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Matrices with the displacement structures of circulant, Toeplitz, and Hankel types as well as matrices with
structures generalizing these types are omnipresent in computations of sciences and engineering. In this paper
we present efficient and memory-reduced quantum algorithms for solving linear systems with such structures
by devising an approach to implement the block-encodings of these structured matrices. More specifically,
by decomposing n × n dense matrices into linear combinations of displacement matrices, we first deduce the
parametrized representations of the matrices with displacement structures so that they can be treated similarly.
With such representations, we then construct ε-approximate block-encodings of these structured matrices in
two different data access models, i.e., the black-box model and the quantum random access memory (QRAM)
data structure model. It is shown the quantum linear system solvers based on the proposed block-encodings
provide a quadratic speedup with respect to the dimension over classical algorithms in the black-box model and
an exponential speedup in the QRAM data structure model. In particular, these linear system solvers subsume
known results with significant improvements and also can motivate new instances where there was no specialized
quantum algorithm before. As an application, one of the quantum linear system solvers is applied to the linear
prediction of time series, which justifies the claimed quantum speedup is achievable for problems of practical
interest.

DOI: 10.1103/PhysRevA.104.062414

I. INTRODUCTION

Quantum technologies have shown their significant influ-
ence in communication and computing. On the one hand,
many quantum cryptographic protocols have been proposed
for protecting security and privacy [1–5]. On the other
hand, quantum computing which makes use of quantum me-
chanical principles, such as superposition and entanglement,
shows tremendous potential that outperforms the conventional
computing in time complexity in solving many problems, in-
cluding Boolean function computing [6,7], matrix computing
[8–10], and machine learning [11–15].

Matrices encountered in practical computations often have
some special structures and many problems can be trans-
formed into solving linear systems with structures. Among
various matrix structures, the circulant, Toeplitz, and Hankel
types and their generalization called circulant-like, Toeplitz-
like, and Hankel-like are the best known and well studied
[16–18]. As of now, several efficient quantum algorithms
have been proposed for solving linear systems with these
displacement structures. The quantum algorithm for the Pois-
son equation is the earliest work on solving Toeplitz linear
systems involving a specific kind of banded Toeplitz matri-
ces [19]. A quantum algorithm for solving sparse circulant
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systems was proposed by Mahasinghe and Wang [20]. There-
after, the quantum algorithm for solving circulant systems
with the bounded spectral norm was presented in Ref. [21],
where no assumption on the sparseness was demanded. By
constructing associated circulant matrices, Wan et al. [22]
proposed a quantum algorithm for solving Toeplitz systems in
the Wiener class (defined in Sec. III C), which is an asymptotic
quantum algorithm whose error is related to the dimension of
the Toeplitz matrices.

The quantum algorithms introduced above can achieve
excellent performance under certain circumstances and are
powerful for solving large families of problems. However,
these algorithms followed different ideas and employed differ-
ent techniques that the quantum algorithm for linear systems
with a specific displacement structure cannot be used for ref-
erence by other types. Moreover, it is intractable to generalize
these algorithms to solve linear systems with the same type of
generalized structures. Then an interesting question is whether
we can design quantum algorithms for linear systems with
various types of displacement structures in a unified way. A
unified treatment of such structured matrices can often pro-
vide conceptual and computational benefits and may also give
insight into finding some new solvable instances. Combined
with the method of block-encoding, we answer the question
in the affirmative.

A block-encoding of a matrix M is a unitary U that
encodes M/α as its top left block, where α � ‖M‖ is a
scaling factor. Given a way to implement block-encodings of
some matrices, many operations on the matrices can be done,
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including linear system solving [10,23,24]. Nevertheless, it
is worth noting that the complexity of the quantum al-
gorithm for linear systems based on block-encodings has
a linear dependence on scaling factors and implementing
block-encodings with preferred scale factors often requires
ingenious design. Although there are some methods to im-
plement the block-encodings for several specific matrices,
such as sparse matrices [10,23], density operators [23,25],
positive operator-valued measure operators [25], Gram ma-
trices [10], and matrices stored in a quantum-accessible
data structure [24,26], directly applying the methods men-
tioned cannot give rise to appealing quantum linear sys-
tem solvers for the matrices with displacement structures.
Exploiting the structures of such matrices to implement
their block-encodings with favorable scaling factors and
less cost of time, space, or memory deserves specialized
study.

In this paper we devise an approach that decomposes
n × n dense matrices into linear combinations of unitaries
(LCU) and implement block-encodings of matrices with dis-
placement structures following the idea of the LCU lemma
[27]. The proposed block-encodings can give rise to efficient
quantum algorithms for a set of linear systems with displace-
ment structures, including the linear systems, such as Toeplitz
systems in the Wiener class and circulant systems with the
bounded spectral norm, whose quantum algorithms can be
improved by our method, and the linear systems without spe-
cialized quantum algorithm before, such as some Toeplitz-like
and Hankel-like linear systems. More specifically, the main
contributions of this paper are as follows.

(a) We first deduce parametrized representations of n × n
dense matrices by decomposing them into linear combinations
of unitaries, which provide a way for the structured matri-
ces of interest to be represented and treated similarly. The
proposed LCU decompositions possess several desirable fea-
tures for implementing block-encodings. (i) The elementary
component unitaries are displacement matrices that can be
easily implemented. (ii) The decomposition coefficients are
the elements of the displacement of the decomposed matrices
that can be easily calculated. (iii) For the structured matri-
ces of interest, the number of decomposed items is roughly
O(n). In particular, this decomposition method provides a
representation with 2n − 1 parameters for Toeplitz or Han-
kel matrices, which is optimal in terms of the number of
parameters.

(b) Based on the proposed LCU decompositions, we then
construct efficient quantum circuits in two different data ac-
cess models commonly used in various quantum algorithms,
i.e., the black-box model and the quantum random access
memory (QRAM) data structured model, to implement the ε-
approximate block-encodings of matrices with displacement
structures. If a matrix is given in the QRAM data structure
model, it will often lead to a low-complexity construction.
Otherwise, the construction scheme in the black-box model
may be adopted since it requires less pre-storage. In both mod-
els, we implement block-encodings whose scaling factors are
proportional to the l1-norm χ of the displacement of the struc-
tured matrices. For the structured matrices with small χ , the
linear system solvers based on the proposed block-encodings
provide a quadratic speedup with respect to the dimension

over classical algorithms in the black-box model and an ex-
ponential speedup in the QRAM data structure model.

(c) We show that many matrices with displacement struc-
tures that are frequently encountered in various practical
problems can harness the potential advantages of the pro-
posed constructions. With the quantum linear system solver
developed in the block-encoding framework, we obtain the
following algorithms: (i) a quantum algorithm for Toeplitz
linear systems in the Wiener class, which is an exact algo-
rithm in which the error is independent of the dimension of
the Toeplitz matrices and which positively answers the open
question raised in [22]; (ii) a quantum algorithm for circulant
linear systems with the bounded spectral norm, providing a
quadratic improvement in the dependence on the condition
number and an exponential improvement in the dependence
on the precision over the quantum algorithm proposed in [21];
and (iii) an efficient quantum algorithm for linear systems
with Toeplitz- or Hankel-like structures. In particular, we also
obtain a quantum algorithm for banded Toeplitz or Hankel
linear systems without the use of any black box or QRAM,
which may be more convenient when constructing practical
quantum circuits. Finally, we show that the proposed quantum
algorithm for Toeplitz linear systems can be used in linear pre-
diction of time series, which provides a concrete example to
illustrate that the quantum speedup is practically achievable.

II. PRELIMINARIES

A. Matrices with displacement structure

The matrices with displacement structures arise perva-
sively in many contexts. Below we display three popular
classes of such structured matrices and their generalizations,
which are also our focus in this paper.

A Toeplitz matrix T n is a matrix of size n × n whose
elements along each diagonal are constants. More clearly,

T n =

⎛
⎜⎜⎜⎜⎜⎝

t0 t−1 t−2 · · · t−(n−1)

t1 t0 t−1
. . .

...

t2 t1 t0
. . . t−2

...
. . .

. . .
. . . t−1

t(n−1) · · · t2 t1 t0

⎞
⎟⎟⎟⎟⎟⎠, (1)

where ti,k = ti−k and T n is determined by the sequence
{t j}n−1

j=−(n−1).

There is a common special case of Toeplitz matrix called a
circulant matrix whose every row is a right cyclic shift of the
row above it:

Cn =

⎛
⎜⎜⎜⎜⎜⎝

c0 cn−1 cn−2 · · · c1

c1 c0 cn−1 · · · c2

c2 c1
. . .

. . .
...

...
. . . cn−1

cn−1 · · · c1 c0

⎞
⎟⎟⎟⎟⎟⎠. (2)

Since the circulant matrix has some fantastic properties, it
has been studied specifically in both classical and quantum
settings.

Another representative class of matrices with displacement
structures is the Hankel matrix. A matrix Hn is called a Hankel
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matrix if it has the form

Hn =

⎛
⎜⎜⎜⎜⎜⎝

h0 h1 h2 · · · hn−1

h1 h2
. . . hn

h2
. . .

. . .
...

... hn−1
. . . h2n−3

hn−1 hn · · · h2n−3 h2n−2

⎞
⎟⎟⎟⎟⎟⎠. (3)

The entry hi,k (i, k = 0, 1, . . . , n − 1) of Hn is equal to hi+k

for given sequence {h j}2n−2
j=0 . In other words, the skew diago-

nals of a Hankel matrix are constants.
There are some natural generalizations of these structured

matrices called Toeplitz- or Hankel-like matrices (circulant-
like matrices are regarded as a special case of Toeplitz-like
matrices). A matrix is said to be Toeplitz- or Hankel-like if
there are a few elements on some diagonals or skew diagonals
of the matrix that are not equal to the others.

The computations with these structured matrices, both
Toeplitz, Hankel matrices and Toeplitz-like, Hankel-like ma-
trices, are widely applied in various areas of science and
engineering. For example, in time-series analysis, the covari-
ance matrices of weakly stationary processes are Toeplitz
matrices (see [28]). The visual tracking framework of [29]
requires a base sample image to generate multiple virtual sam-
ples which correspond to circulant matrices. The solvability
of certain classical interpolation problems is connected with
Hankel matrices (see [18]). The numerical solutions of some
partial differential equations with mixed boundary conditions
can be obtained by solving the Toeplitz-like linear systems
generated by the discretization of the finite-difference method
(see [30]). Other applications involve polynomial computa-
tions [17], image restoration [31], machine learning [32],
compressed sensing [33], and so on.

Compared to general matrices, the structures in these ma-
trices can be exploited to perform algebraic operations, such
as matrix-vector multiplication, inversion, and matrix expo-
nential, with much less running time and memory space.
There are a number of classical methods that have been pre-
sented to solve the linear systems with such structures [31].
However, the time complexity of these methods is �(n) and it
is still a hard task to tackle the problems with very large n on
a classical computer.

B. Framework of block-encodings

In this section we review the framework of block-
encodings introduced in [23,24].

Definition 1 (block-encoding). Suppose that M is an s-qubit
operator, α, ε ∈ R+, and a ∈ N. Then we say that the (s + a)-
qubit unitary U is an (α; a; ε)-block-encoding of M if

‖M − α(〈0|⊗a ⊗ I)U (|0〉⊗a ⊗ I)‖ � ε. (4)

Given a block-encoding U of a matrix M, one can pro-
duce the state M|ψ〉/‖M|ψ〉‖ by applying U to an initial
state |0〉|ψ〉. Low and Chuang [23] presented a Hamiltonian
simulation algorithm under the framework of block-encodings
by combining the techniques of qubitization and quantum
signal processing, which can simulate sparse Hamiltonians
with optimal complexity. Taking this Hamiltonian simu-
lation algorithm as a subroutine, Chakraborty et al. [24]

developed several useful tools within the block-encoding
framework such as singular-value estimation and a quantum
linear system solver. In fact, they also pointed out that one
can implement any smooth function of a Hamiltonian when
given a block-encoding of this Hamiltonian by using the
techniques developed in [34]. Furthermore, the method of
block-encoding has been applied to the study of machine
learning, and many quantum algorithms have been presented
such as the quantum clustering algorithm [35], quantum
classification algorithm [36], and quantum algorithms for
semidefinite programming problems [25,37].

Although the block-encoding can be applied to various
algorithms for various computational problems, we will nar-
row our goal to the detailed study of solving linear systems
and then analyze the improvements brought about by the
method proposed in this paper. Here we describe an in-
formal version of the complexity result of the quantum
algorithm for linear systems in the framework of block-
encoding. Given a (α; a; ε)-block-encoding U of M, there
is a quantum algorithm that produces a state that is ε-close
to M−1|b〉/‖M−1|b〉‖ in time O(κM[α(a + TU )log 1

ε
+ Tb]),

where κM is the condition number of M, TU is the running
time to implement U , and Tb is the running time to prepare
the state |b〉. This result suggests that one needs to efficiently
construct block-encodings with small scaling factors.

C. Data access model

We now specify the data access model involved in the
proposed quantum algorithms for solving a linear system
Mx = b. For the right-hand-side vector b, a unitary that pro-
duces the quantum state |b〉 =∑i bi|i〉/‖

∑
i bi|i〉‖ is required

in the quantum algorithm solving the linear system. It is
shown that some specialized algorithms can be used to gen-
erate |b〉 efficiently under certain conditions [38,39], or our
quantum algorithm may be used as a subroutine while |b〉 can
be prepared by another part of a larger quantum algorithm.
Alternatively, if an efficiently implementable state preparation
procedure cannot be provided, we assume b can be accessed
in the same way as the coefficient matrix, which will be
introduced below.

For the coefficient matrix M, we are given two different
data access models which are most commonly used in various
quantum algorithms. In the first data access model, the ele-
ments of the matrix M ∈ Cn×n are accessed by a black box
OM acting as

OM |i〉|k〉|0〉 = |i〉|k〉|mi,k〉, i, k = 0, 1, . . . , n − 1. (5)

This model is often referred to as the black-box model [40,41].
The access operation can be made efficiently when mi,k are
efficiently computable or a QRAM is provided.

Kerenidis and Prakash [42] introduced a different data
access model called the QRAM data structure model. This
data access model stores data in QRAM with a binary tree
structure and allows access in superposition. When the data
are given as an n × n matrix, the matrix is stored in the binary
trees by rows, and an additional binary tree is required to store
the norms of the rows. Obviously, the memory requirement
and the complexity of constructing this data structure must be
O(n2). Although the quantum algorithms in this model do not
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take the complexity of constructing data structure, reducing
the memory requirement and thereby reducing the complexity
of constructing data structure has many practical implications.

III. METHODS AND RESULTS

A. LCU decomposition of matrices

In this section we deduce parametrized representations of
n × n matrices by decomposing them into linear combina-
tions of unitaries, where the unitaries used as elementary
components are easy to implement and the decomposition
coefficients are easy to calculate. Without loss of generality,
we assume that n is always a power of 2.

For a better understanding, we first introduce some neces-
sary background information about matrix displacement.

Definition 2. For a given pair of operator matrices (A, B)
and a matrix M ∈ Cn×n, the linear displacement operator
L(M) : Cn×n �−→ Cn×n of Stein type is defined by

L(M) = �A,B[M] = M − AMB (6)

and that of Sylvester type is defined by

L(M) = ∇A,B[M] = AM − MB. (7)

The image L(M) of the operator L is called the displace-
ment of the matrix M. According to the specific structure of
the matrix M, one can instantiate the operator matrices A
and B with desirable properties. Here, for our purposes, we
introduce one of the customary choices of A and B, the unit
f -circulant matrix Z f , which we will define next.

Definition 3 (unit f -circulant matrix). For a real-valued
scalar f , an n × n unit f -circulant matrix is defined as

Z f =

⎛
⎜⎜⎝

0 0 · · · f
1 0 · · · 0
...

...
...

...

0 · · · 1 0

⎞
⎟⎟⎠. (8)

It is easy to verify that Z1 and Z−1 are unitary matrices,
as well as Zi

1 and Zi
−1, i = 0, 1, . . . , n − 1. By inverting the

displacement operators with operator matrices Z1 and Z−1, we
then demonstrate how to decompose an n × n matrix as linear
combinations of unitaries.

Theorem 1. Let M ∈ Cn×n, mi,k be the kth element of the
ith row of M,

J =
⎛
⎝ 1

. .
.

1

⎞
⎠

be the reversal matrix, and

g(k) :=
{

0, k = 0, 1, 2, . . . , n − 2
1, k = n − 1.

(9)

Then M can be decomposed as (i)

M = 1

2

n−1∑
i,k=0

m̂i,kZi
1JZn−1−k

−1 , (10)

where m̂i,k = mi,k − (−1)g(k)m(i−1)modn,(k+1)modn is the kth el-
ement of the ith row of matrix �Z1,Z−1 [M], and (ii)

M = 1

2

n−1∑
i,k=0

m̃i,kZi
1Zn−1−k

−1 , (11)

where m̃i,k = m(i−1)modn,k − (−1)g(k)mi,(k+1)modn is the kth el-
ement of the ith row of matrix ∇Z1,Z−1 [M].

See Appendix A for a proof of Theorem 1.
We call these two decompositions Stein type and Sylvester

type, respectively. From this theorem, using the displacement
matrices {J, Zi

1, Zi
−1, i = 0, 1, . . . , n − 1} as the elementary

components, one can decompose an n × n matrix into linear
combinations of these simple unitaries, and the decomposition
coefficients are the elements of the displacement of the matrix
which can be easily calculated. The proposed LCU decompo-
sitions actually provide a way to parametrize the decomposed
matrices, that is, we can use the elements of L(M) as a
parametrized representation of M.

B. Implementation of block-encodings of matrices
with displacement structures

In this section we will show that the Toeplitz matri-
ces, Hankel matrices and their generalizations can generate
elegant parametrized representations with nearly O(n) param-
eters when associated with operator matrices Z1 and Z−1.
Furthermore, we will illustrate how to implement the block-
encodings of such matrices in detail.

Taking the Toeplitz matrices as an example, we compute
their Sylvester displacement first:

∇Z1,Z−1 [T n]

=

⎛
⎜⎜⎝

tn−1 − t−1 tn−2 − t−2 · · · 2t0
0 0 · · · t−(n−1) + t1
...

...
...

...

0 0 · · · t−1 + tn−1

⎞
⎟⎟⎠. (12)

Then T n can be decomposed into a linear combination of
unitaries as

T n = 1
2

[
2t0I + (t1 + t−(n−1))Z1

1 + · · · + (tn−1 + t−1)Zn−1
1

+ (t1 − t−(n−1))Z1
−1 + · · · + (tn−1 − t−1)Zn−1

−1

]
. (13)

We would like to emphasize that since the Toeplitz matrices
are represented with 2n − 1 parameters, this decomposition
should be optimal for the number of items.

To implement the block-encodings of Toeplitz matrices
from Eq. (13), we define two state preparation operators as

V (∇[T n])|0〉 = |V(∇[T n])〉

= 1√
χT n

n−1∑
j=0

√
t j + t−[(n− j)modn]| j〉

+ 1√
χT n

2n−1∑
j=n

√
t( j−n) − t−[(2n− j)modn]| j〉

≡ 1√
χT n

2n−1∑
j=0

√
t̃ j | j〉, (14)
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V (∇[T n]∗ )|0〉 = |V(∇[T n]∗ )〉 = 1√
χT n

2n−1∑
j=0

√
t̃∗

j | j〉, (15)

where χT n =∑2n−1
j=0 |t̃ j | and the square root operation takes

the main square root of t̃ j and t̃∗
j . Then we define a controlled

unitary

SelectUTn =
n−1∑
j=0

| j〉〈 j| ⊗ Z j
1 +

2n−1∑
j=n

| j〉〈 j| ⊗ Z j−n
−1 . (16)

Since
√

t̃ j (
√

t̃∗
j )∗ = t̃ j , it is easy to verify that

T n = χT n

2
[〈0|(V †

(∇[T n]∗ ) ⊗ I)SelectUTn (V (∇[T n]) ⊗ I)|0〉],
(17)

which means that (V †
(∇[T n]∗ ) ⊗ I)SelectUTn (V(∇[T n]) ⊗ I) is a

block-encoding of T n.
Implementing the block-encoding of T n is to implement

V (∇[T n]), V (∇[T n]∗ ), and SelectUTn . For quantum state prepa-
ration operators, we need to construct a quantum circuit that
prepares |V(∇[T n])〉 reversibly. In the black-box model, this
cannot be done by the traditional black-box quantum state
preparation [43] because its success probability cannot be
increased arbitrarily close to certainty, which will make the
final error uncontrollable. We provide a reversible algorithm
called steerable black-box quantum state preparation, based
on fixed-point amplitude amplification [44], which can pre-
pare a quantum state with the success probability increasing
arbitrarily close to certainty. Since it will be referred to multi-
ple times as a key subroutine of our algorithm and may be of
independent interest for other quantum algorithms, we make
a formal statement here.

Lemma 1. For a vector x ∈ Cn×1, |x|max = maxi |√xi| is a
small constant, and the elements are given by a black box Ox

acting as

Ox|i〉|0〉 → |i〉|xi〉. (18)

Then the steerable black-box quantum state preparation al-
gorithm generates a state, up to a global phase, that is an εp

approximation of

|x〉 = 1√‖x‖1

n−1∑
i=0

√
xi|i〉 (19)

with a success probability of at least 1 − δ2, us-
ing O(

√
nlog(1/δ)√‖x‖1

) queries of Ox and additional

O(
√

nlog(1/δ)√‖x‖1
polylog( n

εp
√‖x‖1

)) elementary gates.
See Appendix B for a proof of Lemma 1.
The operators defined by Eqs. (14)–(16) are actually the

operators of the LCU circuit [27] which has been used in
many quantum algorithms [24,34,45,46]. Here we implement
this circuit with two different data access models introduced
in Sec. II C. The method in the QRAM data structure model
is especially useful for the structured matrices whose dis-
placements have been stored in the data structure, while the
method in the black-box model will have a wider range of
applications because of the flexibility of its implementation.
We summarize the results as follows.

Theorem 2. Let T n ∈ Cn×n be a Toeplitz matrix. (i) If the
elements of T n are provided by a black box OT n , i.e.,

OT n |i〉|k〉|0〉 = |i〉|k〉|ti,k〉,
one can implement a (χT n/2; log(n) + 2; ε)-block-encoding

of T n with O(
√

nlog(χTn /ε)√
χTn

) uses of OT n and additionally using

O(
√

n√
χTn

polylog( nχTn
ε

)) elementary gates. (ii) If the nonzero

elements of Sylvester displacement of T n, i.e., {t̃ j}2n−1
j=0 , are

stored in the QRAM data structure as shown in Lemma 6, one
can implement a (χT n/2; log(n) + 1; ε)-block-encoding of T n

with gate complexity O(polylog(nχT n/ε)) and memory cost
O(n).

See Appendix C for a proof of Theorem 2.
Moreover, we show that how to implement the block-

encoding of the Toeplitz-like matrices. Let T L ∈ Cn×n be
a Toeplitz-like matrix, (T L )i,k = τi,k , (∇Z1,Z−1 [T L])i,k = τ̃i,k .
We first define two state preparation operators as

V (∇[T L])|0〉|0〉 = |V(∇[T L])〉 = 1√
χT L

n−1∑
i=0

n−1∑
k=0

√
τ̃i,k|i〉|k〉,

(20)

V (∇[T L]∗ )|0〉|0〉 = |V(∇[T L]∗ )〉 = 1√
χT L

n−1∑
i=0

n−1∑
k=0

√
τ̃ ∗

i,k|i〉|k〉,
(21)

where χT L =∑n−1
i=0

∑n−1
k=0 |τ̃i,k| and the square root operation

takes the main square root of τ̃i,k and τ̃ ∗
i,k . Then we define

SelectUTL =
(

n−1∑
i=0

|i〉〈i| ⊗ I ⊗ Zi
1

)

×
(

n−1∑
k=0

I ⊗ |k〉〈k| ⊗ Zn−1−k
−1

)
. (22)

Since
√

τ̃i,k (
√

τ̃ ∗
i,k )∗ = τ̃i,k , it is easy to verify that

T L = χT L

2
[〈0|(V †

(∇[T L]∗ ) ⊗ I)SelectUTL (V (∇[T L]) ⊗ I)|0〉],
(23)

which means that (V †
(∇[T L]∗ ) ⊗ I)SelectUTL (V (∇[T L]) ⊗ I) is

a block-encoding of T L.
It seems difficult to implement the state preparation oper-

ators V (∇[T L]) and V (∇[T L]∗ ) with complexity less than O(n)
in the black-box model. However, as shown in Eq. (12),
the Sylvester displacement of a Toeplitz matrix has nonzero
elements only along its first row and last column. For a
Toeplitz-like matrix T L, there are a few elements on some
diagonals of the matrix that are not equal to the others. Then
it can be directly verified that the submatrix left by deleting
the first row and last column of the Sylvester displacement
of the Toeplitz-like matrix is a sparse matrix. Based on this
observation, we construct the block-encodings of the Toeplitz-
like matrices, and the results are summarized as follows.

Corollary 1. Let T L ∈ Cn×n be a Toeplitz-like matrix. Sup-
pose that the submatrix left by deleting the first row and last
column of ∇Z1,Z−1 [T L] is (d − 1)-row sparse, i.e., there are at
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most d − 1 nonzero elements in each row. (i) If the elements
of T L are provided by a black box OT L , i.e.,

OT L |i〉|k〉|0〉 = |i〉|k〉|τi,k〉,
and a black box that computes the positions of the distinct el-
ements on diagonals of the Toeplitz-like matrices is provided,
one can implement a (χT L /2; 2log(n) + 2; ε)-block-encoding

of T L with O(
√

ndlog(χTL /ε)√
χTL

) uses of OT L and additionally using

O(
√

nd√
χTL

polylog(
ndχTL

ε
)) elementary gates. (ii) If the nonzero

elements of Sylvester displacement of T L, i.e., {τ̃i,k}n−1
i,k=0, are

stored in the QRAM data structure as shown in Lemma 7,
one can implement a (χT L /2; 2log(n); ε)-block-encoding of
T L with gate complexity O(polylog(nχT L /ε)) and memory
cost O(dn logn).

See Appendix D for a proof of Corollary 1.
Remark 1. One might be confused about the QRAM data

structure used in this paper, which stores m̃i,k instead of mi,k

for a matrix M. In fact, in most quantum algorithms using
this data structure, such as those in [24,26], the stored entries
are mp

i,k, p ∈ [0, 2]. Since m̃i,k , as defined below Eq. (11), can
be calculated as efficiently as mp

i,k, p ∈ [0, 2], our assumption
about such a data structure is not stronger than the assumption
in the previous algorithms.

Remark 2. Results (i) and (ii) in Theorem 2, as well as
Corollary 1, use different data access models, where the black-
box model queries the elements of structured matrices, while
the QRAM data structure model requires that the elements
of their displacements have been stored. Due to the different
data access models, a direct comparison of the complexity
of these results is inappropriate, and it is unwise to claim
which result is more advantageous based on the complexity.
In practical applications, one should choose the appropriate
method according to the pattern from which the data can be
obtained.

For a circulant matrix Cn, computing its Sylvester dis-
placement, the LCU decomposition of Cn is Cn =∑n−1

j=0 c jZ
j
1.

Similar to the implementation of the block-encodings of the
Toeplitz matrices, we can implement block-encodings of Cn.
Since the number of decomposed items of the circulant matri-
ces is less than that of the Toeplitz matrices, fewer resources
are required to implement the block-encodings than stated
in Theorem 2. The same conclusion holds for circulant-like
matrices.

For a Hankel matrix Hn, it can be decomposed as follows,
by computing their Stein displacements,

Hn = 1
2

[
2hn−1J + (hn + h0)Z1

1J

+ · · · + (h2n−2 + hn−2)Zn−1
1 J + (hn−2 − h2n−2)JZ1

−1

+ · · · + (h0 − hn)JZn−1
−1

]
. (24)

Note that JZi
−1 = −Zn−i

−1 J, and this decomposition is equiva-
lent to

Hn = 1
2

[
2hn−1J + (hn + h0)Z1

1J

+ · · · + (h2n−2 + hn−2)Zn−1
1 J + (h2n−2 − hn−2)Zn−1

−1 J

+ · · · + (hn − h0)Z1
−1J
]
. (25)

Since J = σ
⊗logn
x (σx is a Pauli-X operator), we can imple-

ment an ε-approximate block-encoding of Hn by constructing
a quantum circuit similar to the block-encoding imple-
mentation of T n, where the scaling factor is χ ′

Hn
/2 =∑n−1

i=0

∑n−1
k=0 |ĥi,k|/2. Also, the block-encodings of the Hankel-

like matrices can be implemented similarly to those of the
Toeplitz-like matrices.

In many cases, such as visual tracking [47], we need to ex-
tend the non-Hermitian matrices with displacement structures
to Hermitian. For the extended matrices

M =
(

0 M
M† 0

)
, (26)

let U be a (χ ; a; ε)-block-encoding of M; then we can im-
plement a (χ ; a; ε)-block-encoding of M by using the method
of complementing block-encoded matrices [24]. The cost of
implementing this block-encoding is nearly twice the cost of
implementing U . Therefore, without a loss of generality, we
can assume that the matrices studied in the following sections
are Hermitian.

C. Quantum algorithm for linear systems
with displacement structures

As mentioned, given a block-encoding U of a matrix M,
one can perform a number of useful operations on M. In par-
ticular, combining the variable-time amplitude amplification
technique [48] and the idea of implementing smooth functions
of block-encoded Hamiltonians [34], Chakraborty et al. [24]
presented a quantum algorithm for linear systems within the
block-encoding framework. We invoke the complexity of this
algorithm as follows.

Lemma 2 (variable-time quantum linear systems algo-
rithm [24]). Let H be an n × n Hermitian matrix and λi be
the nonzero eigenvalues of H such that λi ∈ [−1,−1/κH ] ∪
[1/κH , 1], where κH > 2 is the condition number of H . Sup-
pose that there is an (α; a; δ)-block-encoding U of H , where
δ = o(ε/κ2

H log3( κH
ε

)), and U can be implemented in time TU .
Also suppose that the state |b〉 can be prepared in time Tb.
Then there exists a quantum algorithm that produces a state
that is ε-close to H−1|b〉/‖H−1|b〉‖ in time

O

(
κH

[
α(a + TU )log2

(
κH

ε

)
+ Tb

]
log(κH )

)
.

As mentioned in Sec. II C, there are some methods that can
prepare right-hand-side state |b〉 in time O(polylogn) under
certain conditions. Even if such an efficient state preparation
procedure cannot be provided, the complexity of preparing
|b〉 will not exceed the complexity of implementing block-
encodings of structured matrices in the same data access
model. More specifically, in the black-box model, the query
complexity of preparing an n-dimensional quantum state is
O(

√
n) [43]. In the QRAM data structured model, one can

prepare the quantum state |b〉 with complexity O(polylogn)
[42]. Here, following the assumption of previous quantum
algorithms [8,27], we neglect the error in producing |b〉
since this error is independent of the design of the quantum
algorithm.

Therefore, according to Lemma 2, the method pro-
posed in Theorem 2 can induce a quantum algorithm to
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solve the structured linear systems with complexity (i)
Õ(κH

√
χ

√
npolylog(1/ε)) in the black-box model (we use

the symbol Õ to hide redundant polylogarithmic factors, and
since the elementary gate requirement in the black-box model
is larger than the query complexity by logarithmic factors,
we will not describe them individually from now on) and (ii)
Õ(κHχpolylog(n/ε)) in the QRAM data structure model. Ob-
viously, this algorithm is expected to be efficient for matrices
whose χ is small.

Many matrices with displacement structures encountered
in a diverse range of applications satisfy this criterion. One
of the typical examples should be Toeplitz matrices in the
Wiener class [28,31]. This kind of matrix is usually obtained
by the discretization of some continuous problems. More
specifically, let C2π be the set of all 2π -periodic continuous
real-valued functions defined on [0, 2π ]. Let T n be the n × n
Toeplitz matrices whose elements of every diagonal are given
by the Fourier coefficients of a function f ∈ C2π , i.e.,

t j = 1

2π

∫ 2π

0
f (λ)e−i jλdλ, j = 0,±1,±2, . . . . (27)

The function f is called the generating function of the se-
quence of Toeplitz matrices T n(1 � n < ∞). The sequence
of Toeplitz matrices T n(1 � n < ∞) whose element sequence
{t j} is absolutely summable is said to be in the Wiener class.
That is to say, for Toeplitz matrices in the Wiener class, there
must be a constant ρ such that

∞∑
j=−∞

|t j | < ρ. (28)

Thus, for Toeplitz matrices in the Wiener class, we have

χT n = 2|t0| + |t1 + t−(n−1)| + · · · + |tn−1 + t−1|
+|t1 − t−(n−1)| + · · · + |tn−1 − t−1|

� 2
n−1∑

j=−(n−1)

|t j | < 2ρ. (29)

The complexity of the quantum algorithm for solv-
ing the Toeplitz systems in the Wiener class is (i)
Õ(κT n

√
npolylog(1/ε)) in the black-box model and (ii)

Õ(κT n polylog(n/ε)) in the QRAM data structure model.
When the Toeplitz matrices are well conditioned [we call
a matrix M well conditioned when κM ∈ O(polylog n)] and
1/ε ∈ O(poly n), the quantum algorithm is (i) quadratically
faster than the classical methods in the black-box model and
(ii) exponentially faster than the classical methods in the
QRAM data structure model.

As of now, some work regarding Toeplitz matrices has been
studied in the quantum setting. Wan et al. [22] adopted associ-
ated circulant matrices to approximate the Toeplitz matrices in
the Wiener class and solved the circulant linear systems by ac-
cessing the values of the generating function at specific points
in parallel. It is an asymptotic quantum algorithm whose error
is related to the dimension of the Toeplitz matrices. An open
question raised in [22] was whether there is an exact quantum
algorithm where the error is independent of the dimension.
The algorithm suggested in this section gives the answer, and
it is more advantageous when rigorous precision is required

or the Toeplitz matrices and their associated circulant matrices
do not approach quickly as the dimension increases. Addition-
ally, for the cases where no generating function is provided,
our algorithm can improve the dependence on the condition
number and precision since the complexity of the quantum
algorithm proposed in [22] has a quadratic dependence on the
condition number and a linear dependence on the precision.

Besides the Toeplitz matrices in the Wiener class, for the
circulant matrices Cn, it is often the case in practical appli-
cations that c j are non-negative for all j and the spectral
norms ‖Cn‖ =∑n−1

j=0 c j of Cn are constants. Thus, χCn will be
bounded by some constants, and the quantum algorithm based
on the proposed block-encodings can solve these circulant lin-
ear systems with complexity (i) Õ(κCn

√
npolylog(1/ε)) in the

black-box model and (ii) Õ(κCn polylog(n/ε)) in the QRAM
data structure model.

For the circulant matrices described above, based on the
observation of LCU decomposition of Cn, Zhou and Wang
[21] used the method of simulating the Hamiltonian with
a truncated Taylor series [45] and the algorithm of Harrow
et al. [8] to solve the associated linear systems. Under the
assumption that there is an oracle that can prepare the state

1√
χCn

∑n−1
j=0

√
c j | j〉 in time O(polylogn), the complexity of the

quantum algorithm proposed in [21] is Õ(κ2
Cn

polylog(n)/ε).
However, it is not always feasible to prepare this initial
state with such a running time, especially in the black-box
model. In this paper we show in detail how to implement the
preparation of this state in two different data access models.
In particular, when using the same data access model, the
algorithm proposed in this paper provides complexity im-
provement on κCn and 1/ε, which comes from the use of
updated techniques for the Hamiltonian simulation and linear
system solver.

There are some Hankel matrices of which
∑∞

j=0 |h j | are
convergent, such as

H i,k = 1

(i + k + 1)!
, (30)

which arise in determining the covariance structure of an
iterated Kolmogorov diffusion [49]. In addition, there are also
some Hankel matrices generated by the discretization of some
functions [50], just like the Toeplitz matrices in the Wiener
class. Then we can implement block-encodings of these Han-
kel matrices with bounded scaling factors, which will derive a
quantum algorithm that solves the Hankel linear systems with
significant speedup (same as that for Toeplitz systems in the
Wiener class) in both data access models.

It immediately follows that, for the Toeplitz- or Hankel-like
matrices, if they satisfy a constraint similar to one of the above
forms, we can then solve the linear systems with such struc-
tures efficiently by using the block-encodings constructed in
Corollary 1. For example, finding a greatest common divisor
of univariate polynomials involves solutions of Toeplitz-like
systems and in some cases, as shown in [51], the elements
of the displacement of the coefficient matrices are absolutely
summable. We would like to emphasize the method proposed
in this paper will result in efficient quantum linear system
solvers for the structured matrices whose χ is small, not only
for the matrices introduced in this section.
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IV. APPLICATION TO TIME-SERIES ANALYSIS

Note that the quantum algorithm introduced in the preced-
ing section always outputs a state encoding the solution of the
linear system in its amplitudes. Reading out all the classical
information of the solution is time consuming. To illustrate
that the quantum speedup is practically achievable, we provide
a concrete example where the coefficient matrix satisfies the
specification and some useful information can be extracted
from the output.

More specifically, we apply the quantum algorithm for
the Toeplitz systems in the Wiener class to solve the linear
prediction problem of time series. Predicting the future value
of a discrete-time stochastic process with a set of past samples
of the process is one of the most important problems in time-
series analysis. For linear prediction, we need to estimate the
predicted value by a linear combination of the past samples.

To present the problem clearly, we first introduce some ter-
minology used in signal processing (for details, see [52]). Let
u(k) be a discrete-time stationary zero-mean complex-valued
process. A finite-impulse-response linear filter of order n is of
the form

û(i) =
n∑

k=1

w∗
k u(i − k), (31)

where û(i) is the filter output based on the data {u(k)}i−1
k=i−n

and {wk}n
k=1 are the impulse responses of the filter. For the

situation of linear prediction, the desired response is u(i),
representing the actual sample of the input process at time
i. The difference between the desired response u(i) and the
filter output û(i) is called the estimation error. To estimate
the desired response, we should choose the impulse responses
{wk}n

k=1 by making the estimation error as small as possible in
some statistical sense.

According to the Wiener filter theory, when the estimation
error is optimized in the mean-square-error sense, the impulse
responses {wk}n

k=1 are given by the solution of the linear
system

Rw = r. (32)

Here

R =

⎛
⎜⎜⎝

r(0) r(1) · · · r(n − 1)
r∗(1) r(0) · · · r(n − 2)

...
...

. . .
...

r∗(n − 1) r∗(n − 2) · · · r(0)

⎞
⎟⎟⎠, (33)

r =

⎛
⎜⎜⎝

r∗(1)
r∗(2)

...

r∗(n)

⎞
⎟⎟⎠, (34)

where r(k) = E[u( j)u∗( j − k)] (E is the expectation opera-
tor) are the autocovariances of the input process for lag k. This
linear system is commonly called the Wiener-Hopf equations.

Note that the covariance matrix R is an n × n Hermitian
Toeplitz matrix and is almost always positive definite. For a
discrete-time stationary process, if the autocovariances of the
process are absolutely summable, i.e.,

∑∞
k=−∞ |r(k)| < ∞,

then the function f̃ (λ) that takes r(k) as its Fourier coefficients

is called the power spectral density function of the process.
The power spectral density functions ordinarily exist for the
stochastic processes encountered in the physical sciences and
engineering. Thus, R is a Toeplitz matrix generated by f̃ (λ)
and in the Wiener class. Moreover, the eigenvalues λk of a
Hermitian Toeplitz matrix satisfy

fmin � λk � fmax, (35)

where fmin and fmax represent the smallest value and the
largest value of the generating function, respectively. When
the spectral density function is bounded (which can be guar-
anteed by the continuity of f̃ (λ) on [0, 2π ]), the condition
number of R will also be bounded.

For the case of known statistics, i.e., the autocovariances of
the stationary process are known, one can query the elements
of the covariance matrix R by the “black box.” Alternatively,
the covariance matrix R can be stored in the QRAM data
structure as shown in Lemma 6 in advance. Similarly, the
vector r can also be provided with two different data ac-
cess models. Then we can prepare a quantum state |r〉 with
complexity (i) O(

√
n/‖r‖2) in the black-box model [41] and

(ii) O(polylog(n/ε)) in the QRAM data structure model [42].
Note that ‖r‖2 = O(χR) will be a constant. By using the quan-
tum algorithm for solving the Toeplitz systems, we can get a
quantum state |w〉 proportional to the solution of Eq. (32) with
complexity (i) Õ(

√
npolylog(1/ε)) in the black-box model

and (ii) Õ(polylog(n/ε)) in the QRAM data structure model.
Given the vector u = [u(i − 1), . . . , u(i − n)]T with the

appropriate data access model, the quantum state |u〉 can also
be prepared by the methods described in Sec. III C. Then the
filter output û(i) =∑n

k=1 w∗
k u(i − k) can be approximately

computed up to some factor by evaluating the inner product
of |u〉 and |w〉 using the Hadamard test [53,54]. Since there is
no need to read out all the values of the obtained quantum
state, the quantum speedup of solving the linear system is
preserved. This process in fact provides an example showing
that quantum algorithms can yield significant speedup for
problems of practical interest.

V. DISCUSSION

There are some special cases of matrices with displacement
structures that can be decomposed into linear combinations of
displacement matrices with a few items. The simplest case is
banded Toeplitz matrices T̄ n, i.e., tk = 0 for |k| > �, where �

is a constant. The linear systems of banded Toeplitz matrices
occur in many applications, involving the numerical solution
of certain differential equations, the modeling of queueing
problems, digital filtering, and so on.

Computing the Sylvester displacements of banded Toeplitz
matrices, the matrices can be decomposed as

T̄ n = 1
2

[
2t0I + t1Z1

1 + · · · + t�Z�

1

+ t−�Zn−�

1 + · · · + t−1Zn−1
1

+ t1Z1
−1 + · · · + t�Z�

−1

+ (−t−� )Zn−�

−1 + · · · + (−t−1)Zn−1
−1

]
. (36)

Similarly to Eqs. (14)–(16), we can define two state prepa-
ration operators V (∇[T̄ ]) and V (∇[T̄ ]∗ ) and a controlled unitary
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operator Select(UT̄ ). Then the unitaries V (∇[T̄ ]) and V (∇[T̄ ]∗ )
can be implemented by using the generic state preparation
algorithm described in [55], which requires a gate cost of
O(�). Also, the controlled unitary operator Select(UT̄ ) can
be implemented with O(� logn) primitive gates, as the quan-
tum circuit of each Z j

1 or Z j
−1 only requires O(logn) primitive

gates. Thus, we can efficiently implement a (χT̄ n
/2; �log(4� +

1)�; ε)-block-encoding of T̄ n, where χT̄ n
=∑�

j=−� |t j |. It
should be noted that the implementation scheme proposed
here may further facilitate construction of practical circuits of
the block-encodings of such matrices since it does not require
any oracle or QRAM. Combined with the quantum algorithm
for linear systems within the block-encoding framework, it
can offer an exponential improvement in the dimension of the
linear systems over classical methods.

In the black-box model, one can use the method of [23]
to efficiently implement a block-encoding for a sparse matrix,
where the scaling factor linearly depends on the sparsity (the
maximum number of nonzero entries in any row or column)
of the matrix. Since the structured matrices studied in this
paper are not sparse, the scaling factor of this block-encoding
will be O(n). Then the quantum algorithm for structured
linear systems based on such block-encoding cannot provide
speedup compared with the classical algorithm. We note that
[10] provided a way to improve the scaling factor; however,
it required that the upper bound on the p-norm of the rows of
the matrix is known, which is not the circumstance considered
in this paper.

In the QRAM data structure model, the method stated in
[24,26] also implements block-encodings based on the as-
sumption that the powers of the elements of a matrix are
stored in the quantum-accessible data structure beforehand.
For a matrix with a displacement structure, the scaling factor
produced by the method of [24,26] can be of the same order
of magnitude as that in this paper. However, it should be
noted that constructing the data structure that stores some
entries about the matrices may constitute the main restric-
tion of this data access model. With respect to this, our
method is more advantageous. More specifically, the method
of [24,26] would require a QRAM with data structure storing
O(n2) entries for the matrices with displacement structures.
In our method, since we represent these structured matrices
with O(n) entries of their displacements, a QRAM with data
structure storing O(n) entries is required. Obviously, the data
structure in our method can be constructed more rapidly and
uses less memory space, so our method will be more favorable
when solving problems involving matrices with displacement
structures.

As analyzed above, the origin of the advantages of our
algorithm is the succinct parametrized representations of the
matrices with displacement structures which are attributed to
the Stein and Sylvester types of LCU decompositions. There
are also some intuitive methods to perform an LCU decompo-
sition. Typically, we specify a set of unitaries that are easy to
implement as the basis and then calculate the decomposition
coefficients by solving a linear system with n2 unknown pa-
rameters. Alternatively, one can decompose the matrix into a
sum of tensor products of Pauli operators, while the number

of decomposition items will be considerably larger than ours.
These decompositions are highly complex to construct and
may not even fit to implement block-encodings. In general,
it is not easy to find a desirable decomposition.

In particular, in this paper, by the proposed LCU decom-
positions, we make the implementation of block-encodings
of matrices with displacement structure closely related to the
task of preparing O(n)-dimensional quantum states. Since
there are �(n) parameters when defining an n × n matrix with
displacement structure, the query complexity in the black-box
model and the memory cost in the QRAM data structure
model are nearly optimal. It is an open question whether
one can bypass the preparation of n-dimensional quantum
states and implement block-encodings of the matrices with
displacement structures with fewer resources.

It should be noted that although the proposed decom-
positions in this paper are also available for general dense
matrices, the quantum algorithms based on these decompo-
sitions cannot significantly improve the known results due to
the number of decomposition items of n2. For the same reason,
even if other unitaries are used as the basis, a universal LCU
decomposition generally cannot give rise to quantum algo-
rithms that surpass existing methods for all dense matrices.
Nevertheless, it is still worth exploring specialized decompo-
sition for some specific structured matrices to implement fa-
vorable block-encodings, which can result in a significant re-
duction in the complexity of the quantum linear system solver.

Following Tang’s breakthrough work [56], there is a large
class of classical algorithms whose running time is polylog-
arithmic in the dimension. However, this type of speedup
is only achievable when the matrices involved are of low
rank. It is not applicable to use the dequantization method
to solve linear systems with displacement structures since
these matrices are not low rank in general. In addition, these
dequantized algorithms have higher overhead than the quan-
tum algorithms in practice due to their large polynomial
dependence on the rank and the other parameters. For the
computation of displacement structured matrices, it is an in-
teresting open problem to explore classical algorithms with
similar overheads to quantum algorithms.

VI. CONCLUSION

In this paper we demonstrated that several important
classes of matrices with displacement structures can be repre-
sented and treated similarly by decomposing them into linear
combinations of displacement matrices. Based on the devised
decompositions, we implemented block-encodings of these
structured matrices in two different data access models and
introduced efficient quantum algorithms for solving the linear
system with such structures. The obtained quantum linear
system solvers improved the known results and also motivated
some other instances (see Table I for a brief summary). In
particular, we provided a concrete example to illustrate that
these quantum algorithms can be used to solve problems of
practical interest with significant speedup.

The presented methods can actually be extended to solve
many important computational problems having ties to the
structured matrices studied in this paper, such as structured
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TABLE I. Summary of quantum algorithms for solving linear systems with displacement structures.

Coefficient matrix Algorithm Remark Comparison of complexity

Toeplitz matrices Wan et al. [22] Asymptotic algorithm Improve the dependence on the
in the Wiener class condition number and precision

Theorem 2 based Nonasymptotic algorithm when the generating function is unknown

Circulant matrices with Zhou and Wang [21] An oracle of preparing the Improve the dependence on the
bounded spectral norm n-dimensional state is required condition number and precision

Theorem 2 based Two different data access models when using the same data access model

Discretized Laplacian Cao et al. [19] Finite-difference discretization
(specific banded of the Poisson equation Same order of magnitude

Toeplitz matrices) Discussion based Applicable to general
banded Toeplitz matrices

Toeplitz- or Hankel-like No specialized
matrices with small χ quantum algorithm

Corollary 1 based

least-squares problems and computation of the structured ma-
trices exponential. Also, we hope our work can inspire the
study of matrices with displacement structures on near-term
quantum devices (for example, see [57]) since we have shown
that these matrices can be decomposed into some easy-to-
implement unitaries. Finally, there are many other structured
matrices such as Cauchy, Bezout, Vandermonde, Loewner,
and Pick matrices which are widely employed in various
areas. Designing quantum algorithms for these structured ma-
trices with a dramatic computational acceleration and a major
memory-space decrease is worthy of further study.
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APPENDIX A: PROOF OF THEOREM 1

In this Appendix we prove the conclusion in Theorem 1.
There are some well-known fundamental results and the proof
of these results can be found in [17]. For completeness, we
restate them here.

Lemma 3 (from [17]). For matrices A, B, M ∈ Cn×n and
k � 1 we have

M = AkMBk +
k−1∑
i=0

Ai�A,B(M)Bi. (A1)

Proof. It is trivial when k = 1. We assume the identity is
true for k. Then, multiplying the identity on the left by A and
right by B, we obtain

AMB = Ak+1MBk+1 +
k−1∑
i=0

Ai+1�A,B(M)Bi+1

= Ak+1MBk+1 +
k∑

i=0

Ai�A,B(M)Bi − �A,B(M),

M = Ak+1MBk+1 +
k∑

i=0

Ai�A,B(M)Bi. (A2)

Thus, the identity is true for k + 1. According to mathematical
induction, it is true for all natural numbers. �

Lemma 4 (from [17]). If A is an a-potent matrix of order n
and B is a b-potent matrix of order n, i.e., An = aI and Bn =
bI, then

M = 1

1 − ab

n−1∑
i=0

Ai�A,B(M)Bi. (A3)

Proof. This conclusion is a direct inference of Lemma 3,
when k = n, An = aI, and Bn = bI. �

Lemma 5 (from [17]). If the operator matrix A is non-
singular, then ∇A,B = A�A−1,B; if the operator matrix B is
nonsingular, then ∇A,B = −�A,B−1 B.

Proof. Note that if A is nonsingular, then AM − MB =
A(M − A−1MB); if B is nonsingular, then AM − MB =
−(M − AMB−1)B. �

Definition 4 (the f -circulant matrix). The f -circulant ma-
trix Z f (v) generated by a unit f -circulant matrix and a given
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vector v = [v0, . . . , vn−1]T is defined as follows:

Z f (v) = (
v Z f v Z2

f v · · · Zn−1
f v

)

=

⎛
⎜⎜⎝

v0 f vn−1 · · · f v1

v1 v0 · · · f v2
...

...
... f vn−1

vn−1 · · · v1 v0

⎞
⎟⎟⎠. (A4)

It turns out that a matrix M can be expressed as the sum of
the products of f -circulant matrices and the reversal matrix,
by inverting the displacement operators.

Theorem 3 (from [17]). If a matrix M ∈ Cn×n satis-
fies L(M) = GHT , where G = [g1 · · · gr], H = [h1 · · · hr] ∈
Cn×r , and e and f are constants, then M can be expressed as
(i)

M = 1

1 − e f

r∑
j=1

Ze(g j )Z f (Jh j )
T J, (A5)

where L(M) = �Ze,Z f [M] and e f �= 1, and (ii)

M = 1

e − f

r∑
j=1

Ze(g j )Z f (Jh j ), (A6)

where L(M) = ∇Ze,Z f [M] and e �= f .
Proof. From Lemma 4, let A = Ze, B = Z f , and e f �= 1.

Then we have

M = 1

1 − e f

n−1∑
i=0

Zi
e�Ze,Z f (M)Zi

f

= 1

1 − e f

r∑
j=1

n−1∑
i=0

Zi
eg jh

T
j Zi

f

= 1

1 − e f

r∑
j=1

(
g jh

T
j + Zeg jh

T
j Z f + Z2

eg jh
T
j Z2

f

+ · · · + Zn−1
e g jh

T
j Zn−1

f

)
= 1

1 − e f

r∑
j=1

[
g j Zeg j Z2

eg j · · · Zn−1
e g j

]

× [h j ZT
f h j
(
ZT

f

)2
h j · · ·

(
ZT

f

)n−1
h j
]T

= 1

1 − e f

r∑
j=1

Ze(g j )
[
JJh j JZ f Jh j

J(Z f )2Jh j · · · J(Z f )n−1Jh j
]T

= 1

1 − e f

r∑
j=1

Ze(g j )[J · Z f (Jh j )]
T

= 1

1 − e f

r∑
j=1

Ze(g j )Z f (Jh j )
T J (A7)

by using the facts J2 = I and Z f = JZT
f J.

Furthermore, according to Lemma 5, �ZT
1/e,Z f

[M] =
ZT

1/e∇Ze,Z f [M], where Z−1
f = ZT

1/ f . Then we can deduce the
conclusion for the Sylvester type. �

Now we demonstrate how to decompose an n × n matrix
into linear combinations of unitaries. For our purposes, we
choose (Z1, Z−1) as the operator matrices. Note that

Z1(g j ) =

⎛
⎜⎜⎜⎜⎜⎝

g0
j gn−1

j · · · g1
j

g1
j g0

j · · · g2
j

...
. . .

. . .
...

gn−1
j · · · g1

j g0
j

⎞
⎟⎟⎟⎟⎟⎠

= g0
jZ

0
1 + gn−1

j Zn−1
1 + · · · + g1

jZ
1
1, (A8)

Z−1(h j ) =

⎛
⎜⎜⎜⎜⎝

h0
j −hn−1

j · · · −h1
j

h1
j h0

j · · · −h2
j

...
. . .

. . .
...

hn−1
j · · · h1

j h0
j

⎞
⎟⎟⎟⎟⎠

= h0
j Z

0
−1 + hn−1

j Zn−1
−1 + · · · + h1

j Z
1
−1, (A9)

where

g j = (g0
j, g1

j, . . . , gn−1
j

)T
, h j = (h0

j , h1
j , . . . , hn−1

j

)T
.

(A10)

Then, on the one hand,

M = 1

2

r∑
j=1

Z1(g j )Z−1(Jh j )

= 1

2

r∑
j=1

(
g0

jZ
0
1 + g1

jZ
1
1 + · · · + gn−1

j Zn−1
1

)
× (hn−1

j Z0
−1 + hn−2

j Z1
−1 + · · · + h0

j Z
n−1
−1

)
= 1

2

r∑
j=1

(
g0

jh
n−1
j Z0

1Z0
−1 + g0

jh
n−2
j Z0

1Z1
−1

+ · · · + g0
jh

0
j Z

0
1Zn−1

−1 + g1
jh

n−1
j Z1

1Z0
−1

+ g1
jh

n−2
j Z1

1Z1
−1 + · · · + g1

jh
0
j Z

1
1Zn−1

−1 + · · ·
+ gn−1

j hn−1
j Zn−1

1 Z0
−1 + gn−1

j hn−2
j Zn−1

1 Z1
−1

+ · · · + gn−1
j h0

j Z
n−1
1 Zn−1

−1

)
= 1

2

r∑
j=1

n−1∑
i,k=0

gi
jh

k
jZ

i
1Zn−1−k

−1

= 1

2

n−1∑
i,k=0

r∑
j=1

gi
jh

k
jZ

i
1Zn−1−k

−1 . (A11)

On the other hand, since

∇Z1,Z−1 [M] = GHT =
r∑

j=1

g jh
T
j , (A12)

it is immediately verified that

m̃i,k =
r∑

j=1

gi
jh

k
j , i, k = 0, 1, . . . , n − 1, (A13)

062414-11



WAN, YU, PAN, QIN, GAO, AND WEN PHYSICAL REVIEW A 104, 062414 (2021)

where m̃i,k is the kth element of the ith row of matrix
∇Z1,Z−1 [M]. Therefore,

M = 1

2

n−1∑
i,k=0

m̃i,kZi
1Zn−1−k

−1 . (A14)

The decomposition for the Stein type can be proved in the
same way.

APPENDIX B: STEERABLE BLACK-BOX
QUANTUM STATE PREPARATION

The scenario for steerable black-box state preparation is as
follows. For a vector x = (x0, x1, . . . , xn−1)T , we are provided
a black box that returns target elements, i.e.,

Ox|i〉|0〉 → |i〉|xi〉.
The task is to prepare a quantum state that is ε-close to

|x〉 = 1√‖x‖1

n−1∑
i=0

√
xi|i〉

with an adjustable bound on the success probability 1 − δ2.
The quantum algorithm for preparing this state contains two
steps.

(1) Prepare the initial state. (a) Start with a uniform super-
position state and perform the black box to have

n−1∑
i=0

1√
n
|i〉1|xi〉a. (B1)

(b) Add a qubit and perform controlled rotation to yield

n−1∑
i=0

1√
n
|i〉1|xi〉a

( √
xi

|x|max
|0〉2 +

√
1 − |xi|

|x|2max

|1〉2

)
, (B2)

where |x|max = maxi |√xi| is a small constant. (c) Uncompute
the black box to obtain

n−1∑
i=0

1√
n
|i〉1

( √
xi

|x|max
|0〉2 +

√
1 − |xi|

|x|2max

|1〉2

)
. (B3)

Denoting this state by |ψ〉1,2, this step can be regarded as
a unitary operator Ua such that Ua|0〉1,2 = |ψ〉1,2. Note that
|ψ〉1,2 can be rewritten as

|ψ〉1,2 = √
P0|α〉1,2 +

√
1 − P0|β〉1,2, (B4)

where

P0 = ‖x‖1

n|x|2max

, (B5)

|α〉1,2 =
n−1∑
i=0

√
xi√‖x‖1

|i〉1|0〉2, (B6)

|β〉1,2 =
n−1∑
i=0

√
1 − |xi|

|x|2max

ϒ
|i〉1|1〉2, (B7)

ϒ =
√√√√n−1∑

i=0

∣∣∣∣1 − |xi|
|x|2max

∣∣∣∣. (B8)

(2) Amplify the amplitude of getting |α〉. In this step, we
apply the fixed-point quantum search algorithm proposed in
[44] to amplify the success probability with an adjustable
bound. More specifically, define conditional phase shift
operators

Sϕ
t = I1,2 + (eiϕ − 1)I1 ⊗ |0〉〈0|2 (B9)

and

Sφ
a = I1,2 + (eiφ − 1)|0〉〈0|1,2. (B10)

The algorithm performs the sequence of the generalized
Grover operator

G(φl , ϕl )G(φl−1, ϕl−1) · · · G(φ1, ϕ1), (B11)

where G(φ j, ϕ j ) = −UaSφ j
a U†

aSϕ j
t . The condition on the

phases {ϕ j, φ j, 1 � j � l} was indicated in [44],

φ j = ϕl− j+1 = −2 arccot[
√

1 − γ 2 tan(2π j/L)], (B12)

where L = 2l + 1, γ = T −1
1/L (1/δ), δ ∈ (0, 1), and TL(x) is the

Lth Chebyshev polynomial of the first kind. After l iterations,
the final state, up to a global phase, will be

|ψl〉 = √
PL|α〉 +

√
1 − PL|β〉, (B13)

where PL = 1 − δ2T 2
L [T1/L(1/δ)

√
1 − P0] is the success prob-

ability. It was shown that for a given δ and a known lower
bound Pmin of P0, the condition of L:

L � log(2/δ)√
Pmin

, (B14)

can ensure PL � 1 − δ2.
We now show that the Pmin can be provided by using ampli-

tude estimation. More specifically, for any ε0 > 0, amplitude
estimation can approximate the probability P0 up to an addi-
tive error P0ε0 with O(1/ε0

√
P0) uses of the standard Grover

operator. Let the output of amplitude estimation be P′
0; then

P0 � P′
0

1+ε0
. Thus, we can take P′

0
1+ε0

as a low bound of P0. Note
that ε0 is the relative error of estimated P0 and we only need
the low bound of P0, so we can set ε0 to be a small constant like
1
2 . Then the query complexity of this step is O(

√
n/

√‖x‖1).
Reviewing the cost of amplitude estimation and fixed-point

amplitude amplification, we now analyze the complexity of
this approach. Clearly, the query complexity is O( log(1/δ)

√
n√‖x‖1

).
The gate complexity of this approach is dominated by the
gate complexity of fixed-point amplitude amplification, which
is given by the gate complexity of the generalized Grover
operator multiplied by the number of iterations. The condi-
tional phase shift operators Sφ j

a and Sϕ j
t can be implemented

by using O(logn) elementary gates. The gate complexity of
Ua depends on the precision of controlled rotation. Note that
performing the controlled rotation with error εr will generate a
state that is O(

√
nεr )-close to |ψ〉. Then, after performing the

fixed-point amplitude amplification, we can get a state that is
O(

√
nεr/

√
P0)-close to |ψl〉, since the error is also amplified

by the fixed-point amplitude amplification. To obtain overall
error O(εp), εr should be O(εp

√
P0/

√
n). Also it is shown that

the controlled rotation can be performed with error εr using
O(polylog( 1

εr
)) elementary gates. Thus, the gate complexity

of Ua is O(polylog(
√

n
εp

√
P0

)). Putting these all together, we can
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obtain a state, up to a global phase, that is εp-close to |x〉 with

a success probability of at least 1 − δ2, using O(
√

nlog(1/δ)√‖x‖1
)

queries of Ox and O(
√

nlog(1/δ)√‖x‖1
polylog( n

εp
√‖x‖1

)) elementary
gates.

APPENDIX C: PROOF OF THEOREM 2

Now we show how to implement the block-encoding of T n,
i.e., the quantum state preparation operators and the controlled
unitary, in the two data access models introduced in Sec. II C.

1. Black-box model

In the black-box model, we are given the black box

OT n |i〉|k〉|0〉 = |i〉|k〉|ti,k〉, i, k = 0, 1, . . . , n − 1.

Then we can construct black box O1 satisfying

O1| j〉|0〉 = | j〉|t j + t−[(n− j)modn]〉, j = 0, 1, . . . , n − 1,

by using the black box OT n twice to query the elements in
the sites | j, 0〉 and |0, (n − j)modn〉 and following an addition
operation [58,59]. More specifically, O1 can be constructed as
follows.

(1) Compute the index of the site by using X gates and the
quantum modular subtractor [58,59]:

| j〉a1 |0〉a2 |0〉b1 |0〉b2 |0〉a3 |0〉b3

→ | j〉a1 |0〉a2 |0〉b1 |(n − j)modn〉b2 |0〉a3 |0〉b3 . (C1)

(2) Perform OT n on registers {a1, a2, a3} and {b1, b2, b3},
respectively:

| j〉a1 |0〉a2 |0〉b1 |(n − j)modn〉b2 |0〉a3 |0〉b3

→ | j〉a1 |0〉a2 |0〉b1 |(n − j)modn〉b2 |t j〉a3 |t−[(n− j)modn]〉b3 .

(C2)

(3) Perform quantum addition operation on registers
{a3, b3} to yield

| j〉a1 |0〉a2 |0〉b1 |(n − j)modn〉b2 |t j〉a3 |t j + t−[(n− j)modn]〉b3 .

(C3)

(4) Reverse the computation on registers {a3, b2}:
| j〉a1 |0〉a2 |0〉b1 |0〉b2 |0〉a3 |t j + t−[(n− j)modn]〉b3 . (C4)

The mapping on registers a1 and b3 is actually O1.
Similarly, we can construct the black box O2 satisfying

O2| j〉|0〉 = | j〉|t j − t−[(n− j)modn]〉, j = 0, 1, . . . , n − 1.

(C5)

Since the gates required for constructing O1 and O2 are
negligible compared to other subroutines of the quantum algo-
rithm, we did not consider their complexity in this paper. With
these two black boxes O1 and O2, it is feasible to generate a
controlled black box O1∧2 of the form

|0〉〈0| ⊗ O1 + |1〉〈1| ⊗ O2. (C6)
Note the black box O1∧2 query in superposition acting as

O1∧2
1√
2n

(
n−1∑
j=0

|0〉| j〉|0〉 +
n−1∑
j=0

|1〉| j〉|0〉) = 1√
2n

2n−1∑
j=0

| j〉|t̃ j〉.

(C7)
Thus, using this black box, we can approximatively im-
plement V (∇[T n]) by the steerable black-box quantum state
preparation algorithm. Similarly, we can approximatively im-
plement V (∇[T n]∗ ) by constructing a black box O∗

1∧2 that
returns t̃∗

j .
When implementing SelectUTn , directly using the con-

trolled circuit may take O(n logn) elementary gates. To make
the implementation more efficient, we use an idea similar to
that in Ref. [21]. More specifically, note that

Z j
1 =

n−1∑
a=0

|(a + j)modn〉〈a|, (C8)

Z j
−1 =

(
n−1∑
b=0

|(b + j)modn〉〈b|
)

×
⎛
⎝n−1− j∑

b=0

|b〉〈b| −
n−1∑

b=n− j

|b〉〈b|
⎞
⎠. (C9)

Thus, the action of SelectUTn on the basis states is

SelectUTn | j〉|e〉 =

⎧⎪⎪⎨
⎪⎪⎩

| j〉|(e + j)modn〉, 0 � j � n − 1, 0 � e � n − 1

| j〉|(e + j)modn〉, n � j � 2n − 1, 0 � e � 2n − 1 − j

−| j〉|(e + j)modn〉, n � j � 2n − 1, 2n − j � e � n − 1.

(C10)

Then, on the one hand, let

f1( j, e) =
⎧⎨
⎩

0, 0 � j � n − 1, 0 � e � n − 1
0, n � j � 2n − 1, 0 � e � 2n − 1 − j
1, n � j � 2n − 1, 2n − j � e � n − 1.

(C11)

To compute this classical function with a quantum circuit,
we use the quantum comparator [58,59] which comprises
O(logn) elementary gates. Suppose that a and b are two natu-

ral numbers. Then the quantum comparator outputs the result
c of the comparison of the two numbers, i.e., if b � a, c = 0;
otherwise, c = 1. The specific quantum circuit of U f1 is as
follows.

(i) Prepare an initial quantum state

| j〉a1 |e〉a2 |0〉b1 |0〉b2 |0〉c1 |0〉c2 |−〉c3

→ | j〉a1 |e〉a2 |n − 1〉b1 |2n − 1 − j〉b2 |0〉c1 |0〉c2 |−〉c3 .
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(ii) Perform a quantum comparator on registers {a1, b1, c1}
and {a2, b2, c2}, respectively.

(iii) Perform a Toffoli gate on the registers {c1, c2, c3}.
(iv) Reverse the computation on registers {c2, c1, b2, b1} in

order.
The mapping on registers a1, a2, and c3 is

U f1 | j〉|e〉 |0〉 − |1〉√
2

= (−1) f1( j,e)| j〉|e〉 |0〉 − |1〉√
2

. (C12)

On the other hand, using a quantum modular adder [58,59],
which requires O(logn) elementary gates, we can implement

U add1| j〉|e〉 = | j〉|(e + j)modn〉. (C13)

Therefore, by using U add1 and U f1 , we can implement
SelectUTn equivalently (due to linearity, the implementation
is available for any state). In summary, SelectUTn can be
implemented in time O(polylogn).

Now we analyze the error incurred due to imperfect state
preparation. Let U V̄ and U V̄ ∗ be unitaries that perform the

steerable black-box quantum state preparation with the black
boxes O1∧2 and O∗

1∧2. Define UV and UV ∗ as

UV |0〉a1 |0〉a2 =
√

1 − δ2|V(∇[T n])〉a1 |0〉a2 + δ|ζ 〉a1 |1〉a2 ,

(C14)

UV ∗ |0〉a1 |0〉a2 =
√

1 − δ2|V(∇[T n]∗ )〉a1 |0〉a2 + δ|ζ 〉a1 |1〉a2 ,

(C15)

where |ζ 〉 =∑2n−1
j=0 ζ j | j〉 is a quantum state similar in form

to Eq. (B7). Obviously, U V̄ and U V̄ ∗ are εp approximations
of UV and UV ∗ , respectively. To simplify the notation, we
rewrite Toeplitz matrices as T n = 1

2

∑2n−1
j=0 t̃ jU j by using the

symbol U j to represent Zi
1 and Zi

−1 in the order of Eq. (13).
Similarly, the operator defined by Eq. (16) can be rewritten as
SelectU =∑2n−1

j=0 | j〉〈 j|a1 ⊗ U j , where U j perform on the
register s. Let |0〉a ≡ |0〉a1 |0〉a2 , we have

∥∥∥∥M − χ

2
(〈0|aU†

V̄ ∗ ⊗ Is)(SelectU ⊗ Ia2 )(U V̄ |0〉a ⊗ Is)

∥∥∥∥ �
∥∥∥∥M − χ

2
(〈0|aU†

V ∗ ⊗ Is)(SelectU ⊗ Ia2 )(UV |0〉a ⊗ Is)

∥∥∥∥
+
∥∥∥∥χ

2
(〈0|aU†

V ∗ ⊗ Is)(SelectU ⊗ Ia2 )(UV |0〉a ⊗ Is)

− χ

2
(〈0|aU†

V̄ ∗ ⊗ Is)(SelectU ⊗ Ia2 )(U V̄ |0〉a ⊗ Is)

∥∥∥∥. (C16)

Note that

(〈0|aU†
V ∗ ⊗ Is)(SelectU ⊗ Ia2 )(UV |0〉a ⊗ Is)

= (〈0|a1〈0|a2U
†
V ∗ ⊗ Is)

(√
1 − δ2

2n−1∑
j=0

√
t̃ j

χ
| j〉a1 |0〉a2 ⊗ U j + δ

2n−1∑
j=0

ζ j | j〉a1 |1〉a2 ⊗ U j

)

=
(√

1 − δ2
2n−1∑
j=0

√
t̃ j

χ
〈 j|a1〈0|a2 + δ

2n−1∑
j=0

ζ j〈 j|a1〈1|a2

)(√
1 − δ2

2n−1∑
j=0

√
t̃ j

χ
| j〉a1 |0〉a2 ⊗ U j + δ

2n−1∑
j=0

ζ j | j〉a1 |1〉a2 ⊗ U j

)

= (1 − δ2)
2n−1∑
j=0

t̃ j

χ
U j + δ2

2n−1∑
j=0

ζ 2
j U j . (C17)

Then, computing the first term on the right-hand side of the inequality,∥∥∥∥M − χ

2
(〈0|aU†

V ∗ ⊗ Is)(SelectU ⊗ Ia2 )(UV |0〉a ⊗ Is)

∥∥∥∥ =
∥∥∥∥1

2

2n−1∑
j=0

t̃ jU j − 1

2
(1 − δ2)

2n−1∑
j=0

t̃ jU j − 1

2
χδ2

2n−1∑
j=0

ζ 2
j U j

∥∥∥∥

=
∥∥∥∥1

2
δ2

2n−1∑
j=0

t̃ jU j − 1

2
χδ2

2n−1∑
j=0

ζ 2
j U j

∥∥∥∥
� χδ2. (C18)

In addition, since U V̄ and U V̄ ∗ are εp approximations of UV

and UV ∗ , respectively, the second term on the right-hand side
of Eq. (C16) can be bounded by χεp. Let χδ2 and χεp not be
larger than ε/2, we can get the result (i) of Theorem 2.

2. QRAM data structure model

For the QRAM data structure model, the quantum state
preparation operators can be implemented using the method
of [42]. More specifically, we state the following lemma.
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Lemma 6 (from [42]). Suppose that x ∈ Cn×1 is stored in
a QRAM data structure, i.e., the entry xi is stored in the ith
leaf of a binary tree, and the internal node of the tree stores
the sum of the modulus of elements in the subtree rooted
in it. Then there is a quantum algorithm that can generate
an εp approximation of |x〉 = 1√‖x‖1

∑n−1
i=0

√
xi|i〉 with gate

complexity O(polylog(n/εp)).
Obviously, if {t̃ j}n−1

j=0 and {t̃ j}2n−1
j=n are stored in such a data

structure, respectively, there are two unitaries that generate the
states

U1|0〉 = 1√
χ1

n−1∑
j=0

√
t̃ j | j〉, U2|0〉 = 1√

χ2

n−1∑
j=0

√
t̃ j+n| j〉,

(C19)
where χ1 =∑n−1

j=0 |t̃ j | and χ2 =∑2n−1
j=n |t̃ j |.

Since χ1 and χ2 are known, which are stored in the root of
the binary trees, we can prepare a state

√
χ1√
χT n

|0〉|0〉 +
√

χ2√
χT n

|1〉|0〉.

Then, performing a controlled unitary |0〉〈0| ⊗ U1 + |1〉〈1| ⊗
U2, we can get the state 1√

χTn

∑2n−1
j=0

√
t̃ j | j〉. Thus, V (∇[T n])

can be implemented in the QRAM data structure model with
complexity O(polylog(n/εp)). Similarly, we can implement
V (∇[T n]∗ ) with the same cost.

In addition, the SelectUTn can be implemented in the
same way as in the black-box model. Taking into account
the amplification of the error, we can implement the block-
encoding with complexity O(polylog(nχT n/ε)) in the QRAM
data structure model. Moreover, according to the constructed
data structure, the memory cost in this data access model is
O(n).

APPENDIX D: PROOF OF COROLLARY 1

1. Black-box model

For a Toeplitz-like matrix T L, given a black box OT L that
queries the kth nonzero element of the ith row of T L,

OT L |i, k〉|0〉 = |i, k〉|τi,k〉,
the following map can be performed by querying the black
box OT L twice:

OT̃ L
|i, k〉|0〉 = |i, k〉|τ(i−1)modn,k − (−1)g(k)τi,(k+1)modn〉.

Here OT̃ L
actually returns the kth nonzero element of the ith

row of the Sylvester displacements of Toeplitz-like matrices,
i.e., τ̃i,k .

In addition, if a black box that computes the positions of the
distinct elements (the element is different from the previous
element on the same diagonal) on diagonals of the Toeplitz-
like matrices is provided, we can construct a black box that
computes the positions of nonzero elements of the Sylvester
displacements of Toeplitz-like matrices, i.e.,

Op
T̃ L

|i, k〉 = |i, f (i, k)〉,
where the function f (i, k) gives the column index of the kth
nonzero element in row i of ∇Z1,Z−1 [T L].

When implementing the state preparation operators, if
the steerable black-box quantum state preparation is directly
used, the query complexity should be O(n). To overcome
this obstacle, we first prepare a uniform superposition state
that only represents the position of the nonzero elements of
∇Z1,Z−1 [T L]. The specific process is as follows. Prepare an
initial state as

1√
2

(|0〉1 + |1〉1)|0〉2|0〉3. (D1)

Apply Hadamard gates to registers 2 and 3 controlled by
register 1:

1√
2

(|0〉1 + |1〉1)|0〉2|0〉3
|0〉〈0|1⊗I2⊗H⊗logn

3 +|1〉〈1|1⊗H⊗logn
2 ⊗I⊗log(n/d )

3 ⊗H⊗logd
3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 1√

2n
|0〉1|0〉2

n−1∑
k=0

|k〉3 + 1√
2nd

|1〉1

n−1∑
i=0

|i〉2

d−1∑
k=0

|k〉3.

(D2)

Using a controlled-Op
T̃ L

, i.e., |0〉〈0|1 ⊗ I2,3 + |1〉〈1|1 ⊗ Op
T̃ L

, we can prepare

1√
2n

|0〉1|0〉2

n−1∑
k=0

|k〉3 + 1√
2nd

|1〉1

n−1∑
i=0

|i〉2

∑
{ f (i,k)|m̃i, f (i,k) �=0}

| f (i, k)〉3. (D3)

Add an ancillary qubit and perform a controlled rotation

1√
2n

|0〉1|0〉2

n−1∑
k=0

|k〉3

(
1√
d

|0〉4 +
√

1 − 1

d
|1〉4

)
+ 1√

2nd
|1〉1

n−1∑
i=0

|i〉2

∑
{ f (i,k)|m̃i, f (i,k) �=0}

| f (i, k)〉3|0〉4. (D4)

Amplify the amplitude of |0〉4. Since the amplitude is known, it can be amplified to exactly 1 by using Long’s amplitude
amplification with a zero theoretical failure rate [60]. The obtained state is denoted by |�intm〉:

|�intm〉 = 1√
n(d + 1)

|0〉1|0〉2

n−1∑
k=0

|k〉3|0〉4 + 1√
n(d + 1)

|1〉1

n−1∑
i=0

|i〉2

∑
{ f (i,k)|m̃i, f (i,k) �=0}

| f (i, k)〉3|0〉4. (D5)

062414-15



WAN, YU, PAN, QIN, GAO, AND WEN PHYSICAL REVIEW A 104, 062414 (2021)

We run Long’s amplitude amplification again to get the quan-
tum state |�init〉:

|�init〉 = 1√
n + (n − 1)d

|0〉1|0〉2

n−1∑
k=0

|k〉3|0〉4

+ 1√
n + (n − 1)d

|1〉1

n−1∑
i=1

|i〉2

⊗
∑

{ f (i,k)|m̃i, f (i,k) �=0}
| f (i, k)〉3|0〉4. (D6)

Note that the success probability of getting |�intm〉 is d+1
2d �

1
2 and the success probability of getting |�init〉 is (n−1)d+n

n(d+1) �
1
2 ; thus only a few iterations are required for the amplitude
amplifications.

With the quantum state |�init〉 and the black box OT̃ L
,

we can approximatively implement V (∇[T L]) and V (∇[T L]∗ )

by the steerable black-box quantum state preparation al-

gorithm. The query complexity is O(
√

ndlog(1/δ)√
χTL

), and

O(
√

ndlog(1/δ)√
χTL

polylog( nd√
χTL εp

)) elementary gates are required.

To implement SelectUTL , we first observe its action on
the basis states. Notice that

SelectUTL |i〉|k〉|e〉 =

⎧⎪⎨
⎪⎩

|i〉|k〉|(i + e − k − 1)modn〉
where 0 � e � k,

−|i〉|k〉|(i + e − k − 1)modn〉
where k < e � n − 1.

(D7)
Then, on the one hand, let

f2(k, e) =
{

0, 0 � e � k
1, k < e � n − 1.

(D8)

Similar to the calculation of f1, we can construct a quantum
circuit to implement

U f2 |k〉|e〉 |0〉 − |1〉√
2

= (−1) f2(k,e)|k〉|e〉 |0〉 − |1〉√
2

. (D9)

On the other hand, using quantum adders [58,59], which
requires O(log n) elementary gates, we can implement

U add2|i〉|k〉|e〉 = |i〉|k〉|(i + e − k − 1)modn〉. (D10)

Therefore, SelectUTL can be implemented by U add2 and I ⊗
U f2 in time O(polylogn).

Based on the above conclusions and following the error
analysis in Appendix C 1, we can infer the result (i) of Corol-
lary 1.

2. QRAM data structure model

For the QRAM data structure model, the quantum state
preparation operators can be implemented as follows.

Lemma 7. Let T L ∈ Cn×n and ‖τ̃i,·‖1 be the 1-norm of the
ith row of ∇Z1,Z−1 [T L]. Suppose that ∇Z1,Z−1 [T L] is stored in
a QRAM data structure. More specifically, for the ith row of
∇Z1,Z−1 [T L], the entry τ̃i,k is stored in the kth leaf of a binary
tree and the internal node of the tree stores the sum of the
modulus of elements in the subtree rooted at it, besides an
additional binary tree whose ith leaf stores ‖τ̃i,·‖1. Then there
is a quantum algorithm that can perform the following maps
with εp precision in time O(polylog(n/εp)):

P : |i〉|0〉 �→
∑n−1

k=0

√
τ̃i,k|i〉|k〉√‖τ̃i,·‖1

, (D11)

P′ : |i〉|0〉 �→
∑n−1

k=0

√
τ̃ ∗

i,k|i〉|k〉√‖τ̃i,·‖1
, (D12)

Q : |0〉|k〉 �→
∑n−1

i=0

√‖τ̃i,·‖1|i〉|k〉√
χT L

. (D13)

This conclusion can be directly derived from the results in
[42]. Obviously,

V (∇[T L])|0〉|0〉 = PQ|0〉|0〉 = 1√
χT L

n−1∑
i=0

n−1∑
k=0

√
τ̃i,k|i〉|k〉.

(D14)

Similarly, we can efficiently implement V (∇[T L]∗ ) with P′ and
Q.

Note that SelectUTL can be implemented in the same
way as in Appendix D 1. Taking into account the amplifica-
tion of the error, we can implement the block-encoding with
complexity O(polylog(nχT L /ε)) in the QRAM data structure
model. Moreover, the memory cost in this data access model
is easy to calculate as O(dn logn).
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