)
gc(t ) − exp

(
−2

∫ t

t0

γ (ξ )dξ

)
gs(t ) 0

]T
, (48)

Then, by determining the coherence vector associated with the density matrix ρDA(t ) and expressing the result in the Pauli basis,
we obtain

ρDA
ad (t ) = 1

2

[
1 + exp

(
−2

∫ t

t0

γ (ξ )dξ

)
gc(t )σx − exp

(
−2

∫ t

t0

γ (ξ )dξ

)
gs(t )σy

]
. (49)

In the limit γ (t ) → 0, we recover the density matrix for the
unitary dynamics shown in Eq. (40), where the output state
reads (at t = τ ) [40]

lim
γ (t )→0

ρDA
ad (τ ) = ρDA

CS (τ ) = 1
2 [1 + (−1) f (0)+ f (1)σx], (50)

where we have used cos(πF/2) = (−1) f (0)+ f (1) for f (x) ∈
{0, 1} since F = 1 − (−1) f (0)+ f (1). This solution is the output
for an optimal (decoherence-free) situation. The experimen-
tal implementation of the adiabatic Deutsch algorithm under
phase damping has been implemented in trapped ions [54],
where the adiabatic behavior is achieved for a long total evo-
lution time.

2. Deutsch standard TQD

As a first application, let us derive a shortcut to the
adiabatic Deutsch algorithm in open systems. To begin with,
we observe that Eqs. (44) and (45) imply 〈〈EDA

α (t )|ḊDA
α (t )〉〉 =

0 for α = {0, 1}. Therefore, the adiabatic phases

�α (t ) = λα (t ) − 〈〈Eα (t )|Ḋα (t )〉〉 for each eigenvector are
simply given by its corresponding eigenvalue. Then we get

�0(t ) = 0, �1(t ) = −2γ (t ), (51a)

�2(t ) = λ2(t ) − �−(t )γ̇ (t )

2�2(t )
,

�3(t ) = λ3(t ) + 2ω2γ̇ (t )

�2(t )�−(t )
. (51b)

In particular, we can see that if γ̇ (t ) = 0, then
〈〈EDA

α (t )|ḊDA
α (t )〉〉 = 0 for any α. This implies a generalized

parallel transport condition for the adiabatic dynamics in open
systems, which is formally analogous to the parallel transport
condition for unitary dynamics.

By applying the standard approach for TQD, the counter-
diabatic Lindblad superoperator to be added to the adiabatic
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counterpart reads

LDA
cd (t ) = −

3∑
μ=0

〈〈
EDA

μ (t )
∣∣ḊDA

μ (t )
〉〉∣∣DDA

μ (t )
〉〉〈〈
EDA

μ (t )
∣∣

+
3∑

μ=0

∣∣ḊDA
μ (t )

〉〉〈〈
EDA

μ (t )
∣∣, (52)

where |DDA
μ (t )〉〉 and 〈〈EDA

μ (t )| are given by Eqs. (44) and
(45), respectively. By using Eqs. (44) and (45), we get a
counterdiabatic Lindbladian superoperator given by

LDA
cd =

⎡
⎢⎢⎣

0 0 0 0
0 0 Fπ

2τ
h(t )gs(t )

0 −Fπ
2τ

0 h(t )gc(t )
0 h(t )gs(t ) h(t )gc(t ) 0

⎤
⎥⎥⎦, (53)

with h(t ) = ωγ̇ (t )/τ [4ω2 − γ 2(t )]. By restricting the anal-
ysis to the simple case of the parallel transport condition
γ̇ (t ) = 0, we have h(t ) = 0. Then Eq. (53) becomes

LDA
cd =

⎡
⎢⎢⎣

0 0 0 0
0 0 Fπ

2τ
0

0 −Fπ
2τ

0 0
0 0 0 0

⎤
⎥⎥⎦. (54)

Thus, the corresponding Lindbladian LDA
cd [•] is

LDA
cd [•] = 1

ih̄
[HDA

cd , •], (55)

where we have the counterdiabatic Hamiltonian

HDA
cd = −h̄

Fπ

4τ
σz. (56)

Therefore, since the standard TQD Lindbladian is given by
LDA

STQD(t ) = LDA(t ) + LDA
cd , we conclude that

LDA
STQD[•] = 1

ih̄

[
HDA

STQD(t ), •]+ γ (t )[σz • σz − •], (57)

with HDA
STQD(t ) = HDA(t ) + HDA

cd . Notice that, even though the
counterdiabatic contribution for the Hamiltonian is time inde-
pendent, the total standard TQD Lindbladian depends on time
through the Hamiltonian HDA(t ). Moreover, the additional
term HDA

cd to be introduced in Eq. (41), which allows us to
implement the transitionless evolution in an open system, does
not depend on a reservoir engineering, but just on the fields
that act on the system.

3. Deutsch generalized TQD

Now let us use the generalized approach of TQD in
open systems to derive an alternative master equation for
the Deutsch problem, which is time independent but able to
provide the same results as Eq. (57). To this end, let us write
the generalized TQD evolution operator as

VDA
GTQD(t ) =

N−1∑
α=0

exp

(∫ t

0
�DA

α (ξ )dξ

)∣∣DDA
μ (t )

〉〉〈〈
EDA

μ (0)
∣∣,

(58)

where �DA
α (t ) are the phases to be adjusted. However, as

shown in Eq. (46), the initial state of the system is written
as a superposition of |DDA

0 (0)〉〉 and |DDA
1 (0)〉〉, so the evolved

state depends on the adiabatic phases �0(t ) and �1(t ), but
it does not depend on �2(t ) and �3(t ). Thus, in order to
derive the generalized TQD, the generalized phases �DA

0 (t )
and �DA

1 (t ) should reproduce the adiabatic phases �0(t ) and
�1(t ), but �DA

2 (t ) and �DA
3 (t ) allow us to introduce free

parameters in the evolution. In conclusion, by considering
�DA

0 (t ) = �DA
0 (t ) = 0 and �DA

1 (t ) = �DA
1 (t ) = −2γ (t ), the

generalized TQD Lindbladian is obtained from Eq. (23) as

LDA(1)
GTQD(t ) =

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 η1(t ) τ χ̃+Fπ

2τ

ω�−
23(t )gs (t )
�(t )

0 τ χ̃−Fπ

2τ
η2(t ) ω�−

32(t )gc(t )
�(t )

0 −ω�−
32(t )gs (t )
�(t ) −ω�−

32(t )gc(t )
�(t ) χ−(t )

⎤
⎥⎥⎥⎥⎦,

(59)

where we have defined γ (t ) ≡ γ0 for a constant rate γ0

(satisfying then γ̇ (t ) = 0), χ̃ (t ) = sin(Fπt )[2γ0 + χ+(t )],
η1(t ) = �+(t ) + g2

s (t )χ+(t ), η2(t ) = �−(t ) + g2
c(t )χ+(t ), and

�−
32(t ) = �3(t ) − �2(t ), with

χ±(t ) = ±�±(t )�3(t ) ∓ �∓(t )�2(t )

2�(t )
, (60a)

�±(t ) = −γ0
[
1 ± g2

c(t ) ∓ g2
s (t )

]
. (60b)

We can fix the free parameters for convenience so that we
obtain a simple Lindblad superoperator. For instance, in order
to get an antisymmetric superoperator, we can adjust �3(t ).
Indeed, from Eq. (60), if we choose

�3(t ) = �−(t )�2(t ) − 4γ0�(t )

�+(t )
, (61)

we obtain an antisymmetric Lindblad superoperator LDA(2)
GTQD(t )

given by

LDA(2)
GTQD(t ) =

⎡
⎢⎢⎣

0 0 0 0
0 −2γ0

Fπ
2τ

−�̃2(t )gs(t )
0 −Fπ

2τ
−2γ0 −�̃2(t )gc(t )

0 �̃2(t )gs(t ) �̃2(t )gc(t ) − 2γ0[�2(t )−�−(t )]
�+(t )

⎤
⎥⎥⎦, (62)

where

�̃2(t ) = 2ω[2γ0 + �2(t )]

�+(t )
. (63)

The parameter �2(t ) is linked to reservoir and/or Hamilto-
nian engineering. For example, if we are not able to perform
reservoir engineering, we take �2(t ) = �2(t ). In this case, we
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can show that the resulting generalized Lindblad superopera-
tor LDA(2)

GTQD(t ) is given by LDA(2)
GTQD(t ) = LDA

TTQD(t ) = LDA(t ) +
LDA

cd , since �2(t ) and �3(t ) become exactly the phases which
accompany the adiabatic dynamics [see Eq. (51)].

On the other hand, we can also consider others possibilities
of choices for �2(t ) so that we can get alternative ways
of driving the system. For example, from Eq. (62) we can
identify some time-independent matrix elements of LDA(2)

GTQD(t ),
with a time dependence on the parameter �2(t ) for other ele-
ments. In particular, it is worth highlighting that the right and
left bases for LDA(t ) satisfy Eq. (26). Then, as a consequence
of Theorem 1, we can get a time-independent master equation.
In particular, it is obtained if we choose �2(t ) = −2γ0 so that
the Lindbladian in Eq. (62) becomes

LDA
ti =

⎡
⎢⎢⎣

0 0 0 0
0 −2γ0

Fπ
2τ

0
0 −Fπ

2τ
−2γ0 0

0 0 0 −2γ0

⎤
⎥⎥⎦. (64)

For the associated master equation we obtain

ρ̇(t ) = 1

ih̄

[
HDA

cd , ρ(t )
]+RDA

x [ρ(t )] +RDA
y [ρ(t )] +RDA

z [ρ(t )],

(65)

with HDA
cd given by Eq. (56) and RDA

k [•] = γ0

2 (σk • σk − •). In
order to verify whether Eqs. (57) and (65) allow us to get a
shortcut to the adiabatic Deutsch algorithm in open systems,
we compute the fidelity [55]

FOS(ωτ ) = Tr

{√√
ρ(τ )ρ tar(γ0τ )

√
ρ(τ )

}
, (66)

where ρ(τ ) is a solution of Eqs. (57) and (65) at t = τ and ρ tar

is the target state. In our case, the target state is the adiabatic
solution at the instant t = τ obtained from Eq. (49) as

ρDA(γ0τ ) = 1

2

[
1 + e−2γ0τ cos

(πF

2

)
σx

− e−2γ0τ sin
(πF

2

)
σy

]
. (67)

In Fig. 1 we present the fidelity as a function of ωτ , since
we set γ0 as a multiple of ω. Both standard and generalized
TQD protocols achieve a shortcut to adiabaticity in open sys-
tem. It is important to highlight that a high fidelity here does
not necessarily represent the optimal fidelity of the adiabatic
Deutsch algorithm, because the state in Eq. (67) is not an exact
solution of the problem due to decoherence. This statement
can be better understood from Fig. 2, where we show the
trajectory of several distinct evolutions in the Bloch sphere.
Regardless of whether the system dynamics is unitary or not,
as we drive the system in a time interval shorter than that
required by the adiabatic conditions, the dynamics is far from
the adiabatic solution, while both standard and generalized
TQDs allow us to mimic the adiabatic behavior over the entire
time interval t ∈ [0, τ ]. Notice also that, when the system is
affected by decoherence, the state purity decreases, leading to
a loss of fidelity to get the perfect output state.

FIG. 1. Fidelity F DA
OS (ωτ ) to achieve the open-system adiabatic

solution for the Deutsch algorithm for different values of γ0. Solid
lines with closed symbols represent F DA

OS (ωτ ) when the system is
driven by the master equation (41), while dashed lines with open
symbols represent F DA

OS (ωτ ) when the system is driven by the gener-
alized TQD master equation (65). The inset shows FOS(ωτ ) for the
standard TQD evolution in Eq. (57). Here we consider the case where
the function is balanced.

B. Landau-Zener model under a bit phase flip

As a second example of application of the general-
ized TQD approach, let us consider the Landau-Zener
model, whose Hamiltonian is given by HLZ(t ) = (h̄ω0/2)σz +
[h̄�(t )/2]σx. Here we are considering a time-independent
detuning frequency ω0 and a time-dependent field �(t ).

1. Landau-Zener adiabatic dynamics

Let us assume that the system evolves under the bit-phase-
flip decohering effect, whose Lindblad equation is

ρ̇(t ) = − i

h̄
[HLZ(t ), ρ(t )] + γ (t )[σyρ(t )σy − ρ(t )], (68)

where γ (t ) is the time-dependent bit-phase-flip decoher-
ing rate. From Eq. (68) we can write the corresponding
superoperator LLZ(t ) in the Pauli basis σi = {1, σx, σy, σz},

FIG. 2. Trajectories in the Bloch sphere for several quantum
evolutions: adiabatic solution given by Eq. (49) (Ad. Solution), exact
solution of the master equation (41) (Adiabatic ME), standard TQD
approach in Eq. (57) (Standard TQD ME), and generalized TQD
method in Eq. (65) (General. TQD ME). The dynamics is considered
for closed (left Bloch sphere) and open (right Bloch sphere) cases,
where we consider the total evolution time such that τω = 10.
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yielding

LLZ(t ) =

⎡
⎢⎣

0 0 0 0
0 −2γ (t ) −ω0 0
0 ω0 0 −ω0 tan θ (t )
0 0 ω0 tan θ (t ) −2γ (t )

⎤
⎥⎦, (69)

where θ (t ) = arctan[�(t )/ω0]. The right eigenvectors are
given by

∣∣DLZ
0 (t )

〉〉 = [1 0 0 0]
T

, (70a)∣∣DLZ
1 (t )

〉〉 = [0 sin θ (t ) 0 cos θ (t )]T, (70b)∣∣DLZ
2 (t )

〉〉 = [
0 − cos θ (t ) γ (t ) cos θ (t )−κ (t )

ω0
sin θ (t )

]T
,

(70c)∣∣DLZ
3 (t )

〉〉 = [
0 − cos θ (t ) γ (t ) cos θ (t )+κ (t )

ω0
sin θ (t )

]T
,

(70d)

while for the left eigenvectors we have〈〈
ELZ

0 (t )
∣∣ = [1 0 0 0], (71a)〈〈

ELZ
1 (t )

∣∣ = [0 sin θ (t ) 0 cos θ (t )], (71b)〈〈
ELZ

2 (t )
∣∣ = 1

2

[
0 − cos θ (t )κ̃+ − ω0

κ (t ) sin θ (t )κ̃+
]
,

(71c)

〈〈
ELZ

3 (t )
∣∣ = 1

2

[
0 − cos θ (t )κ̃− ω0

κ (t ) sin θ (t )κ̃−
]
,

(71d)

where we have defined κ̃± = 1 ± cos θ (t )γ (t )/κ (t ) and
κ2(t ) = γ 2(t ) cos2 θ (t ) − ω2

0, with eigenvalues λ0(t ) = 0,
λ1(t ) = −2γ (t ), and λn(t ) = −γ (t ) − (−1)nκ (t ), where n =
{2, 3}.

Now, by considering the case �(0) = 0 and by preparing
the system in the ground state of H (0), the initial state is
given by ρLZ(0) = |1〉〈1| = 1

2 (1 − σz ). In the superoperator
formalism we write∣∣ρLZ(0)

〉〉 = [1 0 0 −1]T = ∣∣DLZ
0 (0)

〉〉− ∣∣DLZ
1 (0)

〉〉
,

(72)

where we used that θ (0) = 0 [since �(0) = 0] to write |ρ(0)〉〉
in terms of the eigenvectors of LLZ(0). If the system under-
goes the adiabatic dynamics, its evolved state is given by∣∣ρLZ

ad (t )
〉〉 = ∣∣DLZ

0 (t )
〉〉− exp

(∫ t

t0

�1(ξ )dξ

)∣∣DLZ
1 (0)

〉〉
, (73)

where �1(t ) = λ1(t ) − 〈〈E1(t )|Ḋ1(t )〉〉. By using that
〈〈E1(t )|Ḋ1(t )〉〉 = 0, we then obtain �1(t ) = −2γ (t ). Thus,
we write∣∣ρLZ

ad (t )
〉〉 = ∣∣DLZ

0 (t )
〉〉− exp

(
−
∫ t

t0

2γ (ξ )dξ

)∣∣DLZ
1 (t )

〉〉
. (74)

The explicit vector form of the above state is

∣∣ρLZ
ad (t )

〉〉 = [
1 − exp

(− ∫ t
t0

2γ (ξ )dξ
)

sin θ (t ) 0 − exp
(− ∫ t

t0
2γ (ξ )dξ

)
cos θ (t )

]T
. (75)

By returning to the density matrix for the above dynamics, we
then get

ρLZ
ad (t ) = 1

2

[
1 − exp

(
−
∫ t

t0

2γ (ξ )dξ

)
sin θ (t )σx

− exp

(
−
∫ t

t0

2γ (ξ )dξ

)
cos θ (t )σz

]
. (76)

2. Landau-Zener standard TQD

From Eqs. (70) and (71) we find the adiabatic phases asso-
ciated with each eigenvector, which are given by

�LZ
0 (t ) = 0, �LZ

1 (t ) = −2γ (t ), (77)

�LZ
2 (t ) = −γ (t ) − sec θ (t )κ (t ) − GLZ

2 (t ), (78)

�LZ
3 (t ) = −γ (t ) + sec θ (t )κ (t ) − GLZ

3 (t ), (79)

where GLZ
μ (t ) = 〈〈ELZ

μ (t )|ḊLZ
μ (t )〉〉 are the generalized Berry

phases

GLZ
2 (t ) = � (t )[κ (t ) − cos θ (t )γ (t )]

2κ2(t ) sec θ (t )
, (80a)

GLZ
3 (t ) = −� (t )[κ (t ) + cos θ (t )γ (t )]

2κ2(t ) sec θ (t )
, (80b)

with � (t ) = γ (t )θ̇ (t ) tan θ (t ) − γ̇ (t ). From Eqs. (80a) and
(80b) it is possible to see that, when � (t ) = 0, we obtain
for the Landau-Zener model the generalized parallel transport
condition GLZ

μ (t ) = 0 for all μ. Notice that this is reached for

γ (t ) = γ̃ (t ) = γ0 sec θ (t ) (81)

for some constant γ0. From the standard TQD theory, we can
then write the counterdiabatic Lindbladian as

LLZ
cd (t ) =

3∑
μ=0

[∣∣ḊLZ
μ (t )

〉〉〈〈
ELZ

μ (t )
∣∣− GLZ

μ (t )
∣∣DLZ

μ (t )
〉〉〈〈
ELZ

μ (t )
∣∣].

(82)

By using Eqs. (70) and (71) we find

LLZ
cd (t ) =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 �̃ (t )

2κ2(t ) θ̇ (t )
0 −3�̃ (t )

2κ2(t ) 0 3�̃ (t ) sin θ (t )
2 cos θ (t )κ2(t )

0 −θ̇ (t ) − �̃ (t ) sin θ (t )
2 cos θ (t )κ2(t ) 0

⎤
⎥⎥⎥⎦, (83)

where �̃ = ω0� (t ) cos2 θ (t ). Similarly as discussed for the
Deutsch problem, we can make the Lindblad superoperator
LLZ

cd (t ) antisymmetric by imposing � (t ) = 0, which corre-
sponds to the fulfillment of the generalized parallel transport
condition, as provided by Eq. (81). Hence, by using this
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condition, we get

LLZ
cd (t ) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 θ̇ (t )
0 0 0 0
0 −θ̇ (t ) 0 0

⎤
⎥⎥⎦. (84)

The Lindbladian contribution LLZ
cd [•] associated with the

counterdiabatic superoperator LLZ
cd (t ) is then

LLZ
cd [•] = 1

ih̄
[HLZ

cd (t ), •], (85)

with the counterdiabatic Hamiltonian given by

HLZ
cd (t ) = h̄θ̇ (t )

2
σy. (86)

Therefore, the transitionless master equation is

ρ̇(t ) = − i

h̄

[
HLZ

STQD(t ), ρ(t )
]+ γ (t )[σyρ(t )σy − ρ(t )], (87)

where HLZ
STQD(t ) = HLZ(t ) + HLZ

cd (t ). This correction term is
exactly the counterdiabatic term for the Landau-Zener Hamil-
tonian found in Refs. [34,44]. In particular, it allows for the
implementation of the adiabatic dynamics given by

ρ̃LZ
ad (t ) = 1

2

[
1 − exp

(
−2

∫ t

0
γ̃ (ξ )dξ

)
sin θ (t )σx

− exp

(
−2

∫ t

0
γ̃ (ξ )dξ

)
cos θ (t )σz

]
. (88)

3. Landau-Zener generalized TQD

The generalized TQD for the Landau-Zener model is ob-
tained by implementing the Lindblad superoperator

LLZ
GTQD(t ) =

3∑
α=0

�LZ
α (t )

∣∣DLZ
α (t )

〉〉〈〈
ELZ

α (t )
∣∣+|ḊLZ

α (t )
〉〉〈〈
ELZ

α (t )
∣∣.

(89)

By employing the same procedure as performed for the
Deutsch algorithm, we find that the generalized Lindblad su-
peroperator can be written as

LLZ
GTQD(t ) =

⎡
⎢⎢⎣

0 0 0 0
0 −2γ0 sec θ (t ) 0 θ̃

0 0 −2γ0 sec θ (t ) 0
0 −θ̃ 0 −2γ0 sec θ (t )

⎤
⎥⎥⎦, (90)

which is obtained by choosing �2(t ) = �3(t ) =
−2γ0 sec θ (t ). The master equation then reads

ρ̇(t ) = 1

ih̄

[
HLZ

cd , ρ(t )
]+ RLZ

x [ρ(t )] +RLZ
y [ρ(t )] +RLZ

z [ρ(t )],

(91)

where HLZ
cd is given by Eq. (86) and

RLZ
k [•] = γ0 sec θ (t )

2
(σk • σk − •). (92)

This illustrates the fact that, in some situations, a time-
independent Lindblad superoperator cannot be obtained,
but the free parameters are still useful to provide time-
independent fields for the Hamiltonian driving the system.
As an example, let us consider θ (t ) = θ0t/τ so that Eq. (88)
provides, at t = τ , the density operator

ρ̃LZ
ad (τ ) = 1

2 [1 − e−2γ0τϑ (θ0 ) sin θ0σx − e−2γ0τϑ (θ0 ) cos θ0σz],

(93)

where ϑ (θ0) = − log(cos θ0)/θ0 for 0 � θ0 < π/2. In order
to achieve this state, we plot the fidelity F LZ

OS (τω) for the
adiabatic and TQD dynamics in Fig. 3, where F LZ

OS (τω) is
computed from Eq. (66), with the target state given by ρ̃LZ

ad (τ ).
As discussed in the preceding section, the use of the TQD
evolution to achieve high fidelity in open systems does not
necessarily imply high fidelity for the adiabatic trajectory in
closed systems. This result is supported by Fig. 4, where we
illustrate several distinct trajectories in the Bloch sphere.

V. CONCLUSION

We have introduced a generalized approach for TQD
in open systems, which provides a phase freedom in the
Lindblad superoperator. Such phase freedom allows for an
optimization of the evolution as we drive the system through a

FIG. 3. Fidelity F LZ
OS (ωτ ) to achieve the open-system adiabatic

target state of the Landau-Zener dynamics under a bit phase flip
for different values of γ0. Solid lines with closed symbols represent
F LZ

OS (ωτ ) when the system is driven by the master equation (68),
while dashed lines with open symbols represent F LZ

OS (ωτ ) when the
system is driven by the generalized TQD master equation (91). The
inset shows FOS(ωτ ) for the standard TQD evolution in Eq. (87).
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FIG. 4. Trajectories in the Bloch sphere for several quantum
evolutions: adiabatic solution given by Eq. (88) (Ad. Solution), exact
solution of the master equation (68) (Adiabatic ME), standard TQD
approach in Eq. (87) (Standard TQD ME), and generalized TQD
method in Eq. (91) (General. TQD ME). The dynamics is considered
for closed (left Bloch sphere) and open (right Bloch sphere) cases,
where we consider the total evolution time such that τω = 10

transitionless path. In particular, we discussed how to recover
the standard TQD approach by suitably choosing the arbitrary
phases of the generalized Lindblad superoperator. Moreover,
we provided a theorem providing sufficient conditions for a
time-independent generalized TQD Lindblad superoperator.
As a direct consequence, we can mimic the adiabatic dynam-
ics in open systems using time-independent control for both
Hamiltonian and reservoir engineering. Our results were ap-
plied to two different situations. The first application concerns
quantum computation through the adiabatic Deutsch algo-
rithm under dephasing. For such an evolution, we determined
the generalized phases in order to obtain a time-independent
TQD master equation. As a second example, we considered
a two-level system driven by the Landau-Zener Hamiltonian,
with interest in atomic and/or molecular physics. We consid-
ered a nonunitary evolution under the bit-phase-flip channel.
Such an example illustrates a time-dependent master equation,
but with constant driving fields in the Hamiltonian. In both
situations, we showed how reservoir engineering can be used
to obtain an open-system parallel transport condition, which
provides a geometric interpretation of shortcuts to adiabaticity
in open systems.

The methods presented here offer the possibility of a num-
ber of applications in open-system inverse engineering, with
potential impact even on universal Lindblad-like master equa-
tions [56]. For example, we can devise inverse engineering
methods to design system-reservoir interactions able to track
the ground state of a desired time-dependent Hamiltonian
(induced adiabaticity). This is useful as an environment-based
quantum control technique, which resembles the approaches
proposed in Refs. [14,57].

Extending the efficiency of quantum control to open sys-
tems is an important issue, which is still more challenging for
the case of many-body real systems embedded in an external
environment. Our approach offers finite-time flexible control
as long as the system can be described by a tractable local
master equation in the adiabatic regime and the required TQD
interaction can be reduced to sufficiently local couplings. This
is a point worthy of further exploration in order to increase the
size of quantum systems. Moreover, shortcuts to adiabaticity
in open systems are also potentially fruitful in the investiga-
tion of quantum thermodynamics far from equilibrium. We

have previously shown that the adiabatic behavior of open
systems is compatible with the entropy variation at equilib-
rium [52]. We can now envisage the application of our results
to study entropy production in irreversible dynamics via coun-
terdiabatic methods. Shortcuts to quantum thermalization and
out-of-equilibrium processes via inverse engineering are ex-
pected to be addressed in future research.
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APPENDIX A: OPEN SYSTEMS IN THE SUPEROPERATOR
FORMALISM

In the theory of open systems, the dynamics of a quantum
system S, with a Hilbert spaceHS, coupled to an environment
A, with a Hilbert spaceHA, is generically described by a mas-
ter equation that takes into account the system-environment
interaction. In particular, we consider here a system dynamics
described by the time-local master equation [58,59]

ρ̇(t ) = Lt [ρ(t )], (A1)

whereLt [•] is the generator of the dynamics and the subscript
t makes explicit the possibility of the time dependence of
the parameters associated with the environment. One way to
deal with the above equation is to define an extended space
where the generator Lt [•] becomes a (D2 × D2)-dimensional
superoperator L(t ) and the density operator becomes a super-
vector |ρ(t )〉〉. To see how it can be done, we define a set of
D2 − 1 operators O = {σn} ∈ HS (n � 1) so that Tr{σn} = 0
and Tr{σnσ

†
m} = Dδnm. The identity is introduced as a D-

dimensional operator σ0 = 1 so that we will be able to ensure
Tr{ρ(t )} = 1. In this form, we can expand ρ(t ) as

ρ = 1

D

[
1 +

D2−1∑
n=1

�nσn

]
, (A2)

with �n = Tr{ρσ †
n }. So, by using this expanded form of the

density operator in Eq. (A1), we find the system of differential
equations

�̇k (t ) = 1

D

D2−1∑
n=0

�i(t )Tr{σ †
kL[σi]}, (A3)

where we assume that L[•] is a linear operator. Note that if
we identify the coefficient Tr{σ †

kL[σi]} in the above equation
as an element of the kth row and ith column of a (D2 × D2)-
dimensional matrix L(t ), we can write

|ρ̇(t )〉〉 = L(t )|ρ(t )〉〉, (A4)
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where |ρ(t )〉〉 is a D2-dimensional vector with compo-
nents �n(t ) = Tr{ρ(t )σ †

n }, n = 0, 1, . . . , D2 − 1. This proves
Eq. (7).

An important remark is that, due to the non-Hermiticity
of the operator L[•], the superoperator L(t ) may not be
diagonalizable. Nevertheless, square matrices can always be
written in the Jordan canonical form, where L(t ) displays
a block-diagonal structure LJ(t ) composed of Jordan blocks
Jn(t ). The number of Jordan blocks is the sum of the geometric
multiplicities of all the eigenvalues λα (t ) of L(t ) [60]. Then
we have the following definition.

Definition of the Jordan block. Given a K × K matrix L, the
Jordan-block form of L reads

LJ =

⎡
⎢⎢⎢⎢⎢⎣

Jk1 [λk1 ] 0 0 · · · 0
0 Jk2 [λk2 ] 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 . . . 0
0 · · · · · · 0 JkN [λN ]

⎤
⎥⎥⎥⎥⎥⎦

K×K

, (A5)

where each block Jk1 [λk1 ] is given by an upper triangular
matrix of the form

Jk[λ] =

⎡
⎢⎢⎢⎢⎣

λ 1 0 · · · 0
0 λ 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 λ 1
0 · · · · · · 0 λ

⎤
⎥⎥⎥⎥⎦

k×k

, (A6)

with λ denoting the eigenvalues of L. Alternatively, a K × K
Jordan matrix LJ can be defined as

LJ = Jk1 [λ1] ⊕ Jk2 [λ2] ⊕ · · · ⊕ JkN [λN ] =
N⊕

α=1

Jkα
[λα], (A7)

where N � K is the number of Jordan blocks required to write
LJ in a Jordan-block form and k1 + k2 + · · · + kN = K .

In some cases, the coefficients λn may depend on other
parameters (time, for example). Then, by assuming that the
coefficients λn depend on a complete set of parameters ξ =
{ξ1, . . . , ξM}, we define the Jordan matrix as

LJ (ξ ) = Jk1 [λ1(ξ )] ⊕ Jk2 [λ2(ξ )] ⊕ · · · ⊕ JkN [λN (ξ )]. (A8)

The notion of Jordan form is important here because,
different from the generator of a unitary dynamics (the Hamil-
tonian), the generator L(t ) in an open system does not always
admit a diagonal form. However, every square matrix A can
be diagonalized by blocks from the Jordan canonical form
theorem [60].

Theorem 2 (Jordan canonical form). Let A ∈ MK be a K ×
K square matrix in the set MK . Then there is a nonsingular
matrix S ∈ MK , positive integers k1, . . . , kN , with k1 + k2 +
· · · + kN = K (N � K), and scalars λ1, . . . , λN ∈ C so that

A(ξ ) = S(ξ )JA(ξ )S−1(ξ ), (A9)

where JA(ξ ) = Jk1 [λ1(ξ )] ⊕ Jk2 [λ2(ξ )] ⊕ · · · ⊕ JkN [λN (ξ )] is
the Jordan matrix associated with A(ξ ).

Now, by using the above discussion of the superoperator
L(t ), we can obtain its Jordan form through the matrix S(t ),

which allows us to write

LJ(t ) = S−1(t )L(t )S(t ) =
N⊕

α=1

LNα
[λα (t )], (A10)

where N is the sum of the geometric multiplicities of all the
eigenvalues λα (t ) of L(t ) and each block LNα

[λα (t )] is an
(Nα × Nα )-dimensional matrix given as in Eq. (A6). Since
the Hilbert space of the system has dimension D, we find
N1 + N2 + · · · + NN = D2. In addition, as an immediate con-
sequence of the structure of LJ(t ), we see that L(t ) does
not always admit the existence of a complete set of eigen-
vectors. Instead, we define right |Dnα

α (t )〉〉 and left 〈〈Enα
α (t )|

quasieigenvectors of L(t ) associated with the eigenvalue
λα (t ), satisfying

L(t )
∣∣Dnα

α (t )
〉〉 = ∣∣D(nα−1)

α (t )
〉〉+ λα (t )

∣∣Dnα

α (t )
〉〉
, (A11a)〈〈

Enα

α (t )
∣∣L(t ) = 〈〈

E(nα+1)
α (t )

∣∣+ 〈〈
Enα

α (t )
∣∣λα (t ). (A11b)

The sets {|Dnα
α (t )〉〉} and {〈〈Enα

α (t )|} constitute bases for the
space associated with the operator L(t ), satisfying the nor-
malization condition 〈〈Emβ

β (t )|Dnα
α (t )〉〉 = δβαδmβnα

and the
completeness relationship

N∑
α=1

Nα∑
nα=1

∣∣Dnα

α (t )
〉〉〈〈
Enα

α (t )
∣∣ = 1D2×D2 , (A12)

where N is the number of Jordan blocks in Eq. (A10) and Nα

is the dimension of the αth Jordan block.

APPENDIX B: STANDARD COUNTERDIABATIC
LINDBLADIANS

Let us derive the standard counterdiabatic Lindblad
superoperator from the similarity transformation LJ(t ) =
C−1(t )L(t )C(t ) induced by the superoperator C(t ), with LJ(t )
denoting the Jordan canonical form of L(t ). From Eq. (12) we
have

[LJ(t ) + Ċ−1(t )C(t )]|ρ(t )〉〉J = |ρ̇(t )〉〉J, (B1)

with |ρ(t )〉〉J = C−1(t )|ρ(t )〉〉J. We then split the term
Ċ−1(t )C(t ) into two contributions Ċ−1(t )C(t ) = L′

J(t ) +
L′

nd(t ) so that we can rewrite Eq. (B1) as

[LJ(t ) + L′
J(t ) + L′

nd(t )]|ρ(t )〉〉J = |ρ̇(t )〉〉J, (B2)

where

L′
J(t ) =

N−1∑
μ=0

Nμ∑
nμ=1

Nμ∑
�μ=1

Cnμ�μ

μμ (t )
∣∣σ nμ

μ

〉〉〈〈
σ

�μ

μ

∣∣, (B3)

L′
nd(t ) =

N−1∑
ν �=μ

Nν∑
nν=1

N−1∑
μ=0

Nμ∑
�μ=1

Cnν�μ

νμ (t )
∣∣σ nν

ν

〉〉〈〈
σ

�μ

μ

∣∣, (B4)

with coefficients Cnν�μ

νμ (t ) = 〈〈σ nν
ν |Ċ−1(t )C(t )|σ �μ

μ 〉〉. Equation
(B2) leads to the counterdiabatic Lindbladian as proposed by
Vacanti et al. in Ref. [42], which reads

Lcd(t ) = −C(t )L′
nd(t )C−1(t ). (B5)

Henceforth, we aim at providing Lcd(t ) in terms of the right
and left quasieigenbases {|Dmβ

β (t )〉〉} and {〈〈Emβ

β (t )|}. In this
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direction, we start by expressing Lcd(t ) as

Lcd(t ) = −C(t )L′
nd(t )C−1(t ) = −C(t )L′

nd(t )C−1(t ) + [C(t )L′
J(t )C−1(t ) − C(t )L′

J(t )C−1(t )]

= −C(t )[L′
nd(t ) + L′

J(t )]C−1(t ) + C(t )L′
J(t )C−1(t ) = −C(t )[Ċ−1(t )C(t )]C−1(t ) + C(t )L′

J(t )C−1(t ). (B6)

Let us now use Ċ−1(t )C(t ) = −C−1(t )Ċ(t ), yielding

Lcd(t ) = Ċ(t )C−1(t ) + C(t )L′
J(t )C−1(t ). (B7)

Thus, we can compute each term on the right-hand side of Eq. (B7) as

Ċ(t )C−1(t ) =
⎡
⎣N−1∑

μ=0

Nμ∑
nμ=1

∣∣Ḋnμ

μ (t )
〉〉〈〈

σ
nμ

μ

∣∣
⎤
⎦[N−1∑

ν=0

Nν∑
kν=1

∣∣σ kν

ν

〉〉〈〈
Ekν

ν (t )
∣∣] =

N−1∑
μ=0

Nμ∑
nμ=1

∣∣Ḋnμ

μ (t )
〉〉〈〈
Enμ

μ (t )
∣∣ (B8)

and

C(t )L′
J(t )C−1(t ) =

⎡
⎣N−1∑

μ=0

Nμ∑
nμ=1

∣∣Dnμ

μ (t )
〉〉〈〈

σ
nμ

μ

∣∣
⎤
⎦
⎡
⎣N−1∑

η=0

Nη∑
jη=1

Nη∑
�η=1

C jη�η

ηη (t )
∣∣σ jη

η

〉〉〈〈
σ

�η

η

∣∣
⎤
⎦[N−1∑

ν=0

Nν∑
kν=1

∣∣σ kν

ν

〉〉〈〈
Ekν

ν (t )
∣∣]

=
N−1∑
μ=0

Nμ∑
nμ=1

N−1∑
η=0

Nη∑
jη=1

Nη∑
�η=1

N−1∑
ν=0

Nν∑
kν=1

[∣∣Dnμ

μ (t )
〉〉〈〈

σ
nμ

μ

∣∣][C jη�η

ηη (t )
∣∣σ jη

η

〉〉〈〈
σ

�η

η

∣∣][∣∣σ kν

ν

〉〉〈〈
Ekν

ν (t )
∣∣]

=
N−1∑
μ=0

Nμ∑
nμ=1

N−1∑
η=0

Nη∑
jη=1

Nη∑
�η=1

N−1∑
ν=0

Nν∑
kν=1

⎡
⎢⎣C jη�η

ηη (t )
∣∣Dnμ

μ (t )
〉〉 〈〈

σ
nμ

μ

∣∣σ jη
η

〉〉︸ ︷︷ ︸
δμηδnμ jη

〈〈
σ

�η

η

∣∣σ kν

ν

〉〉︸ ︷︷ ︸
δνηδ�ηkν

〈〈
Ekν

ν (t )
∣∣
⎤
⎥⎦

=
N−1∑
μ=0

Nμ∑
nμ=1

Nμ∑
kμ=1

[
Cnμkμ

μμ (t )
∣∣Dnμ

μ (t )
〉〉〈〈
Ekμ

μ (t )
∣∣] =

N−1∑
μ=0

Nμ∑
nμ,kμ=1

[〈〈
σ

nμ

μ

∣∣Ċ−1(t )C(t )
∣∣σ kμ

μ

〉〉∣∣Dnμ

μ (t )
〉〉〈〈
Ekμ

μ (t )
∣∣], (B9)

where we used Cnμkμ

μμ (t ) = 〈〈σ nμ

μ |Ċ−1(t )C(t )|σ kμ

μ 〉〉 in the last equality. Now we use the definition of C(t ) in Eq. (11) to express
Ċ−1(t )C(t ) as

Ċ−1(t )C(t ) = −
N−1∑
η=0

Nη∑
�η=1

N−1∑
ν=0

Nν∑
jν=1

G�η jν
ην (t )

∣∣σ �η

η

〉〉〈〈
σ jν

ν

∣∣, (B10)

where G�η jν
ην (t ) = 〈〈E�η

η (t )|Ḋ jν
ν (t )〉〉, so that

〈〈
σ

nμ

μ |Ċ−1(t )C(t )|σ kμ

μ 〉〉 = −
N−1∑
η,ν=0

Nη,Nν∑
�η, jν =1

G�η jν
ην (t )δμηδnμ�η

δνμδ jνkμ
= −Gnμkμ

μμ (t ). (B11)

Therefore, by inserting Eq. (B11) in Eq. (B9), we get

C(t )L′
J(t )C−1(t ) = −

N−1∑
μ=0

Nμ∑
nμ,kμ=1

[
Gnμkμ

μμ (t )
∣∣Dnμ

μ (t )
〉〉〈〈
Ekμ

μ (t )
∣∣]. (B12)

So from Eqs. (B7), (B8), and (B12) we conclude that

Lcd(t ) =
N−1∑
μ=0

Nμ∑
nμ=1

⎡
⎣∣∣Ḋnμ

μ

〉〉〈〈
Enμ

μ

∣∣− Nμ∑
kμ=1

Gnμkμ

μμ

∣∣Dnμ

μ

〉〉〈〈
Ekμ

μ

∣∣
⎤
⎦. (B13)

Therefore, Lcd(t ) exhibits a structure that is formally identical to the standard counterdiabatic Hamiltonian Hcd(t ) in Eq. (3). Let
us now show that Lcd(t ) mimics the adiabatic evolution in open systems. In the superoperator formalism, the master equation is
given by

|ρ̇(t )〉〉 = [L(t ) + Lcd(t )]|ρ(t )〉〉. (B14)

We now use the expansion |ρ(t )〉〉 = ∑
α,nα

rnα
α (t )|Dnα

α (t )〉〉 in terms of the right quasieigenbasis of L(t ). For each component
rnα
α (t )|Dnα

α (t )〉〉 we then get

d

dt

[
rnα

α (t )
∣∣Dnα

α (t )
〉〉] = rnα

α (t )[L(t ) + Lcd(t )]
∣∣Dnα

α (t )
〉〉
. (B15)
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By defining LSTQD(t ) = L(t ) + Lcd(t ), we obtain

LSTQD(t )
∣∣Dnα

α (t )
〉〉 = [L(t ) + Lcd(t )]

∣∣Dnα

α (t )
〉〉

= ∣∣D(nα−1)
α (t )

〉〉+ λα (t )
∣∣Dnα

α (t )
〉〉+ N−1∑

μ=0

Nμ∑
nμ=1

∣∣Ḋnμ

μ (t )
〉〉〈〈
Enμ

μ (t )
∣∣Dnα

α (t )
〉〉

−
N−1∑
μ=0

Nμ∑
nμ,kμ=1

Gnμkμ

μμ (t )
∣∣Dnμ

μ (t )
〉〉〈〈
Ekμ

μ (t )
∣∣Dnα

α (t )
〉〉

= ∣∣D(nα−1)
α

〉〉+ λα

∣∣Dnα

α

〉〉+ ∣∣Ḋnα

α

〉〉− Nμ∑
nμ=1

Gnμnα

αα

∣∣Dnμ

α

〉〉
, (B16)

so that, after projecting Eq. (B15) over 〈〈E jβ
β (t )|, the dynamics

for the coefficient r jβ
β (t ) reads

ṙ jβ
β (t ) = λβ (t )r jβ

β (t ) −
Nα∑

nα=1

G jβ nα

ββ (t )rnα

β (t ) + r ( jβ+1)
β (t ).

(B17)

Equation (B17) implies the adiabatic behavior, with the Jor-
dan blocks decoupled from each other and the standard
open-system adiabatic phase fixed [13,52]. Therefore, the
Lindbladian LSTQD(t ) = L′(t ) = L(t ) + Lcd(t ) exactly mim-
ics the adiabatic dynamics in open systems.

APPENDIX C: INVERSE ENGINEERING IN OPEN
SYSTEMS

Let us start from the time-local master equation provided
by Eq. (7) and assume that the evolved density operator |ρ(t )〉〉
can be obtained by a nonunitary superoperator V(t, t0) as
|ρ(t )〉〉 = V(t, t0)|ρ(t0)〉〉. Then

V̇(t, t0)|ρ(t0)〉〉 = L(t )V(t, t0)|ρ(t0)〉〉, (C1)

which holds for any initial state |ρ(t0)〉〉. Therefore,

V̇(t, t0) = L(t )V(t, t0). (C2)

We assume an open-system evolution driven by an invertible
dynamical map. Then we consider a superoperatorV−1(t, t0)
so that V−1(t, t0)V(t, t0) = 1. By multiplying Eq. (C2) by
V−1(t, t0), we get

L(t ) = V̇(t, t0)V−1(t, t0). (C3)

Equation (C3) generalizes the inverse engineering approach to
the realm of open quantum systems.

APPENDIX D: GENERALIZED TQD FOR 1D JORDAN
DECOMPOSITION

Let L(t ) be a Lindbladian superoperator that admits one-
dimensional Jordan-block decomposition. Then the phase-
free generalized TQD evolution operator reads

V1D
GTQD(t, t0) =

N−1∑
α=0

exp

(∫ t

t0

�α (ξ )dξ

)
|Dα (t )〉〉〈〈Eα (t0)|, (D1)

so that the associated Lindbladian is

L1D
GTQD(t ) =

N−1∑
α=0

N−1∑
β=0

d

dt

[
exp

(∫ t

t0

�α (ξ )dξ

)
|Dα (t )〉〉

]
〈〈Eβ (t )| exp

(
−
∫ t

t0

�β (ξ )dξ

)
〈〈Eα (t0)|Dβ (t0)〉〉

=
N−1∑
α=0

d

dt

[
exp

(∫ t

t0

�α (ξ )dξ

)
|Dα (t )〉〉

]
〈〈Eα (t )| exp

(
−
∫ t

t0

�α (ξ )dξ

)

=
N−1∑
α=0

�α (t ) exp

(∫ t

t0

�α (ξ )dξ

)
|Dα (t )〉〉〈〈Eα (t )| exp

(
−
∫ t

t0

�α (ξ )dξ

)

+ exp

(∫ t

t0

�α (ξ )dξ

)
|Ḋα (t )〉〉〈〈Eα (t )| exp

(
−
∫ t

t0

�α (ξ )dξ

)

=
N−1∑
α=0

�α (t )|Dα (t )〉〉〈〈Eα (t )| + |Ḋα (t )〉〉〈〈Eα (t )|. (D2)
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The standard TQD Lindbladian L1D
STQD(t ) can be recovered by imposing that �α (t ) is equal to the open-system adiabatic phase,

i.e., �α (t ) = λα (t ) − 〈〈Eα (t )|Ḋα (t )〉〉. In that case, we have

L1D
GTQD(t ) =

L(t )︷ ︸︸ ︷
N−1∑
α=0

λα (t )|Dα (t )〉〉〈〈Eα (t )|

+
N−1∑
α=0

|Ḋα (t )〉〉〈〈Eα (t )| − 〈〈Eα (t )|Ḋα (t )〉〉|Dα (t )〉〉〈〈Eα (t )|
︸ ︷︷ ︸

L1D
cd (t )

= L(t ) + L1D
cd (t ) = L1D

STQD(t ). (D3)

APPENDIX E: PROOF OF THEOREM 1

We now demonstrate Theorem 1. To this end, we need to consider the time derivative of L1D
GTQD(t ), which yields

L̇1D
GTQD(t ) = d

dt

[
N−1∑
α=0

�α (t )|Dα (t )〉〉〈〈Eα (t )| + |Ḋα (t )〉〉〈〈Eα (t )|
]

=
N−1∑
α=0

[�̇α (t )|Dα (t )〉〉〈〈Eα (t )| + �α (t )|Ḋα (t )〉〉〈〈Eα (t )| + �α (t )|Dα (t )〉〉〈〈Ėα (t )|]

+
N−1∑
α=0

[|D̈α (t )〉〉〈〈Eα (t )| + |Ḋα (t )〉〉〈〈Ėα (t )|]. (E1)

By computing the matrix elements L̇1D
GTQD(t )|ηβ = 〈〈Eη(t )|L̇1D

GTQD(t )|Dβ (t )〉〉, we obtain

L̇1D
GTQD(t )|ηβ =

N−1∑
α=0

[�̇α (t )δηαδαβ + �α (t )〈〈Eη(t )|Ḋα (t )〉〉δαβ + �α (t )δηα〈〈Ėα (t )|Dβ (t )〉〉]

+
N−1∑
α=0

[〈〈Eη(t )|Ḋα (t )〉〉〈〈Ėα (t )|Dβ (t )〉〉 + 〈〈Eη(t )|D̈α (t )〉〉δαβ]

= �̇η(t )δηβ + [�β (t ) − �η(t )]〈〈Eη(t )|Ḋβ (t )〉〉 + 〈〈Eη(t )|D̈β (t )〉〉 + 〈〈Ėη(t )|Ḋβ (t )〉〉, (E2)

where we have used the identity 〈〈Eη(t )|Ḋα (t )〉〉 = −〈〈Ėη(t )|Dα (t )〉〉 (due to the left-right eigenvector orthonormalization) and
the completeness relation

∑N−1
α=0 |Dα (t )〉〉〈〈Eα (t )| = 1. Thus, in order to get a time-independent Lindbladian superoperator, we

need to find parameters �β (t ) so that L̇1D
GTQD(t ) = 0. This occurs if and only if we require

L̇1D
GTQD(t )|ηη = �̇η(t ) + d

dt
[〈〈Eη(t )|Ḋη(t )〉〉] = 0, (E3)

L̇1D
GTQD(t )|η,β �=η = [�β (t ) − �η(t )]〈〈Eη(t )|Ḋβ (t )〉〉 + d

dt
[〈〈Eη(t )|Ḋβ (t )〉〉] = 0. (E4)

Let us assume that we have

d

dt
[〈〈Eη(t )|Ḋβ (t )〉〉] = 0 ∀ η, β. (E5)

Under this condition, it is possible to solve Eqs. (E3) and (E4) by simply imposing

�β = �η = const ∀ η, β. (E6)

On the other hand, even if Eq. (E5) is not satisfied, we may find an analytical solution. By explicitly solving Eq. (E3) for �η(t )
and by denoting the solution by �η(t ), we obtain

�η(t ) − �η(t0) = −
∫ t

t0

d

dξ
[〈〈Eη(ξ )|Ḋη(ξ )〉〉]dξ

= 〈〈Eη(t0)|Ḋη(t0)〉〉 − 〈〈Eη(t )|Ḋη(t )〉〉 (E7)
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so that

�η(t ) = −〈〈Eη(t )|Ḋη(t )〉〉 ≡ Gη(t ). (E8)

However, we still have to further impose Eq. (E4) in order to guarantee that �η(t ) provides a time-independent Lindbladian. By
using Eq. (E8) in Eq. (E4), we get

L̇1D
GTQD(t )|η,β �=η = [�β (t ) − �η(t )]〈〈Eη(t )|Ḋβ (t )〉〉 + d

dt
[〈〈Eη(t )|Ḋβ (t )〉〉]

= [Gβ (t ) − Gη(t )]〈〈Eη(t )|Ḋβ (t )〉〉 + d

dt
[〈〈Eη(t )|Ḋβ (t )〉〉] = 0. (E9)

Therefore, we have a differential equation for 〈〈Eη(t )|Ḋβ (t )〉〉, which can be rewritten as

d
dt [〈〈Eη(t )|Ḋβ (t )〉〉]
〈〈Eη(t )|Ḋβ (t )〉〉 = Gη(t ) − Gβ (t ). (E10)

Equation (E10) then yields

d

dt
ln[〈〈Eη(t )|Ḋβ (t )〉〉] = Gη(t ) − Gβ (t ), (E11)

where, by integrating, we find

ln

[ 〈〈Eη(t )|Ḋβ (t )〉〉
〈〈Eη(t0)|Ḋβ (t0)〉〉

]
=
∫ t

t0

[Gη(ξ ) − Gβ (ξ )]dξ . (E12)

Therefore, we conclude that the condition to be satisfied is given by

〈〈Eη(t )|Ḋβ (t )〉〉 = 〈〈Eη(t0)|Ḋβ (t0)〉〉 exp

(∫ t

t0

[Gη(ξ ) − Gβ (ξ )]dξ

)
∀ η, β. (E13)

We can now analyze a particular case. As discussed in Ref. [54], from the set of right eigenvectors of the Lindbladian, it is
always possible to get a time-independent eigenvector |D0(t )〉〉 = |D0〉〉 associated with an eigenvalue λ0 = 0. Let us consider
the matrix elements of the Lindbladian for this constant eigenvector. From Eqs. (E3) and (E4) we write

〈〈E0(t )|L̇1D
GTQD(t )|D0(t )〉〉 = �̇0(t ) + d

dt
[〈〈E0(t )|Ḋ0(t )〉〉] = 0, (E14)

〈〈E0(t )|L̇1D
GTQD(t )|Dβ �=0(t )〉〉 = [�β (t ) − �0(t )]〈〈E0(t )|Ḋβ (t )〉〉 + d

dt
[〈〈E0(t )|Ḋβ (t )〉〉] = 0. (E15)

Therefore, since |D0(t )〉〉 = |D0〉〉, we can always choose a corresponding time-independent left eigenvector 〈〈E0(t )| = 〈〈E0| so
that 〈〈E0(t )|Ḋβ (t )〉〉 = 0 ∀β (due to the orthonormalization condition). Hence

〈〈E0(t )|L̇1D
GTQD(t )|D0(t )〉〉 = �̇0(t ) = 0, (E16)

〈〈E0(t )|L̇1D
GTQD(t )|Dβ �=0(t )〉〉 = 0. (E17)

This shows that �0(t ) can be chosen to be constant independently of the remaining parameters �β �=0(t ), i.e., the definition of
the phase specifically associated with the vanishing eigenvalue λ0 = 0 is decoupled from the other sectors β �= 0.

APPENDIX F: GENERALIZED TQD LINDBLAD SUPEROPERATOR FOR MULTIDIMENSIONAL JORDAN BLOCKS

Let us obtain the generalized TQD Lindbladian for multidimensional Jordan blocks, which is provided by Eq. (30). First, we
write the evolution superoperator, which reads

VGTQD(t, t0) =
N−1∑
α=0

Nα∑
nα=1

Nα∑
mα=1

qnαmα

α

∣∣Dnα

α (t )
〉〉〈〈
Emα

α (t0)
∣∣, (F1)

where the time dependence of the coefficients q is omitted. Then we can write the inverse evolution superoperatorVgen
TQD−1(t, t0)

as

V−1
GTQD(t, t0) =

N−1∑
α=0

Nα∑
nα=1

Nα∑
mα=1

q̃nαmα

α

∣∣Dnα

α (t0)
〉〉〈〈
Emα

α (t )
∣∣, (F2)
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where the coefficients q̃nαmα
α are such that VGTQD(t, t0)V−1

GTQD(t, t0) = 1. In order to determine the conditions to be obeyed by
qnαmα

α and q̃nαmα
α , let us explicitly consider the expression

VGTQD(t, t0)V−1
GTQD(t, t0) =

N−1∑
α=0

Nα∑
nα=1

Nα∑
mα=1

N−1∑
β=0

Nβ∑
kβ=1

Nβ∑
�β=1

qnαmα

α q̃kβ�β

β

〈〈
Emα

α (t0)
∣∣Dkβ

β (t0)
〉〉∣∣Dnα

α (t )
〉〉〈〈
E�β

β (t )
∣∣

=
N−1∑
α=0

Nα∑
nα=1

Nα∑
mα=1

Nα∑
�α=1

qnαmα

α q̃mα�α

α

∣∣Dnα

α (t )
〉〉〈〈
E�α

α (t )
∣∣, (F3)

so that we write

〈〈
Elη

η (t )
∣∣VGTQD(t, t0)V−1

GTQD(t, t0)
∣∣Diκ

κ (t )
〉〉 = N−1∑

α=0

Nα∑
nα=1

Nα∑
mα=1

Nα∑
�α=1

qnαmα

α q̃mα�α

α

〈〈
Elη

η (t )
∣∣Dnα

α (t )
〉〉〈〈
E�α

α (t )|Diκ
κ (t )

〉〉 = δηκ

Nκ∑
mκ=1

qlκ mκ

κ q̃mκ iκ
κ .

(F4)

Thus, we can getVGTQD(t, t0)V−1
GTQD(t, t0) = 1 by imposing

Nκ∑
mκ=1

qlκ mκ

κ q̃mκ iκ
κ = δlκ iκ . (F5)

Now we can derive the generalized TQD Lindbladian LGTQD(t, t0), which implements the dynamics governed by the evolution
superoperatorVGTQD(t, t0). From Eq. (29) we obtain

LGTQD(t, t0) = V̇GTQD(t, t0)V−1
GTQD(t, t0)

=
N−1∑
α=0

Nα∑
nα=1

Nα∑
kα=1

Nα∑
lα=1

[
q̇nαkα

α q̃kα lα
α

∣∣Dnα

α (t )
〉〉〈〈
Elα

α (t )
∣∣+ qnαkα

α q̃kα lα
α

∣∣Ḋnα

α (t )
〉〉〈〈
Elα

α (t )
∣∣]. (F6)

Let us then apply the normalization condition for the parameters qnαmα
α and q̃nαmα

α in Eq. (F6). By using Eq. (F5) in the second
term of Eq. (F6), we then get

LGTQD(t, t0) =
N−1∑
α=0

Nα∑
nα=1

Nα∑
kα=1

Nα∑
lα=1

q̇nαkα

α q̃kα lα
α

∣∣Dnα

α (t )
〉〉〈〈
Elα

α (t )
∣∣+ N−1∑

α=0

Nα∑
nα=1

∣∣Ḋnα

α (t )
〉〉〈〈
Enα

α (t )
∣∣. (F7)

Equation (F7) then reproduces the generalized TQD Lindbladian for multidimensional Jordan blocks provided by Eq. (30).
Naturally, further conditions can be imposed over qnαmα

α and q̃nαmα
α for specific transitionless evolutions, such as in the dynamics

induced by the standard TQD Lindbladian.

APPENDIX G: RECOVERING THE STANDARD TQD LINDBLAD SUPEROPERATOR FOR A GENERAL JORDAN
DECOMPOSITION

Let us consider qnαmα
α (t ) = exp[

∫ t
t0

λα (ξ )dξ ]vnαmα
(t ), which means that the adiabatic evolution is mimicked. In order to satisfy

Eq. (F5), we then have q̃nαmα
α (t ) = exp[− ∫ t

t0
λα (ξ )dξ ]ṽnαmα

(t ). Our aim here is to determine the conditions over the parameters
vkα lα and ṽkα lα such that the generalized Lindblad superoperator LGTQD(t ) reduces to the standard Lindblad superoperator
LSTQD(t ). Thus, by computing LGTQD(t, t0) according with Eq. (F7), we get

LGTQD(t, t0) =
N−1∑
α=0

Nα∑
nα=1

∣∣Ḋnα

α (t )
〉〉〈〈
Enα

α (t )
∣∣+ N−1∑

α=0

Nα∑
nα=1

Nα∑
kα=1

Nα∑
lα=1

d

dt

[
exp

(∫ t

t0

λα (ξ )dξ

)
vnαkα

]

×
(

−
∫ t

t0

λα (ξ )dξ

)
ṽkα lα

∣∣Dnα

α (t )
〉〉〈〈
Elα

α (t )
∣∣, (G1)

which yields

LGTQD(t, t0) =
N−1∑
α=0

Nα∑
nα=1

Nα∑
kα=1

Nα∑
lα=1

λα (t )vnαkα
ṽkα lα

∣∣Dnα

α (t )
〉〉〈〈
Elα

α (t )
∣∣+ N−1∑

α=0

Nα∑
nα=1

Nα∑
kα=1

Nα∑
lα=1

v̇nαkα
ṽkα lα

∣∣Dnα

α (t )
〉〉〈〈
Elα

α (t )
∣∣

+
N−1∑
α=0

Nα∑
nα=1

∣∣Ḋnα

α (t )
〉〉〈〈
Enα

α (t )
∣∣. (G2)
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Now we use the normalization condition between vkα lα and ṽkα lα , provided by Vad(t, t0)V−1
ad (t, t0) = 1. Then Eq. (G2) can be

rewritten as

LGTQD(t ) =
N−1∑
α=0

Nα∑
nα=1

λα (t )
∣∣Dnα

α (t )
〉〉〈〈
Enα

α (t )
∣∣+ N−1∑

α=0

Nα∑
nα=1

∣∣Ḋnα

α (t )
〉〉〈〈
Enα

α (t )
∣∣+ N−1∑

α=0

Nα∑
nα=1

Nα∑
kα=1

Nα∑
lα=1

v̇nαkα
ṽkα lα

∣∣Dnα

α (t )
〉〉〈〈
Elα

α (t )
∣∣. (G3)

Now, let us work on the last term of Eq. (G3). First, let us consider the original Lindblad superoperator L(t ), as provided by
Eq. (7). Its quasispectral decomposition reads

L(t ) =
N−1∑
α=0

Nα∑
nα=1

∣∣D(nα−1)
α (t )

〉〉〈〈
Enα

α (t )
∣∣+ λα (t )

∣∣Dnα

α (t )
〉〉〈〈
Enα

α (t )
∣∣. (G4)

We can then rewrite the standard TQD Lindblad superoperator LSTQD(t ) = L(t ) + Lcd(t ) by using Eqs. (G4) and (18), yielding

LSTQD(t ) =
N−1∑
α=0

Nα∑
nα=1

∣∣D(nα−1)
α (t )

〉〉〈〈
Enα

α (t )
∣∣+ λα (t )

∣∣Dnα

α (t )
〉〉〈〈
Enα

α (t )
∣∣

+
N−1∑
μ=0

Nμ∑
nμ=1

⎡
⎣∣∣Ḋnμ

μ (t )
〉〉〈〈
Enμ

μ (t )
∣∣− Nμ∑

kμ=1

Gnμkμ

μμ (t )
∣∣Dnμ

μ (t )
〉〉〈〈
Ekμ

μ (t )
∣∣
⎤
⎦, (G5)

where Gnμkμ

μμ (t ) = 〈〈Enμ

μ (t )|Ḋkμ

μ (t )〉〉. Thus, we can recover the standard Lindblad superoperator LSTQD(t ) from the generalized
Lindblad superoperator LGTQD(t ) by imposing LGTQD(t ) = LSTQD(t ). From Eqs. (G3) and (G5), this is achieved by requiring

Nα∑
kα=1

v̇nαkα
(t )ṽkα lα (t ) = δnα (lα−1) − 〈〈

Enα

α (t )
∣∣Ḋlα

α (t )
〉〉
. (G6)

Hence, Eq. (G6) connects the generalized TQD formalism with the standard counterdiabatic approach.
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