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Quantum phase transition revealed by the exceptional point in a Hopfield-Bogoliubov matrix
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We use the exceptional point in the Hopfield-Bogoliubov matrix to find the the critical point of the quantum
phase transition in the bosonic system. In many previous jobs, the excitation energy vanished at the critical point.
It can be stated equivalently that the critical point is obtained when the determinant of the Hopfield-Bogoliubov
matrix vanishes. We analytically obtain the Hopfield-Bogoliubov matrix corresponding to the general quadratic
Hamiltonian. For a single-mode system, the appearance of the exceptional point in the Hopfield-Bogoliubov
matrix is equivalent to the disappearance of the determinant of the Hopfield-Bogoliubov matrix. However, in
a multimode bosonic system, they are not equivalent except in some special cases. For example, in the case
of perfect symmetry, that is, swapping any two subsystems and keeping the total Hamiltonian invariable, the
exceptional point and the degenerate point coincide all the time when the quantum phase transition occurs.
When the exceptional point and the degenerate point do not coincide, we find a significant unconventional result.
With the increase in two-photon driving intensity, the normal phase changes to the superradiant phase, then the
superradiant phase changes to the normal phase, and finally the normal phase changes to the superradiant phase.
The discovery of the critical points will help in the design of precision measurements.
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I. INTRODUCTION

Quantum phase transitions are playing an increasingly
important role in many fields, such as, quantum metrology
[1–12], which involves using quantum resources to improve
the measurement precision. The superradiant phase (SP) tran-
sition is one of the most important quantum phase transitions,
which was proposed in the Dicke model for the first time in
1970s [13]. It described the coupling between a collection
of two-level systems and a single-photon mode. In such a
model, a state is recognized as the normal phase (NP) when
the cavity field is in the vacuum and the atoms are in their
ground states; a state is recognized as the SP when the cavity
field is intensely populated with two degenerate ground states
and the atoms are excited simultaneously. The NP (SP) can be
revealed by the order parameter 〈a〉 = 0 (〈a〉 �= 0) [14], where
〈a〉 represents the expected value of the annihilation operator
on the ground state of the cavity field.

In Refs. [15–18], the critical point, also known as the
quantum phase-transition point, is revealed by the degenerate
ground state. However, whether the degenerate ground state
can be the general criteria for the occurrence of quantum
phase transition is a question worth exploring. We will look
at this question carefully and find a more rigorous criterion.

In a non-Hermitian system, purely real eigenvalues of the
non-Hermitian Hamiltonian are obtained in the case of the
parity-time- (PT -) unbroken phase; the eigenvalues become
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imaginary in the case of the PT -broken phase [19]. The
exceptional points (EPs) separate the PT -unbroken phase and
the PT -broken phase. Both the eigenvalues and the eigenvec-
tors coalesce at the EPs.

In the process of the Hopfield-Bogoliubov (HB) trans-
formation, there is a HB matrix, which is a non-Hermitian
matrix generally. Like the PT symmetrical non-Hermitian
Hamiltonian, the eigenvalues of the HB matrix can be real and
imaginary. We define EPs as the separation points between the
real and the imaginary eigenvalues. When one of the eigen-
values of the HB matrix is 0, the ground state of the system
becomes degenerate. We simply define it as a degenerate point
(DP).

In this article, we show that the EPs in the HB matrix can
reveal the quantum phase transition in the bosonic system.
And EPs are always associated with NP-to-SP or SP-to-NP
transitions. The DP and the EP coalesce in the case of a
perfectly symmetric system or a single-mode linear bosonic
system. For the multimode bosonic system, the DP cannot be
the quantum phase-transition point (the critical point) in many
cases. Especially, in the two-mode bosonic system without
counter-rotating-wave interaction, the significant unconven-
tional results are found that with the increase in two-photon
driving intensity, the NP changes to the SP, then the SP
changes to the NP, and finally the NP changes to the SP. With
the counter-rotating-wave interaction, the process of SP →
NP → SP can be also observed.

This article is organized as follows. In Sec.II, we obtain the
general HB matrix for the multimode linear bosonic system
and the corresponding EP. In Sec. III, we show that the EP
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and the DP coincide all the time for the single-mode linear
bosonic system. In Sec. IV, the EP and the DP do not always
coincide for the two-mode linear bosonic system due to the
two-photon driving and counter-rotating-wave interaction. In
Sec. V, the EP in the three-mode quantum Rabi system is
used to improve the estimation precision. We make a brief
conclusion and outlook in Sec. VI.

II. HOPFIELD-BOGOLIUBOV MATRIX

For a general multimode linear bosonic system composed
of N subsystems, the total Hamiltonian is quadratic, which
can be described as

H =
N∑

n=1

Hn +
N∑

i=1,i< j

Hi j, (1)

in which,

Hn = ωna†
nan + (

χna2
n + H.c.

)
, (2)

Hi j = gi jaia j + λi jaia
†
j + Hc., (3)

where Hn denotes the Hamiltonian for the nth subsystem
with n = {1, . . . , N}. ωn is the resonance frequency of the
bosonic subsystem with the annihilation operator an and the
creation operator a†

n, |χn| denotes the strength of two-photon
driving, and λi j (gi j ) denotes the coupling strength of the
rotating (counter-rotating)-wave interaction between the two
subsystems.

By using an HB transformation [20,21] for the NP, the total
Hamiltonian can be rewritten as a diagonal form

H =
N∑

n=1

�nA†
nAn + Eg, (4)

where the collective bosonic mode operators An =∑N
i=1(μniai + νnia

†
i )/

√∑N
i=1(|μni|2 − |νni|2) and Eg

represents the ground-state energy. An satisfies the
commutation relation: [Ai, A†

j ] = δi j . The coefficient vectors
(μn1, . . . , μnN , νn1, . . . , νnN )T are eigenvectors of the HB
matrix M which are derived by the commutation relation
[An, H] = �nAn,

M =
(

A B
−B∗ − A∗

)
, (5)

with submatrices,

A =

⎛
⎜⎜⎝

ω1 λ12 . . . λ1N

λ∗
12 ω2 . . . λ2N
...

...
. . .

...

λ∗
1N λ∗

2N . . . ωN

⎞
⎟⎟⎠, (6)

B =

⎛
⎜⎜⎝

−2χ1 − g12 . . . − g1N

−g12 − 2χ2 . . . − g2N
...

...
. . .

...

−g1N − g2N . . . − 2χN

⎞
⎟⎟⎠. (7)

The spectral values of the HB matrix M have positive and
negative symmetries due to the symmetry of the HB matrix:

CMC−1 = −M, where C is described by

C =
(

0 I
−I − 0

)
. (8)

Even if all of the resonance frequency values ωn are greater
than zero, we need to emphasize that �n is not necessarily a
positive eigenvalue of the HB matrix M. It can be obtained
rigorously by mapping relationships,

�n|χn→0,gi j→0,λi j→0 −→ ωn. (9)

When the determinant of the HB matrix is equal to 0
[Det(M) = 0], the ground state will become degenerate. In
other words, DP appears at �n = 0. In Refs. [16–18], DPs are
directly treated as the critical points when the excited energy
becomes 0. However, we will show that the DP is not the
critical point in many cases.

There are a lot of works on PT -symmetric non-Hermitian
Hamiltonian [22–27], which exist as the EPs separating the
real and imaginary eigenenergy values. At the EPs, the
eigenvalues and their corresponding eigenvectors coalesce.
Similarly, due to that a general HB matrix M is non-Hermitian
and symmetrical, there are also EPs.

For a closed system, the values of ωn are real, A is the
Hermitian: A = A†. Under special circumstances, there are
no counter-rotating-wave interaction and two-photon driving:
B = 0. In this case, the HB matrix M is Hermitian. If, at least,
one of the eigenvalues is equal to zero, then DP exists. For a
Hermitian system, there is no imaginary eigenvalue, meaning
that there is no EP. In this case, the absence of quantum phase
transition indicates that the DP is not the same as the critical
point.

Quantum phase transition can be revealed by the EPs.
When the eigenvalues of the HB matrix are real, the system
is in the NP, i.e., the expectation value of the annihilation
operator on the ground-state 〈ai〉 = 0 [14]. When one of the
eigenvalues is imaginary, the Hamiltonian of the system can-
not be directly converted to Eq. (4). If not, the Hamiltonian
becomes non-Hermitian. To obtain the effective Hermitian
Hamiltonian with a diagonal form, one needs to first shift the
bosonic operator as ai → ai + αi with the complex displace-
ment αi [28]. As a result, the expectation value of 〈ai〉 = αi �=
0, which shows that the system is in the SP [14]. The EPs
denote the transition points between the NP and the SP.

III. SINGLE-MODE BOSONIC SYSTEM AND QUANTUM
RABI SYSTEM

In this section, we will show that the EP and the DP coin-
cide all the time for the single-mode linear bosonic system and
perform a corresponding comparison with the single-mode
Rabi system.

For a single-mode linear bosonic system, the general
Hamiltonian can be described as

H1 = ωa†a + (χa2 + H.c.)/2, (10)

where χ denotes the strength of two-photon driving. The
corresponding HB matrix is obtained from Eq. (5),

M1 =
(

ω − χ

χ∗ − ω

)
. (11)
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The eigenvalues of M1 are ±
√

ω2 − |χ |2. By utilizing
the mapping relationships in Eq. (9), we achieve that �1 =√

ω2 − |χ |2. Obviously, both the EP and the DP occur when
|ω| = |χ |. Namely, in the single-mode bosonic system, the DP
can reveal the quantum phase transition due to that the EP and
the DP appear at the same time.

The collective bosonic mode operator can be obtained by
using the way in Sec. II,

A1 = χa + (ω − �1)a†√
|χ |2 − (ω − �1)2

= exp(iθ )U (ξ )aU †(ξ ),

where phase θ is given by exp(iθ ) = χ/|χ | and the uni-
tary squeeze operator is U (ξ ) = exp( ξ

2 a2 − ξ∗
2 a†2) with the

squeeze parameter defined as ξ = exp(−iθ ) ln |χ |+ω−�1√
|χ |2−(ω−�1 )2

.

The squeeze parameter ξ diverges at the EP and the DP due
to that

√
|χ |2 − (ω − �1)2 = 0 when |ω| = |χ |. It signals the

appearance of the quantum phase transition.
The ground state of the Hamiltonian H1 is given by

|ψ1〉 = exp(− ξ

2 a2 + ξ∗
2 a†2)|0〉. Performing measurements on

the ground-state |ψ1〉, we can obtain the values of {θ, ω, |χ |}.
The optimal estimation precision is given by the quantum
Cramér-Rao (CR) bound [29–31]: δ2ϕ � (νFϕ )−1, where
ν denotes the total number of experiments and Fϕ is the
quantum Fisher information about the parameter ϕ (ϕ =
{θ, ω, |χ |}). For the pure ground state, the quantum Fisher
information Fϕ can be achieved by Fϕ = 4[〈∂ϕψ |∂ϕψ〉 −
|〈∂ϕψ |ψ〉|2]. When close to the EP, the dominant terms of the
quantum Fisher information are

F θ ∼ (ln �1)2/4, (12)

Fχ ∼ |χ |2
4�4

1

, (13)

Fω ∼ |ω|2
4�4

1

. (14)

From the above equations, we can see that according to the
quantum CR bound, the estimation uncertainty of parameters
θ, ω, and |χ | are close to 0 (�1 → 0) at the EP and the
DP. It means that divergent quantum Fisher information can
reveal the emergence of the critical point. In addition, θ is
independent of the quantum phase transition, which is related
only to the parameters ω and |χ |. As a result, the scale of F θ

is smaller than the scale of Fχ and Fω near the critical point
(− ln �1 	 1

�2
1
).

In the quantum Rabi system, the Hamiltonian can be de-
scribed as HR = ω0a†a + �/2σz + η(a† + a)σx, where the
cavity field frequency is ω0, the transition frequency is �,
the coupling strength is η, and the Pauli operator is σz =
|e〉〈e| − |g〉〈g|. In the classical oscillator limit ω/� → 0, us-
ing a Schrieffer-Wolff transformation [28] and projecting onto
ground-state |g〉, we can obtain a single-mode bosonic system,

H ′
R =

(
ω0 − η2

2�

)
a†a − η2

4�
(a2 + a†2). (15)

Let us redefine the parameters ω = ω0 − η2

2�
and χ = − η2

2�
,

and Eq. (15) becomes Eq. (10). Reference [28] showed

FIG. 1. The setup of two coupled cavity systems. The two cav-
ity modes couple with each other by the rotating-wave interaction:
λa1a†

2 + H.c., where λ denotes the strength of resonant coupling.
The cavity mode 1 (2) with angular frequency ωc1 (ωc2) is generated
by a strong pump field with angular frequency 2ωd1 (2ωd2) via the
second-order nonlinearity. χ1 and χ2 represent the strength of two-
photon driving.

that the NP and the SP are separated by the critical point
η/

√
ω0� = 1. The critical point η/

√
ω0� = 1 is also the

EP and the DP (|ω| = |χ |). When all eigenvalues of the HB
matrix are real (η/

√
ω0� < 1), the system is in the NP; when,

at least, one of the eigenvalues is imaginary (η/
√

ω0� > 1),
the system is in the SP.

IV. TWO-MODE BOSONIC SYSTEM AND
QUANTUM RABI SYSTEM

In this section, we will demonstrate that the EP and the DP
do not always coincide. Unusual process of quantum phase
transition will be revealed.

For the two-mode linear bosonic system, the general
Hamiltonian can be given by

H2 = ω1a†
1a1 + ω2a†

2a2

+ (
χ1a2

1 + χ2a2
2 + ga1a2 + λa1a†

2 + H.c.
)
. (16)

The corresponding HB matrix is obtained

M2 =

⎛
⎜⎝

ω1 λ − 2χ1 − g
λ∗ ω2 − g − 2χ2

2χ∗
1 g∗ − ω1 − λ∗

g∗ 2χ∗
2 − λ − ω2

⎞
⎟⎠. (17)

First, we consider that χ1 = χ2 = g = 0. In other words,
there are only rotating-wave interactions (λ �= 0). The
eigenvalues of the HB matrix M2 are given by �1 = ω1+ω2

2 +√
( ω1−ω2

2 )2 + |λ|2 and �2 = ω1+ω2
2 −

√
( ω1−ω2

2 )2 + |λ|2.

When |λ| = √
ω1ω2, �2 = 0 denotes that the DP occurs. At

the DP, an eigenstate in the single-photon subspace reaches
the zero energy, i.e., the eigenenergy of the vacuum state.
However, the eigenvalues �1 and �2 are still real, meaning
that the EP never appears. The ground state of the Hamiltonian

H2 is |ψ2〉 = −λ|10〉 + [ω1−ω2
2 +

√
|λ|2 + ( ω1−ω2

2 )2]|01〉. The
order parameters 〈ψ2|a1|ψ2〉 and 〈ψ2|a2|ψ2〉 are always equal
to 0 whether |λ| is greater than or less than

√
ω1ω2. It shows

that no quantum phase transition occurs, which proves that
the DP is not the critical point.

Then we consider that two cavity modes couple with each
other by the resonant interaction as shown in Fig. 1. The two
cavity modes are generated through two crystals with second-
order nonlinearity (OPA) [32–34]. The Hamiltonian of two
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cavity systems is described as

Hc = ωc1a†
1a1 + ωc2a†

2a2 + [
χ1 exp(2iωdt )a2

1

+χ2 exp(2iωdt )a2
2 + λa1a†

2 + H.c.
]
, (18)

In the rotating frame, by defining the detunings of the two
cavity modes as ω1 = ωc1 − ωd and ω2 = ωc2 − ωd , Eq. (16)
with g = 0 is obtained. The eigenvalues of the HB matrix can
be analytically achieved.

In the case of the perfect symmetry(ω1 = ω2, χ1 =
χ2, λ = ±|λ|), the eigenvalues of the HB matrix M2 are given
by �1 =

√
(ω1 + λ)2 − 4χ2

1 and �2 =
√

(ω1 − λ)2 − 4χ2
1 .

The critical point of the quantum phase transition appears
at 4χ2

1 = min{(ω1 + λ)2, (ω1 − λ)2}. At the same time, one
of the eigenvalues is equal to 0. This shows that the DP
and the EP coincide in the two-mode bosonic system with
the perfect symmetry. We verify it in an arbitrary multimode
bosonic system with the perfect symmetry, i.e., swapping any
two bosonic subsystems and keeping the total Hamiltonian
invariable. It means that the value of the determinant of the
HB matrix equal to 0 (i.e., DP) can be used to determine the
occurrence of the quantum phase transition in the perfectly
symmetric system.

In the case of ω1 = ω2 = ω > 0, χ1 > 0, χ2 = 0, and
λ = |λ|, the eigenvalues of M2 can be calculated

�1 =
√

ω2 + λ2 − 2χ2
1 − 2

√
χ4

1 − χ2
1 λ2 + ω2λ2, (19)

�2 =
√

ω2 + λ2 − 2χ2
1 + 2

√
χ4

1 − χ2
1 λ2 + ω2λ2. (20)

For λ2 > 5.402 05ω2, the critical two-photon driving
strength is given by

χ1 =
⎧⎨
⎩

√
λ2

2
± 1

2

√
1 − 4ω2

λ2
,

λ2 − ω2

2ω

⎫⎬
⎭. (21)

When the two-photon driving strength is χ1 = χ± =√
λ2/2 ±

√
1 − 4ω2/λ2/2, the EPs show up and the DP does

not. It shows that the DP cannot be used as a basis for
judging the existence of the quantum phase transition. When
the two-photon driving strength χ1 satisfies that χ1 < χ− or
λ2−ω2

2ω
> χ1 > χ+, the system is in the NP. As a conventional

result [32], the system will transform from the NP to the SP
when the two-photon driving strength χ1 increases to χ−. A
very interesting and unconventional result is that the system
will transform from the SP to the NP when the two-photon
driving strength χ1 increases to χ+. When the two-photon
driving strength χ1 increases to λ2−ω2

2ω
(the EP coinciding with

the DP), the system will transform from the NP to the SP
again. The discovery of additional EPs will assist in the design
of sensitive measuring instruments, which makes sense in
quantum metrology.

Next, we consider the case that the counter-rotating-wave
interaction cannot be negligible (g �= 0), especially in the cir-
cuit quantum electrodynamics [35]. In the case of ω1 = ω2 =
ω > 0, χ1 > 0, χ2 = 0, and λ = g = |λ|, the Hamiltonian

FIG. 2. The diagram of the absolute value of the imaginary part
of the eigenvalue �1 changing with the two-photon driving strength
χ1. Here, the value of ω is chosen to be 1 in arbitrary units.

can be described as

H ′
2 = ωa†

1a1 + ωa†
2a2 + (

χ1a2
1 + λa1a2 + λa1a†

2 + H.c.
)
.

(22)

By a similar calculation, the eigenvalues of the HB matrix
corresponding to the Hamiltonian above can be achieved

�1 =
√

ω2 − 2χ2
1 − 2

√
χ4

1 − 2χ1ωλ2 + ω2λ2, (23)

�2 =
√

ω2 − 2χ2
1 + 2

√
χ4

1 − 2χ1ωλ2 + ω2λ2. (24)

When the minimum eigenvalue �1 is imaginary, the system
is in the SP. There is the ground-state bosonic coherence.
As shown in Fig. 2, we calculate the imaginary part of the
eigenvalue �1. When |Im(�1)| is nonzero, the system is in
the SP; When |Im(�1)| is zero, the system is in the NP. In
the case of λ = 0, the system transforms from the NP to the
SP with the increase in the two-photon driving strength. In
the case of λ = 0.6 or λ = 5, the system is in the SP for
the two-photon driving strength χ1 = 0, which is different
from the previous results (without the counter-rotating wave
interaction). It shows that both the counter-rotating-wave in-
teraction and the two-photon driving can transform the system
into the SP. For a proper value of coupling strength λ (such as,
λ = 0.6), the system transforms from the SP to the NP and
then from the NP to the SP with the increase in χ1. Like the
previous case, it is due to that the EP and the DP do not always
coincide. The essential reason is that the coupling between
the two bosonic systems inhibits the effect of the two-photon
driving in a certain range.

Now let us consider a system composed of two quantum
Rabi subsystems, which can be realized in cavity or circuit
QED [36–38] as depicted in Figs. 3 and 4. The corresponding
Hamiltonian is described as

H2R =
2∑

n=1

[
ω′

na†
nan + �n

2
σzn + gnσxn(an + a†

n)

]

+ (λa1a†
2 + H.c.), (25)

where the nth cavity field (resonator) frequency is ω′
n, the nth

transition frequency �n, the nth cavity-atom (resonator-qubit)
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FIG. 3. The scheme of the two-mode quantum Rabi system in
the cavity QED setup. The quantum Rabi subsystem composed of a
two-level atom and a cavity. The two cavity modes interact with each
other by the rotating-wave interaction: λa1a†

2 + H.c.

coupling strength gn, and the coupling strength of the rotating-
wave interaction between two cavity fields (resonators) λ. In
the limit ω′

n/�n → 0 for n = 1, 2, using a Schrieffer-Wolff
transformation [28] and projecting onto the ground state, the
Hamiltonian can be rewritten as

H ′
2R =

2∑
n=1

[(
ω′

n − g2
n

2�n

)
a†

nan − g2
n

4�n

(
a2

n + a†2
n

)]

+ (λa1a†
2 + H.c.). (26)

By defining the parameters ωn = ω′
n − g2

n
2�n

and χn = − g2
n

4�n

with n = {1, 2}, Eq. (16) with g = 0 is also obtained. Different
from the case of OPA, χn and ωn are not independent. As a
result, the system transforms from the NP to the SP with the
increase in χ1 in the case of χ2 = 0. Unlike the case of OPA,
we do not get the quantum phase transition from the SP to the
NP. And when |λ|2 > ω′

1ω
′
2, the critical point appears at the

EP instead of the DP.

V. THREE-MODE QUANTUM RABI SYSTEM

In this section, we obtain the HB matrix corresponding
to the three-mode quantum Rabi system and show that the
quantum Fisher information will be divergent at the EP.

We consider the three-mode quantum Rabi system as
shown in Ref. [18], which is described as

H3R =
3∑

n=1

[
ωa†

nan + �

2
σzn + gσxn(an + a†

n)

]

+
3∑

n=1,n′=1

J (eiθ ana†
n′ + e−iθ an′a†

n), (27)

FIG. 4. The scheme of two-mode quantum Rabi systems in the
circuit QED setup. The quantum Rabi subsystem composed of a
transmon qubit and a LC circuit or a superconductive transmission
line.

where Je±iθ is the hopping amplitude between cavities n and
n′. For the sake of a more convenient discussion, we consider
ω > 2J > 0. Implementing the Schrieffer-Wolff transforma-
tion in the limit of ω/� −→ 0 and taking a discrete Fourier
transform an = 1

3

∑
q e−inqaq with the quasimomentum q =

{0,± 2π
3 }, the reduced Hamiltonian is given by

H ′
3R =

∑
q

[
ωqa†

qaq − g2

�
(aqa−q + a†

qa†
−q )

]
+ E0, (28)

where E0 is a constant and ωq = ω − 2g2

�
+ 2J cos(θ − q).

The eigenvalues of the corresponding HB matrix are given by{
�q = 1

2

[√
(ωq + ω−q)2 − 16

g4

�2
+ ωq − ω−q

]}
q={0,±(2π/3)}

.

(29)

In the case of π/2 < θ � π , the EP and the DP appear at
g = (

√
ω + 2J cos θ )�/2. In the case of 0 � θ < π/2, the

EP appears at g = (
√

ω − J cos θ )�/2, and DP never does.
The ground state of the Hamiltonian H ′

3R is given by

|ψ3〉 = exp
[
ξ0

(
a†2

0 − a2
0

) + ξϑ (a†
ϑa†

−ϑ − aϑa−ϑ )
]|0〉,

where the parameters are ξ0 = 1
8 ln ω+2J cos θ

ω+2J cos θ−4g2/�
and

ξϑ = 1
4 ln ω−J cos θ

ω−J cos θ−4g2/�
with ϑ = 2π

3 . When close to the

EP (for π/2 < θ � π, ω + 2J cos θ − 4g2/� = ε → 0 for
0 < θ � π/2, ω − J cos θ − 4g2/� = ε → 0), the domi-
nant term of the quantum Fisher information about the
parameter ω is

Fω ∼ 1

32ε2
, for π/2 < θ � π ; (30)

Fω ∼ 1

16ε2
, for 0 � θ < π/2; (31)

Fω ∼ 3

32ε2
, for θ = π/2. (32)

From the above equations, we can see that the quantum Fisher
information will be divergent at the EP, which reveals the
quantum phase transition. The optimal estimation precision
of the frequency ω can be obtained with θ = π/2. Our results
show that the EPs in the HB matrix can help to find an
effective way to improve the parameter estimation precision.
And again it shows that the critical point is the EP instead of
the DP.

VI. CONCLUSION AND OUTLOOK

We achieve the general HB matrix for linear cou-
pled bosonic systems in arbitrary dimensions. For open
systems, there are PT -symmetrical non-Hermitian Hamilto-
nians, which have the EPs separating the real eigenvalues and
the imaginary values. For closed systems, the HB matrix is
also non-Hermitian, and the eigenvalues of the HB matrix
can be real and imaginary. Therefore, we also refer to the
segmentation point where the eigenvalues of HB are real and
imaginary as the EP. And when one of the eigenvalues of HB
matrix is 0, the ground state of the system becomes degen-
erate. Therefore, we simply call it the DP. In some previous
works, the DP was considered as a marker for the emergence
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of the critical point between the NP and the SP. However, we
show that the DP is not the critical point unless it coincides
with the EP. The EP of the HB matrix is what really reveals
the quantum phase transition between the NP and the SP.

In the single-mode bosonic or perfectly symmetric sys-
tem, the DP can be the critical point due to that it coincides
with the EP. In more general multimode systems, the EPs and
the DPs are often not coincident. As a result, unconventional
and meaningful results are obtained. With the increase in the
two-photon driving strength, the phase undergoes the pro-
cess of NP → SP → NP → SP in the case of neglecting the
counter-rotating-wave interaction. With the counter-rotating-
wave interaction, the process of SP → NP → SP can be
achieved. In the conventional results, only the process of
NP → SP was obtained. The fundamental reason is that the
coupling between the two bosonic systems inhibits the effect
of the two-photon driving to a certain extent. In addition,
we apply the HB martrix into the quantum Rabi system and
show that the quantum Fisher information will be divergent
at EPs, which will lay the foundation for designing precision
measurement.

In this article, we consider the HB matrix in the closed
system, which has the Hermitian Hamiltonian. It will be inter-
esting to further explore the dissipation phase transition with
the HB matrix in the open system.

The quantum Rabi model in this article can be realized in
a variety of quantum systems, such as cold atoms [39] and
superconducting qubits [37]. The form of the total Hamilto-
nian can be obtained by a periodic modulation of the photon
hopping strength between cavities [18]. And the strengths of
two-photon driving can be changed by the pump field and the
size of the crystal, which is feasible in experiment [30].
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