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Pulse engineering of a global field for robust and universal quantum computation
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Global control strategies for arrays of qubits are a promising pathway to scalable quantum computing. A
continuous-wave global field provides decoupling of the qubits from background noise. However, this approach
is limited by variability in the parameters of individual qubits in the array. Here we show that by modulating
a global field simultaneously applied to the entire array, we are able to encode qubits that are less sensitive to
the statistical scatter in qubit resonance frequency and microwave amplitude fluctuations, which are problems
expected in a large-scale system. We name this approach the SMART (sinusoidally modulated, always rotating,
and tailored) qubit protocol. We show that there exist optimal modulation conditions for qubits in a global field
that robustly provide improved coherence times. We discuss in further detail the example of spins in silicon
quantum dots, in which universal one- and two-qubit control is achieved electrically by controlling the spin-orbit
coupling of individual qubits and the exchange coupling between spins in neighboring dots. This paper provides
a high-fidelity qubit operation scheme in a global field, significantly improving the prospects for scalability of
spin-based quantum computer architectures.
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I. INTRODUCTION

Large-scale fault-tolerant quantum computing requires
a robust and readily scalable qubit architecture, including
initialization, manipulation, and measurement capabilities,
with error rates below 1% [1,2]. This implies that high-
performance qubit gates and, ultimately, long qubit coherence
times are required. Several demonstrations of qubit fidelities
>99% exist for small-scale qubit systems [3–10], however, a
major obstacle on the way to realizing a practical large-scale
quantum computer is the challenge of scaling up architectures
while maintaining high fidelities.

One strategy explored in the literature to overcome this
problem is the electromagnetic dressing of qubits. By con-
stantly driving the qubit, one can prolong the coherence times
by continuously refocusing qubits against slow fluctuations
in Larmor frequency [11–14]. In addition, this is a scalable
control scheme, since the driving microwave field can be
applied globally to the entire multiqubit device [15–19], so
long as individual control of the Larmor frequencies to locally
address qubits is possible. However, this type of global control
is compromised by variability in qubit characteristics.

Spin qubits in silicon [20] are well suited to dressing, offer
the prospect of individual addressability, and have excellent
potential for large-scale integration due to their ability to
leverage manufacturing from the microelectronics industry
[16,21]. However, for silicon spin qubits, even in an isotopi-
cally purified substrate [22], residual nuclear spins [23] and
spin-orbit-coupling [24,25] due to interface disorder reduce
both the coherence time and the homogeneity of the spin qubit
properties.
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Improvement in the robustness of dressed qubits can
be achieved via the use of pulse engineering. Numerical
algorithms like gradient ascent pulse engineering (GRAPE)
[26] have, in earlier work, been applied to construct opti-
mal control pulses tackling such problems to improve gate
performance [6,27]. A generalization of the dressed qubit
framework to the case of engineered electromagnetic pulses
can be achieved by targeting specific types of qubit errors that
are most commonly encountered across quantum computing
platforms.

In this paper, we show that by combining microwave dress-
ing with pulse shaping, that is, by modulating the amplitude of
an always-on global field, we can realize a sinusoidally modu-
lated, always rotating, and tailored (SMART) protocol for spin
qubit operation that is readily scalable, with greater robustness
to qubit variability and noise from microscopic sources, as
well as noise from the control and measurement setup. We be-
gin by briefly discussing dressed qubits in section II. The main
principle of the SMART protocol is discussed in section III,
followed by the strategies for SMART qubit two-axis control
in section IV. The resulting one-qubit gate fidelities under a
model of Gaussian noise are presented in section V. We then
discuss in further detail the implications of an always-on field
for other aspects of universal quantum computing, taking as an
example spins in silicon in section VI. We focus on two-qubit
gate fidelities in the presence of noise, as well as initialization
and readout. Finally, a summary of our conclusions regarding
the feasibility of a quantum computer architecture employing
this SMART protocol is presented in section VII.

II. FOREWORD ON DRESSED QUBITS

Most qubit systems are defined by a physical two-level
system (such as a spin 1/2 or two levels in an atom, for
example) under static electromagnetic fields (either intrinsic
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to the qubit device or applied externally). Oscillatory elec-
tromagnetic fields are then applied to perform qubit control
operations, which will serve as the tools for implementing
logical gates. Alternatively, a qubit can be defined in terms
of the dynamical states of the two-level system as driven by
the externally applied oscillatory electromagnetic field. This
is the case for a dressed qubit [11,12,28,29], which consists of
a qubit that is permanently driven by an always-on resonant
field.

For a dressed qubit, |0〉 and |1〉 states are described in the
laboratory frame as the qubit states that rotate with either
the same phase or the opposite phase with relation to the
driving field. Logical gates connecting the two states are then
implemented by either speeding or delaying the precession
of the qubit with regard to the driving field, changing the
relative phase. The main advantage of encoding qubits in the
driven state is that it provides dynamical decoupling from
the environmental noise.

Two elements limit the ability of the dressing scheme to
refocus qubits under noise. First, refocusing is only efficient
if the time correlations of the noise amplitude exceed the Rabi
period, which means that the spectral components of noise
with frequency similar and above the Rabi frequency still
impact the qubit coherence. Dynamical decoupling is unable
to cope with this type of noise.

The second limitation is noise causing large deviations in
qubit Larmor frequency, which would cause the qubit to drift
out of resonance with the microwave driving field and jeop-
ardize the driving mechanism. This type of high-amplitude
fluctuations usually occur in the form of a slow drift, such that
for a few qubits this can be compensated by calibrating the mi-
crowave frequency between experiments. For multiple qubits,
this strategy of recalibration becomes inefficient. Moreover,
applying different frequencies to each qubit will make the
system suffer from frequency crowding and crosstalk in a full
scale architecture.

In the dressed qubit strategy, the tolerance for deviations in
resonance between the microwave and the qubit (or, equiva-
lently, the tolerance for slow noise amplitudes) is set by the
Rabi frequency. Pulse engineering [6,26,30], however, can be
used to develop improved driving strategies that have superior
tolerances and are able to address noise in other parameters,
such as fluctuations in the Rabi frequency.

III. THE SMART QUBIT PROTOCOL

We introduce here a method of dressing the qubit with an
oscillatory driving field that has a time-dependent amplitude,
effectively creating a time-dependent Rabi frequency. Tailor-
ing the amplitude modulation frequency to be in a certain
proportion with the Rabi frequency, we are able to cancel
different types of noise. The laboratory frame Hamiltonian of
an arbitrary modulated driving field �(t ) is given here by

Hlab = h

2
(ν(t )σz + �(t )2 cos (2π fmwt )σx ). (1)

In general, one can target multiple types of noise by adding
different frequency and phase components to the amplitude
modulation. We look at the special case where the global field
amplitude is modulated by a single sinusoid, in which case the

laboratory frame Hamiltonian is given by

H sin
lab = h

2
(ν(t )σz + �R

√
2 sin (2π fmodt )2 cos (2π fmwt )σx ).

(2)

Here, σx and σz are Pauli matrices acting on the qubit state
and h is the Planck’s constant. The qubit Larmor frequency
ν(t ) has a time dependence that is controllable by external
fields and will be used to tune the resonance between the
qubit and the driving field frequency fmw for controlled qubit
rotations. The maximum amplitude of the oscillatory field
creates Rabi rotations of frequency �R

√
2 on the qubit. This

amplitude is modulated by the sin (2π fmodt ) term, where the
modulation frequency fmod is a parameter that is chosen in
order to optimize the noise-canceling properties of the driving
field. The factor of

√
2 is a scaling factor to compare the

resulting efficiency of the driving field in the cases of dressed
and SMART qubits when adopting the same root mean square
power of the global field. In Fig. 1, the fidelity of an iden-
tity operation on a dressed and SMART qubit ensemble is
compared for different frequency detuning offsets, showing
higher robustness to Larmor frequency variability in the qubit
ensemble for the latter.

The mathematical description and computer simulation
of the qubit dynamics are significantly simplified when the
Hamiltonian is written in the rotating frame that precesses
with the same frequency as the driving field fmw. In this case,

H sin
rot = h

2
(�ν(t )σz + �R

√
2 sin (2π fmodt )σx ), (3)

where �ν(t ) = ν(t ) − fmw is the detuning between the con-
trollable Rabi frequency and the driving field.

Dressed qubit logical states are then the |+〉 and |−〉
states in the rotating frame, that is, the states parallel and
antiparallel to the x axis in a rotating frame. We highlight
this fact by referring to a dressed basis, which is simply a
Hadamard transformation over the rotating frame basis de-
scribed in Eq. (3). This returns the logical qubit states to the
conventional z axis. Operating in the dressed basis implies the
following axes transformations from the rotating frame basis:
|↑〉 → |xρ〉, |↓〉 → |x̄ρ〉, |+〉 → |zρ〉, |−〉 → |z̄ρ〉, |i〉 → |ȳρ〉,
and |ī〉 → |yρ〉, hence a rotation about the x axis in the dressed
basis is equivalent to a rotation about the z axis in the rotating
basis, etc. This change of quantization axis can be seen from
the Bloch sphere in Fig. 1(c), where the qubit states along
the conventional quantization axis |↑〉 and |↓〉 now are in the
equatorial plane.

The Hamiltonian in the dressed basis reads

H sin
ρ = h

2
(�R

√
2 sin(2π fmodt )σz + �ν(t )σx ). (4)

In general, the amplitude and frequency of the modulated
global field determine its noise-cancelling properties. This ex-
ample of a sinusoidal modulated global field can be extended
to more sophisticated combinations of modulation compo-
nents to cancel multiple types of noise as well.

To understand why a SMART qubit can be superior to
a dressed qubit in terms of coherence time and gate per-
formance, we derive an analytical expression for a model
of quasistatic noise using the Magnus expansion series and
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FIG. 1. A qubit ensemble driven collectively by a global field consisting of (a) a continuous drive and (b) a sinusoidal modulated field.
The Bloch spheres for the continuous drive is shown in (c) together with the transformation from the rotating to the dressed spin frame. In
(d), the identity operator fidelity for a range of detuning offsets, corresponding to Larmor frequency variability, is shown where the range with
fidelities above 99% has been shaded. The Bloch sphere and the identity operator fidelities for the sinusoidal modulated case is given in (e)
and (f).

analyze the noise-canceling properties using the geometric
formalism from Ref. [27]. The geometric formalism is based
on a description of the time evolution of the qubit U (t ) in
terms of a three-dimensional trajectory �s(t ) extracted from the
first term in the Magnus expansion series. This trajectory is
directly related to the microwave amplitude modulation �(t )
through its curvature κ (�(t ) = κ (t )).

We start by looking at the Hamiltonian in the interaction
picture, found by transforming the noise Hamiltonian (δβσi)
with the time evolution operator from the noiseless driving
Hamiltonian U (t ). Here δβ is the fluctuation parameter on
axis i approximated as a constant for slow noise:

HI (t ) = U (t )†σiU (t )δβ. (5)

The first two orders of the Magnus expansion are given by

A1(t ) = 1

δβ

∫ t

0
HI(t1)dt1, (6)

A2(t ) = 1

2δβ2

∫ t

0
dt1

∫ t1

0
dt2[HI(t1), HI(t2)], (7)

and the time evolution operator in the interaction picture by

UI (t ) = exp

( ∞∑
i=1

(δβ )iAi(t )

)
. (8)

For perfect noise cancellation, UI equals identity and by trun-
cating the sum we can find solutions where certain orders of
noise cancel.

The space curve parametrization from the geometric for-
malism [27] is extracted from A1(t ) according to

A1(t ) = x(t )σx + y(t )σy + z(t )σz. (9)

To achieve first-order noise cancellation A1(T ) must be zero.
This corresponds to a closed space curve. We can write
Eq. (6) in the form of a supermatrix Û (t ) using the identity
vec(ABC) = CT ⊗ A vec(B) to allow for arbitrary noise axis,

where vec(M ) indicates the row vectorization of M:

A1i(t ) = mat

(
1

δβ

∫ t

0
U T (t1) ⊗ U †(t1)δβdt1 vec(σi )

)
. (10)

Here, mat(V ) is the matricization of the vector V . An arbi-
trary driving field �(t ) about axis σz (the choice of specific
noise axis is merely for convenience, and also corresponds to
dressed basis x axis) gives us the time evolution operator

U (t ) = diag

(
exp

{
−iπ

∫ t

0
�(t )dt

}
, exp

{
iπ

∫ t

0
�(t )dt

})
,

(11)

and the corresponding supermatrix

Û (t ) = U (t )T ⊗ U (t )† = diag

(
1, exp

{
− 2iπ

∫ t

0
�(t )dt

}
,

× exp

{
2iπ

∫ t

0
�(t )dt

}
, 1

)
. (12)

Now looking at detuning noise in the dressed basis by setting i
in Eq. (10) to x and by substituting U (t )T ⊗ U (t )† with Û (t ),
we find

A1x(t ) = mat

⎛
⎜⎝ 1

δβ

∫ t

0
Û (t )δβdt

⎛
⎜⎝

0
1
1
0

⎞
⎟⎠

⎞
⎟⎠. (13)

For A1x(t ) to be zero, we have the following condition:∫ T

0
exp

{
± 2iπ

∫ t

0
�(t1)dt1

}
dt = 0. (14)

Choosing a sine wave driving field with one period duration,
we get∫ 1/ f

0
exp

{
± 2iπ

∫ t

0
� sin(2π f t1)dt1

}
dt = 0, (15)∫ 1/ f

0
exp

{
∓ i

�

f
cos(2π f t )

}
dt = 0. (16)
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FIG. 2. Geometric formalism describing noise-cancelling prop-
erties. (a), (b) Global field amplitude modulation �(t ) and (c), (d) the
corresponding space curve �s(t ), for the dressed and SMART qubit
with Tmod = 1.7 μs. The ideal modulation condition is plotted with a
solid line color coded according to the time and a nonideal condition
with a dashed black line. The slope of the space curve at the end point
for the ideal (beige/light) and nonideal case (blue/dark) is plotted in
(c), (d) together with a thicker black arrow representing the slope at
the starting point. The evolution of a qubit initialized to |x̄ρ〉 is shown
in (e), and (f).

This can be recognized as one of Bessel’s integrals with so-
lution �/ f = ji, where ji is the ith root of the zeroth order
Bessel function and j1 = 2.404826. It can be seen that A1

is zero for T = n
2 f . The second-order term A2 also goes to

zero when the time is chosen appropriately, which is n
f in this

case with any integer n. This is because the chosen control is
a periodic and odd function, meaning that the second-order
cancellation happens for any values of �/ f as long as the
duration is a multiple of the period. This corresponds to n
loops through the corresponding space curve.

The optimal modulation frequency of a driving field pro-
viding first- and second-order noise cancellation is therefore
given by

f opt
mod = �R

√
2/ ji, (17)

and the duration of one period of the global field is denoted
Tmod. In Figs. 2(a)–2(d), �(t ) and �s(t ) are shown in the cases
of dressed and SMART qubits. Both cases show a closed

space curve (solid black line) indicating first-order noise can-
cellation, a circle for the dressed case, and a figure eight for
the SMART case. The figure eight is achieved by synchroniz-
ing the modulation frequency fmod in a certain proportion to
the Rabi frequency �R. The dashed lines in Figs. 2(a) and 2(b)
show examples where the amplitude is offset by some form of
noise (such as fluctuation in source power) for the same gate
time, resulting in a nonclosed space curve or, equivalently,
only partial first-order noise cancellation. For second-order
noise to cancel as well, the area projected from the trajectory
�s(t ) onto the xy, xz, and yz planes must all equal zero. The
sign of a projected area is determined by the winding direction
of the trajectory. Hence, the figure-eight trajectory followed
by the SMART qubit in Fig. 2(d) has a positively signed lobe
in the fourth quadrant and a negatively signed lobe in the
second quadrant. The projected areas therefore sum to zero for
the SMART qubits but not for the dressed qubits. This higher
order of noise cancellation translates into an improved toler-
ance to noise amplitudes in the case of SMART qubits, while
the dressed qubit only provides first-order noise cancellation.

For a SMART qubit initialized in the plane perpendicular
to the global field axis, driven at f opt

mod with amplitude �R

√
2

and �ν(t ) = 0, a positive rotation of ∼3π/2 followed by
a negative rotation of the same angle occurs for every Tmod

of the global drive. The dressed qubit, on the other hand,
continuously rotates without change in angular velocity. This
is shown in Figs. 2(e) and 2(f). The back-and-forth rock-
ing of the SMART qubit and the continuous rotation of the
dressed qubit about the global field axis both contribute to
the continuous echoing of low frequency noise in these en-
coding strategies. Information about the single-qubit gate can
be found in the slope of �s at t = 0 relative to t = T . Parallel
slopes correspond to the identity operator and perpendicular
slopes correspond to

√
X and

√
Y gates, etc.

Note that what we refer to here as quasistatic noise could
be originated in the stochastic electromagnetic fields of the
quantum processor but it may also have its origin in other
nonidealities, such as crosstalk between qubits, fabrication
variability, and small unaccounted Hamiltonian terms (such

FIG. 3. Filter function formalism applied to (a) the dressed and
(b) the SMART qubit showing noise frequency susceptibility and
equivalently controllability. The y axis is given by |F |2 = |A1x|2 +
|A1y|2 + |A2

1z| from Eq. (10) with δβ replaced by δβ exp(−2iπ f t ).
Here �R = 1 MHz.
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as long-range dipolar coupling between spins or cross-Kerr
interactions in superconducting qubits coupled through a bus
cavity).

By substituting the fluctuation parameter in Eq. (10) with
a tone of variable frequency (δβ( f , t ) = δβ exp(−2iπ f t )),
we can probe the noise susceptibility of the SMART qubit
at different frequencies (or similarly the controllability at
certain control frequencies), according to filter function for-
malism. This is shown in Figs. 3(a) and 3(b) for the dressed
and SMART protocols and explains the rationale behind the
Stark shift modulation frequencies required for control in
section IV. Due to the higher susceptibility to control at fre-
quencies corresponding to lower harmonics of the global field,
we will be using the first two harmonics exclusively in the next
section for two-axis control.

IV. SMART QUBIT TWO-AXIS CONTROL

Rotations using the SMART protocol in the dressed basis
are achieved by applying frequency detuning �ν(t ) to the
qubit with sinusoidal modulation at a certain frequency and
phase. The global field is always on, providing dynamically
protected gates.

Detuning of individual qubits can be implemented, for
example, by pulsing the gate electrode above a spin qubit in
semiconductors with spin-orbit coupling, effectively shifting
the gyromagnetic ratio [15,31] by modulating the hyperfine
coupling between an electron and the static spin of the nucleus
[31–33], by locally changing the magnetic flux in a Josephson
junction [34], and so on.

Controlled rotations about one axis v using sinusoidal local
detuning of the qubit are described in the dressed basis by the
Hamiltonian

Hv
ρ = Hglobal + Hlocal

= Hglobal + h

2
(νv sin(2π fmodt + φmod)σx ). (18)

The first term Hglobal is the global field with sinusoidal mod-
ulations h

2�R

√
2 sin(2π fmodt )σz from Eq. (4). Now we add a

local control term Hlocal that will be responsible for address-
ing an individual qubit by modulating its Larmor frequency
at the same frequency as the global field. Here φmod is the
phase offset between the microwave and the qubit Larmor
frequency modulation and νv the detuning amplitude of the
local control term. Note that the direction for this rotation
axis v, in principle, is not one of the Cartesian axes defined
before.

For two-axis control, a second rotation axis w can be found
with a Hamiltonian of the same form as Hv

ρ but with the
detuning modulated at twice the frequency:

Hw
ρ = Hglobal + h

2
(νw sin(4π fmodt + φmod)σx ). (19)

The direction of w is, again, not correlated to the Cartesian
directions in the general case. Any other combination of odd
and even harmonics would also achieve two-axis control, as
long as the modulation remains synchronized with the global
field echoing condition. However, higher harmonics exhibit
lower rotation efficiency (see filter function formalism in sec-
tion III). Small deviations in the local Stark shift modulation

frequency away from fmod can also be used as a control knob
for two-axis control. This would, however, require calculation
of the exact rotation as a function of detuning amplitude
(periods of global field per gate). Using the harmonics of
fmod with small detuning amplitude, on the other hand, gives
straightforward solutions.

The effective rotation is calculated from the time-evolution
operator

Ur (χ ) = cos
(χ

2

)
I − i sin

(χ

2

)
(rxσx + ryσy + rzσz ) (20)

by substituting the left-hand side with the numerically cal-
culated time evolution operator from Eqs. (18) and (19).
Here r̂ = [rx, ry, rz] is the unit rotation vector. The rotation
angle χ can be calculated from the trace of Ur , and r̂ recon-
structed when the trace has been subtracted using the trace of
the products of the Pauli matrices. The polar and azimuthal
angles are found using the identities θr = arctan(ry/rx ) and
φr = arctan(rz(r2

x + r2
y )−1/2). In Fig. 4, φr , θr , and the rotation

efficiency η is given as a function of φmod and νv,w for axes
v and w. The rotation efficiency is calculated for sinusoidal
control terms according to

ηv,w = Pout

Pin
= 100 % ×

(
χ2

v,w(
2πTmod

)2( νv,w√
2

)2

)
, (21)

where Pout is given by the squared angular velocity of the
resulting rotation and Pin by the root mean square of the
sinusoidal control amplitude. The rotation efficiency is 100%
for square pulse control of an undressed qubit and 50% for
frequency modulation resonance control of a dressed qubit
[12,17]. This shows that both v and w rotations have com-
parable control strength to the dressed qubit.

By choosing appropriate values for νv,w and φmod, the two
axes v and w can be made perpendicular. These values corre-
spond to νv,w � �R and φmod = π/2, giving φw − φv ≈ π/2
and θv,w ≈ π/2, as shown in Figs. 4(d) and 4(h). Hence, we
have constructed two-axis control by tailoring the amplitude
and phase of two sinusoidal driving fields of frequency fmod

and 2 fmod. By combining the two driving fields in a weighted
sum arbitrary two-axis control, including Cartesian xy axes,
can be engineered as discussed in the following paragraph.

From now on, we will assume φmod = π/2 and replace the
sine from the local control term in Eqs. (18) and (19) with
a cosine. The condition on νv,w and φmod from Fig. 4 only
guarantees that the two rotation axes v and w are perpendic-
ular; they do not coincide with |xρ〉 and |yρ〉 on the Bloch
sphere in Figs. 4(d) and 4(h). Instead, they are rotated −0.834
radians (−47.8 degrees) in relation to the Cartesian axes. For
the sake of completeness, we show that to produce actual x
and y rotations, the control terms of v and w can be combined
in a linear fashion:

Hx,y
ρ = Hglobal + h

2
(νx,y

v

(
cos(2π fmodt ) − 1

)
+ νx,y

w (cos(4π fmodt ) − 1))σx. (22)

Here, additional −1 terms are added to force the control
amplitude to start and end at zero, which is advantageous
for experimental reasons as the control fields are limited by
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FIG. 4. Rotation axis parameters for axes v (top) and w (bottom) of the SMART qubit for different values of the control amplitude νv,w

and the phase offset between the microwave and the gate modulation φmod. (a) φr , (b) θr , (c) rotation efficiency η and (d) rotation axis on Bloch
sphere for axis v. The same is shown for axis w in (e)–(h). A phase of π/2 has been indicated with a dashed horizontal line. The rotation
efficiency η is calculated according to Eq. (21) with the maximum values of 53.9 % and 37.3 % for axes v and w, respectively. For small values
of νv,w and φmod = π/2, the resulting pair of perpendicular axes of rotation are illustrated on Bloch spheres in (d) and (h) with a relative angle
of φv = 0.834 radians to the dressed xy axis system. Here �R = 1 MHz.

a finite rise time and power. To find the optimal values for νv

and νw, GRAPE is applied [6,26].
The duration of a one-qubit gate using the SMART proto-

col must equal a multiple n of Tmod. For every n, the optimal
values of νv and νw can be found from GRAPE, that is, each
gate can be made to last for any integer number of Tmod.
This is convenient, as different systems can be limited by,
for example, Larmor frequency tunability range or coherence
times, in which case one would need longer or shorter gate
duration, respectively. In Table I, values of νv and νw are given
for a range of n. The same data multiplied by the gate du-
ration is plotted in Figs. 5(a) and 5(b), where the values
clearly converge at longer gate durations. This convergence
comes from the rotating wave approximation, where for large
driving amplitudes (corresponding to short times in Fig. 5)
the approximation breaks down [35]. There is a compromise
between accurate rotation axes and fast control, as choosing
a small integer number n for the gate duration forces νv and
νw to be higher to achieve the same rotation angle, affecting
the accuracy of the rotation axis angles θr and φr found from
Fig. 4. The fastest possible gate is limited by the amplitude of
the Larmor frequency controllability in the system.

TABLE I. Coefficients used to construct
√

X and
√

Y gates with
Eq. (22) for different duration and �R = 1 MHz.

√
X

√
Y

νx
v (MHz) νx

w (MHz) νy
v (MHz) νy

w (MHz) t (Tmod )

0.1515 0.3336 −0.2154 0.2224 1
0.0893 0.1579 −0.1056 0.1136 2
0.0620 0.0921 −0.0701 0.0760 3
0.0271 0.0366 −0.0300 0.0327 7
0.0190 0.0254 −0.0210 0.0229 10

It turns out that by modulating the global field with a cosine
instead of a sine according to

H cos
ρ = h

2
(�R

√
2 cos(2π fmodt )σz + �ν(t )σx ), (23)

x and y rotations can be achieved by simple single harmonic
control terms without having to combine several harmonics
in a linear fashion with coefficients extracted with GRAPE.
However, the method developed here is useful for finding
optimal parameters for arbitrary gate control strategies. The
global microwave modulation and the Stark shift modulation
for x, y, v, and w rotations are shown in Fig. 6 for the dressed
and SMART qubit.

V. SMART QUBIT PROTOCOL GATE FIDELITIES

To assess gate robustness to frequency detuning and mi-
crowave amplitude fluctuations using the SMART protocol, a
noise analysis is carried out. Our noise model is a quasistatic
Gaussian noise implemented in the system Hamiltonian as

FIG. 5. Coefficients νv and νw times the duration of a gate for
(a)

√
X and (b)

√
Y gates for different gate durations according to

table I. The dashed horizontal line indicates the convergence value.
Note that in (b) the y axis is discontinuous.
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FIG. 6. Global microwave field modulation and Stark shift control terms for (a) continuous drive
√

X and
√

Y gate and (b), (c) SMART
qubit

√
V,

√
W,

√
X, and

√
Y gates. The gate durations are 10/�R for the dressed case and 7 × Tmod for the SMART case, and the relative

microwave and Stark shift amplitude is to scale. In (d), the four axes are shown.

follows:

Hρ = (1 + δ�)�R

√
2 sin (2π fmodt )σz + (�ν(t ) + δν )σx.

(24)

Here, δ� and δν represent the amplitude and detuning offset
caused by the noise, respectively. The frequency detuning

noise is considered as a simple offset, while the amplitude
noise is taken to be proportional to the amplitude of the
driving field.

In Figs. 7(a) and 7(b), the fidelity of an identity gate is
given for the bare (undressed) and the dressed qubit. A dressed√

X is shown in Fig. 7(c). The SMART qubit identity,
√

X,
and

√
Y gate are presented in Figs. 7(d)–7(f). The second row

FIG. 7. Gate fidelities for different values of amplitude and detuning offset/noise for the bare, dressed, and SMART qubit. (a)–(c) show
the identity gate fidelities for the bare and dressed qubits and a

√
X gate for the dressed qubit, respectively. In (d)–(f) SMART qubit identity,√

X and
√

Y is shown. Row (i) shows Bloch spheres with the relevant global field, local control field, and rotation axis. In row (ii), the fidelity
for offset values of amplitude and detuning is shown, and, finally, row (iii) and (iv) show Gaussian distributed noise in linear and log scales,
respectively. Here �R is 1 MHz and the gate durations are according to Fig. 6. The bare qubit identity gate has the same duration as the dressed
gates.
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FIG. 8. Two-qubit
√

SWAP gate fidelities for different values of amplitude and detuning offset/noise for (a) the dressed qubit and (b) the
SMART qubit. In (c), (d), the gate fidelities for CNOT are given and in (e) and (f) for CNOTX. Row (i) shows two qubits with a common
global field and local Stark shift fields. In rows (ii) and (iii), the gate fidelities with Gaussian noise applied are shown on linear and log scales,
respectively. Here �R is 1 MHz.

shows fidelities corresponding to an operation generated by
one fixed value of the offsets δ� and δν , which represents one
realization of the noise. In the third and fourth rows, Gaussian
averaging over several realizations has been applied and it
is shown in linear and logarithmic scales, respectively. More
details on generating the 2D noise maps and 2D noise maps
for

√
V and

√
W are provided in Appendix A and Appendix

B, respectively.

VI. SMART PROTOCOL FOR SPIN QUBITS

We now focus on the particular example of electron spin
qubits in electrostatically confined quantum dots, in which
the global driving can be performed through an oscillating
magnetic field or, alternatively, an oscillating electric field that
couples to spins through spin-orbit coupling. This spin-orbit
coupling can also be used to locally control the value of the
Rabi frequency through the Stark shift of the spin resonance
frequency, which is a result of the influence of gate voltage
bias on the effective g factor of a spin in a given quantum dot.

All our numbers are chosen in the range of spin-orbit
effects found in Si/SiO2 electrostatic quantum dots, for which
abundant literature exists to inform the expected variability
and degree of controllability of the interface-induced spin-
orbit coupling [12,19,24,36].

For other qubit architectures, the particular physical as-
pects of two-qubit gates, initialization, and readout may differ
significantly and the feasibility of these operations under an
always-on global field needs to be assessed case by case.

A. Two-qubit gates

Two-qubit gates between spins based on exchange cou-
pling can be implemented with a strategy similar to that of
bare qubits. Applying voltage bias pulses to the electrostatic

gates, the overlap between wave functions of neighboring
electrons can be tuned. In the example of bare qubits, the
resulting spin-spin interaction depends on the ramp rates of
the gate biases and the difference between qubit Larmor fre-
quencies.

For the case of a driven qubit, such as the dressed or
SMART qubit, the impact of the driving field on the resulting
gate operation is also set by the exchange control ramp rates.
The difference is that the relevant timescale is determined by
the difference between Larmor and Rabi frequencies of the
qubits. Further detail on the onset of the different operations
for various ramp rates can be obtained in Ref. [17] in the case
of dressed qubits.

Fidelity maps for the two-qubit gates
√

SWAP, CNOT,
and CNOTX are given in Fig. 8. The

√
SWAP gate is

implemented assuming exchange gate control, where the
SWAP-like operation is the native two-qubit gate for qubits
having the same resonance frequency [17]. The meaning of
CNOTX here is a NOT operation on the target qubit con-
ditional on the control qubit being |x〉 or |x̄〉 instead of
|0〉 or |1〉. The CNOT and CNOTX gate sequences used

here are (
√

Y
† ⊗ I)

√
SWAP(

√
X

† ⊗ √
X)

√
SWAP(

√
Y ⊗ I)

and
√

SWAP(
√

X
† ⊗ √

X)
√

SWAP. Here the assumption that
the two qubits experience the same noise level is made (see
Appendix A for more details). For both one- and two-qubit
gates, the robustness to detuning and amplitude noise is seen
to improve significantly compared to the bare and dressed
case.

B. Initialization and readout

High-fidelity initialization and readout are necessary for
error-corrected quantum computing strategies. The constant
driving field creates oscillations between the |0〉 and |1〉
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FIG. 9. SMART two-qubit initialization and readout. (a) Energy diagram of the SMART two-qubit system for zero frequency detuning
and for (b) �ν1 = −�ν = 0.2 MHz. Initialization of S(1,1) from S(0,2) with ramping centered about (c) the minimum microwave amplitude
and (d) the maximum microwave amplitude of the global field. The results with different ramp rates and fixed charge detuning ramp range
50 GHz → −50 GHz (∼0.2 meV) is shown in (e)–(h) where the probability of S(0,2) and S(1,1) is plotted against ramp time. Fixed offsets in
frequency detuning (�ν1, �ν2) are introduced, with magnitudes given by the color bar (two-colored dashed line representing the two qubits).
Parameters used here include �R1 = �R2 = 1 MHz, (�ν1, �ν2) ∈ {0, ±0.05, ±0.1} MHz, tc = 0.5 GHz. The total time is 2 × Tmod.

states, which limit the range of strategies that can be
used for initialization and readout—strategies based on
energy-dependent transitions are hard to harmonize with
a driving field. Both initialization and readout are studied
here in the context of strategies leveraging the Pauli spin
blockade.

Initialization of two-qubit SMART states is done similarly
to the dressed spin qubit [17] by ramping from negative to
positive detuning at different rates. In Fig. 9(a), the energy
diagram of the system as a function of charge detuning is
shown at finite global field microwave amplitude with zero
frequency detuning and in Fig. 9(b) with �ν1 = −�ν2 =
0.2 MHz. For nonzero frequency detuning, an anticrossing
appears and the ramping rate determines whether or not the
spin crosses this energy gap diabatically. The system is ini-
tialized to an S(1,1) state from a S(0,2) state with a ramp
centered about either Fig. 9(c) the minimum or Fig. 9(d)
the maximum microwave amplitude (A and B). The tran-
sition from positive to negative detuning consists of a step
before and after the slow ramp to achieve a lower ramp rate,
as seen from the ε ramp in Figs. 9(c) and 9(d). The state
probability of S(0,2) and S(1,1) is given for different ramp
times in Figs. 9(e)–9(h) for the two cases. For comparison,
two-qubit dressed initialization is shown in Fig. 10. To show
the robustness to resonance frequency variability, different
combinations of �ν1 and �ν2 ∈ {0,±0.05,±0.1} MHz are
simulated. A S(1,1) state is achieved with >99 % fidelity
after approximately 0.1 μs for case A and 1 μs for case B
(at worst-case frequency offset). Centering the ramp about the
minimum microwave amplitude (A) looks to be a more robust
option, causing less mixing with the triplet states. This can be
explained by looking at the effective echoing as a result of the
global field after the ramp. For case A, close to a full period

of the global field follows the ramp, whereas for case B less
than three quarters of a period.

Readout can be performed similarly by reversing the pro-
cess described above and relying on Pauli spin blockade in
the dressed frame [17]. In that case, the spin blockade is
guaranteed for the duration of the spin relaxation time and
readout can be performed using some charge sensing tech-
nique. Note, however, that both the spin relaxation time and
the charge readout bandwidth can be impacted by the field
of the global driving, which can impose some engineering
challenges. Further discussions on the engineering aspects of
globally driven spin architecture are out of the scope of the
present paper, and some initial results in this direction can be
seen in Refs. [18,37].

VII. SUMMARY

In this paper, we propose to combine pulse engineering
with electromagnetic dressing of qubits in what we denote the

FIG. 10. Dressed two-qubit initialization for different ramp times
and frequency detuning offsets. The state probability of (a) S(0,2)
and (b) S(1,1) is shown with �R = 1 MHz and the total time 2/�R.
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FIG. 11. Schematic of method used to construct Gaussian noise
model. The fixed offset noise map is multiplied by 2D Gaussians
with σx and σy corresponding to the detuning and amplitude noise
levels, shown here for three different cases (a)–(c). The markers in
(d) indicate the following: Low detuning noise and high amplitude
noise (yellow star), high detuning noise and high amplitude noise
(red circle), and low amplitude noise and low detuning noise (green
triangle).

SMART protocol. We have shown that qubits can be made
more robust to detuning and amplitude variability caused
by noise and/or sample inhomogeneity by applying a sinu-
soidal modulation to the global field, canceling both first-
and second-order noise terms in a Magnus expansion. By
applying more complex modulation such as multitone driv-
ing, higher order noise terms can be canceled as well. This
is left for future work. We have analyzed two-qubit gates,
initialization, and readout in the particular example of spin
qubits in quantum dots, however, the SMART protocol can
be applied to other systems with global coherent driving. The
SMART protocol provides a clear and scalable path in terms
of engineering constraints, making it a potential strategy for
large-scale quantum computing.
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FIG. 12. Gate fidelity maps for (a) the
√

V gate and (b) the
√

W
gate. Row (i) shows Bloch spheres with the relevant global field,
local control field, and rotation axis. In row (ii), the fidelity for offset
values of amplitude and detuning are shown and, finally, rows (iii)
and (iv) show Gaussian distributed noise in linear and log scales,
respectively.

APPENDIX A: SIMULATION DETAILS OF 2D NOISE MAPS

For the 2D noise maps in Figs. 7 and 8, the Hamiltonian
given in Eq. (24) is used. To generate the maps, the following
steps are executed:

(1) Construct time-dependent Hamiltonian H with cer-
tain detuning and amplitude offset (δν, δ�) according to
Eq. (24).

(2) Time evolve H into time-evolution operator U at a
certain time.

(3) Calculate the fidelity of the resulting operator U by
looking at the overlap with the target operator.

(4) Repeat the steps above for different amplitude
and detuning offset values to create a 2D fidelity map
F (δν, δ�).

(5) Apply Gaussian averaging across the fixed noise map
generated above, where the width of the applied Gaussian
distribution is set by the noise level, that is, multiply the fixed
noise map by a normalized 2D Gaussian around zero offset
with widths (σν, σ�) given by the noise levels (see Fig. 11).
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For the two-qubit case, the noise levels of the two qubits are
assumed to be the same. The same procedure as for the one-
qubit gate is then followed, but integrating over all four noise
dimensions (δν1, δν2, δ�1, δ�2). Note that we assume there is
no noise on the exchange coupling for the simulation.

APPENDIX B: 2D NOISE MAPS FOR AXIS v AND w

The 2D noise maps of π/2 rotation about the v and w axes
in Fig. 12 are found to be similar to the SMART

√
X and

√
Y

gates.
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