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Generating entanglement between more parties is one of the central tasks and challenges in the backdrop
of building quantum technologies. Here we propose a measurement-based protocol for producing multipartite
entangled states which can be later fed into some network for realizing suitable quantum protocols. We consider
weak entangling measurement on two parties as the basic unit of operation to create entanglement between more
parties starting from an entangled state with a lesser number of parties and auxiliary systems in the form of a
single-qubit or entangled state itself. We call the introduced expansion procedure, “multipartite entanglement
inflation.” In the context of inflating bipartite entanglement to more number of parties, surprisingly, maximally
entangled states as inputs turn out to be worse than that of the nonmaximally entangled states, Haar uniformly
generated pure states having a moderate amount of entanglement and the Werner state with a certain threshold
noise. We also report that the average multipartite entanglement created from the initial Greenberger-Horne-
Zeilinger- and the W-class states are almost the same. Interestingly, we also observe that for Haar uniformly
generated pure states, unentangled auxiliary systems are sometimes more advantageous than the protocol with
multiple copies of the initial entangled states.
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I. INTRODUCTION

In the second revolution of quantum technologies, multi-
partite entangled states are shown to play a crucial role in
designing computational tasks which include measurement-
based quantum computers [1–4], distributed quantum com-
putation [5], and communication protocols like teleportation
[6–10], dense coding networks [11–18], quantum secret
sharing [19–25], conference key agreement [26]. Moreover,
the patterns of multisite entanglement turn out to be impor-
tant in addressing fundamental questions like quantum phase
transitions, dynamical phase transitions in many-body physics
[27–31].

The entire development in the technological front demands
a systematic creation and detection of multipartite entangled
states which is one of the current challenges in quantum in-
formation science. To accomplish it, several procedures were
proposed—the desired state is created in a single location and
is then distributed to others by means of teleportation [32];
initial entanglement is generated which is then manipulated
to obtain the desired state [33]; two-qubit quantum gates
are employed between atoms to finally create a multiatomic
entangled state in optical lattices [34]. Another prominent
method in setting up quantum networks through noisy chan-
nels is the discovery of a quantum repeater [35] based on
entanglement swapping [36–39] and distillation protocol [40].
It was later shown that by removing the step of distilla-
tion, multipartite projective measurements on one part of the
multiple copies of noisy entangled states, referred to as a
star network, can also lead to a multipartite entangled state

[41–44]. From the perspective of circuit models, generating
any multisite entangled state can be described by sequential
adaptive applications of an universal set of single- and two-
qubit quantum gates [45]. This technique led to protocols
like quantum state expansion, where cat-states are generated
by employing a chain of two-party controlled-NOT (CNOT)
gates on a product state of single qubits [46], fusion mecha-
nism, in which Fredkin gate or CNOT along with Toffoli gates
are used to create multipartite entangled states [47,48].

In the present work, we propose a measurement-based pro-
tocol for generating multipartite entangled states where weak
entangling measurement on two parties serves as the basic
unit of operation [49,50]. In the literature, the potential of this
kind of joint measurement has been less studied compared
to the exploration of various features of multipartite entan-
gled states. However, it was realized that the positive-operator
valued measurements can give improvements in different
quantum information tasks like state tomography, detection of
entanglement, violation of Bell inequalities, discrimination of
states, randomness generation [51–56]. Moreover, it is inter-
esting to note that although projective joint measurements can
not be taken as the basic operation for the purpose of creating
entanglement between more number of parties starting from a
lesser number of parties, weak entangling measurement has
the potential to fulfill this task. We call the proposed ex-
pansion procedure, the “multipartite entanglement inflation”
process.

As a building block, weak (or unsharp) Bell state mea-
surement [57,58] is applied on part of a bipartite state and
an auxiliary qubit for the purpose of inflating entanglement
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FIG. 1. Schematic diagram of multipartite inflation. In the first
round, denoted by 2 → 2 + 1, starting from a two-party state, �A1A2

and a single qubit auxiliary state, �A3 , a weak entangling measure-
ment (blue patch) is performed in one part of the two-party state, A2

and on A3. Similar method continues up to round n, when (2 + n)-
party state is created via 2 → 2 + n inflation process. In each round,
we maximize GME by optimizing state and sharpness parameters.

to a higher number of parties (see Fig. 1). The perfor-
mance of the proposed protocol is measured by the maximal
possible genuine multipartite entanglement generated in the
resulting states. In particular, multipartite entanglement is
quantified via generalized geometric measure (GGM) [10,59]
and negativity monogamy score [60] while the maximization
is performed over the parameters involved in the auxil-
iary systems and in the weak measurement. We report that
nonmaximally entangled two-qubit states can create higher
genuine multipartite entangled (GME) states than that of the
maximally entangled ones. More precisely, we find that for
a given sharpness parameter, there always exists a unique
two-qubit entangled state which can yield the maximum gen-
uine multipartite entanglement in the output state, obtained
recursively for arbitrary rounds. Such an observation is also
confirmed by considering Haar uniformly simulated two-qubit
pure states [61] and the Werner state [62] as inputs. For the
latter case, we demonstrate that for a fixed value of weakness
parameter in the measurement, there is a threshold noise value
where the negativity monogamy score is maximized. Starting
from the tripartite entangled state, we find that for a given
genuine multipartite entanglement, generalized Greenberger-
Horne-Zeilinger (GHZ) state [63] can produce the maximal
GGM in the output state compared to any three-qubit pure
states belonging to both the GHZ and the W class [64] after
the first round of measurement.

We then extend the inflation protocol by considering many
copies of the initial bipartite states as auxiliary systems. Inter-
estingly, we observe that although in this scenario, the initial
state contains a higher amount of entanglement on average
compared to the former process with qubit-auxiliary states, it
is not always successful to create high GME states.

The paper is organized as follows. In Sec. II, we introduce
the multipartite entanglement inflation procedure with product
auxiliary states. Taking bipartite states as initials, the recur-

sion relation of resulting state after the arbitrary number of
rounds of entangling measurement is derived and the patterns
of genuine multipartite entanglement are analyzed in Sec. III
while the similar method is extended for the initial tripartite
state in Sec. IV. Instead of product single-qubit auxiliary
states, when we use the entangled resource state as the auxil-
iary state itself, the method and the multipartite entanglement
content of the output state are discussed in Sec. V. The con-
cluding remarks are discussed in Sec. VI.

II. MULTIPARTITE ENTANGLEMENT INFLATION
PROCESS WITH QUBIT AUXILIARY

Let us describe the protocol to obtain genuine multpartite
entangled states, which we refer as entanglement inflation
process. The resources required in this scenario are—(1) an
entangled state of m parties; (2) auxiliary qubits and the op-
erations performed is the set of weak joint measurements,
{√Mk (λ)} (with

∑
k Mk = I), having control parameter λ.

The weak measurement performed on one of the parties of
an entangled state and the auxiliary qubit plays a crucial role
to extend multipartite entangled state and the parameters in
the measurement as well as auxiliary systems can control the
content of multipartite entanglement of the output state.

Let us illustrate the scenario for the initial shared bipartite
state, �A1A2 and an auxiliary system, �A3 (θ, φ), with θ , and
φ being the state parameters, resulting to an initial state,
ρ1 = �A1A2 ⊗ �A3 (θ, φ). After the weak measurement

√
Mk

performed jointly on parties A2 and A3, the resulting tripartite
state becomes

ρ1
k ≡ �A1A2A3 =

√
Mk (λ)ρ1√Mk (λ)

†

Tr
[√

Mk (λ)ρ1
√

Mk (λ)
†] , (1)

where the subscript k corresponds to the outcome k of the
measurement while the superscript 1 denotes the first round of
the measurement (see Fig. 1). λ = 1 represents the projective
joint measurement for which the output state becomes the
biseparable state, �A1 ⊗ �A2A3 while for other values of λ, there
is a possibility to create a tripartite entangled state. Our aim
is to maximize the amount of multipartite entanglement of the
above state, quantified by a suitable measure, E , i.e.,

E2→2+1
c = max

λ,θ,φ
E
(
ρ1

k

)
, (2)

where maximization is performed over the sharpness parame-
ters of the weak measurement as well as the state parameters
of the auxiliary system. In this paper, generalized geometric
measure (GGM) [10,59], G, and negativity monogamy score
[60,65], δN , are used to measure multipartite entanglement
content of the resulting pure and mixed states, respectively.
This is the first step of the protocol towards inflating GME
state, and is denoted by 2 → 2 + 1.

After n rounds of measurements, denoted by 2 → 2 + n
where 2 denotes the number of parties in the initial re-
source state, a genuine (2 + n)-party entangled state, ρn

k =
�A1A2A3A4...A2+n =

√
Mkρ

n√Mk
†

Tr(
√

Mkρn
√

Mk
†
)

is created. Therefore, starting

from a two qubit entangled state, and optimizing multipartite
entanglement, E2→2+n

c = maxλ,θ1,φ1,... E (ρn
k ) over parameters

of auxiliary states, θ1, φ1, . . . and measurement, λ, we can,
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FIG. 2. Schematic diagram to create multipartite entangled
states. It is similar to Fig. 1 except the m-party resource state, �A1 ...Am .
In this picture, after n rounds, (n + m)-party state is produced and
hence the process can be denoted as m → m + n.

in principle, expand GME state via weak measurement as
shown in Fig. 1. Notice that the state prepared in this process
is for the specific outcome, thereby showing its probabilistic
nature. The design of the protocol has to be made in such
a way that either all the outcomes leads to the output state
having almost equal genuine multipartite entanglement or one
has to optimize over the probability of the measurement to
obtain high GME states. In this paper, we will show that our
choice of measurement reflects the former situation. Instead
of bipartite entangled state, if we start with m-party entangled
state and maximize entanglement with respect to the set of
measurements and auxiliary state parameters as before, we
may result a m + n-party GME state (see Fig. 2). In this work,
we consider two- and three-party initial states and show ex-
pansion of GME states having 2(3) + n parties. Moreover, in
this picture, the auxiliary systems are considered as a product
form, and so we call this process as product-based (PB) infla-
tion. We will compare this scenario with entangled auxiliary
systems which we refer as entanglement-based (EB) inflation
in the succeeding section. In both the PB and EB methods, it is
interesting to find out whether any class of multipartite states,
important for different quantum information processing tasks,
can be generated by suitably choosing an initial multiparty
entangled state with less number of parties, an auxiliary state
and a weak measurement. Such studies may reveal an interest-

ing connection between the multipartite initial state, the weak
measurement and the resulting state.

III. GENUINE MULTISITE ENTANGLEMENT
PRODUCTION WITH TWO-PARTY ENTANGLED

RESOURCE (2 → 2 + n)

Let us exhibit whether the procedure described in the
previous section can indeed generate genuine multipartite
entangled states or not. To answer it, we choose maxi-
mally, nonmaximally, Haar uniformly generated entangled
pure states and the Werner state as the initial states. To show
the usefulness of the method, it is necessary to depict it for a
set of weak measurement, which in our case, reads as

Mk (λ) = f 1
k (λ)|ψ+〉〈ψ+| + f 2

k (λ)|ψ−〉〈ψ−|
+ f 3

k (λ)|φ+〉〈φ+| + f 4
k (λ)|φ−〉〈φ−|, (3)

{|ψ+〉, |ψ−〉, |φ+〉, |φ−〉} is the Bell basis. Let us choose these
f i
k’s in such a way that these operators become

M1 = λ|ψ+〉〈ψ+| + (1 − λ)
I2

4
,

M2 = λ|ψ−〉〈ψ−| + (1 − λ)
I2

4
,

M3 = λ|φ+〉〈φ+| + (1 − λ)
I2

4
,

M4 = λ|φ−〉〈φ−| + (1 − λ)
I2

4
, (4)

with λ being the tuning parameter, and f 1
k (λ) =

√
1+3λ

4 and

f 2
k (λ) = f 3

k (λ) = f 4
k (λ) =

√
1−λ

4 . As mentioned before, we
will now maximize GGM and negativity monogamy score
with respect to λ and auxiliary state parameters.

A. Maximally entangled state as initial state

Let us first describe in details the process of inflation
when the initial shared state is the maximally entangled state,
|φ+〉. The produced multipartite state after n rounds obtained
via recursion method can then be extended to any other
shared resource state. At the first round, the initial state reads
as |φ+〉A1A2 ⊗ |χ+

1 〉A3
where |χ+

i 〉 = αi|0〉 + βi|1〉 and αi =
cos θi

2 ; βi = eiφi sin θi
2 , with the subscripts, i = 1, 2, . . . , n,

represent the number of rounds.
After performing the first round of weak measurements in

Eq. (4), for each outcome,
√

Mk (k = 1, 2, 3, 4), the corre-
sponding four output tripartite state takes the form as∣∣�1

1

〉 = 1
2 {√1 + 3λ|ξ+

1 〉|ψ+〉 + √
1 − λ(|ξ−

1 〉|ψ−〉
+ |χ+

1 〉|φ+〉 + |χ−
1 〉|φ−〉)},∣∣�1

2

〉 = 1
2 {√1 + 3λ|ξ−

1 〉|ψ−〉 + √
1 − λ(|ξ+

1 〉|ψ+〉
+ |χ+

1 〉|φ+〉 + |χ−
1 〉|φ−〉)},∣∣�1

3

〉 = 1
2 {√1 + 3λ|χ+

1 〉|φ+〉 + √
1 − λ(|ξ+

1 〉|ψ+〉
+ |ξ−

1 〉|ψ−〉 + |χ−
1 〉|φ−〉)},∣∣�1

4

〉 = 1
2 {√1 + 3λ|χ−

1 〉|φ−〉 + √
1 − λ(|ξ+

1 〉|ψ+〉
+ |ξ−

1 〉|ψ−〉 + |χ+
1 〉|φ+〉)},
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where |χ−
n 〉 = αn|0〉 − βn|1〉, |ξ±

n 〉 = βn|0〉 ± αn|1〉. On the
other hand, if

√
M1 clicks in the second round, the resulting

four-party state becomes

∣∣�2
1

〉 = 1

16
√

p2
1

[{
√

(1 − λ)(1 + 3λ)(|χ+
1 〉|ξ+

2 〉

+ |χ−
1 〉|ξ−

2 〉 + |ξ−
1 〉|χ−

2 〉) + (1 + 3λ)|ξ+
1 〉|χ+

2 〉}|ψ+〉
+ {(1 − λ)(|χ+

1 〉|ξ−
2 〉 + |χ−

1 〉|ξ+
2 〉 − |ξ−

1 〉|χ+
2 〉)

−
√

(1 − λ)(1 + 3λ)|ξ+
1 〉|χ−

2 〉}|ψ−〉
+ {(1 − λ)(|χ+

1 〉|χ+
2 〉 + |χ−

1 〉|χ−
2 〉 + |ξ−

1 〉|ξ−
2 〉)

+
√

(1 − λ)(1 + 3λ)|ξ+
1 〉|ξ+

2 〉}|φ+〉
+ {(1 − λ)(|χ+

1 〉|χ−
2 〉 + |χ−

1 〉|χ+
2 〉 − |ξ−

1 〉|ξ+
2 〉)

−
√

(1 − λ)(1 + 3λ)|ξ+
1 〉|ξ−

2 〉}|φ−〉].
For the outcome

√
M1, the structure of the generated three-

and four-party state can help us to write the (2 + n)-party
output state created after the round n with k being the outcome
of the measurement, as

∣∣�n
k

〉 = 1

4n
√

pn
k

|Rn〉 = 1√
pn

k

∣∣Zn
k

〉
, (5)

where

|Rn〉 = [|an〉|ψ+〉 + |bn〉|ψ−〉 + |cn〉|φ+〉 + |dn〉|φ−〉], (6)

and pn
k is the probability of kth outcome in the nth round. Here,

for n � 2,

|an〉 = mn
1[|an−1〉|χ+

n 〉 + |bn−1〉|χ−
n 〉

+ |cn−1〉|ξ+
n 〉 + |dn−1〉|ξ−

n 〉],
|bn〉 = mn

2[−|an−1〉|χ−
n 〉 − |bn−1〉|χ+

n 〉
+ |cn−1〉|ξ−

n 〉 + |dn−1〉|ξ+
n 〉],

|cn〉 = mn
3[|an−1〉|ξ+

n 〉 + |bn−1〉|ξ−
n 〉

+ |cn−1〉|χ+
n 〉 + |dn−1〉|χ−

n 〉],
|dn〉 = mn

4[−|an−1〉|ξ−
n 〉 − |bn−1〉|ξ+

n 〉
+ |cn−1〉|χ−

n 〉 + |dn−1〉|χ+
n 〉], (7)

with
√

M1 being the outcome,

|a1〉 = √
1 + 3λ|ξ+

1 〉; |b1〉 = √
1 − λ|ξ−

1 〉;
|c1〉 = √

1 − λ|χ+
1 〉; |d1〉 = √

1 − λ|χ−
1 〉.

Here mn
ks depend on the outcome of the measurement. For

example, if
√

Mk clicks, mn
k = √

1 + 3λ while mn
l = √

1 − λ

with l �= k. Due to the symmetry in the measurement and
state, we find that in this situation, multiparty entanglement
does not depend on the outcome of the measurement and so
it is enough to maximize the GGM of the above states with
respect to λ and θns, φns.

Although the probabilities of clicking four different mea-
surements are, in general, not equal, the GGM values remain
same irrespective of the outcome of the measurement, thereby
making the calculation of the probability unimportant (for
relevant discussion on probabilities, see Appendix).

FIG. 3. Maximally entangled state as resource. GGM, G (ordi-
nate) vs controlled parameters, λ (abscissa) in the weak measurement
in Eq. (4). The maximally entangled state is initially shared and
arbitrary qubits are taken as auxiliary systems. After first (solid
line), second (filled squares), and third (hollow squares) rounds, G
is obtained after maximizing over θi, φis of the auxiliary states. In
the entire paper, G represents GGM after maximizing over auxiliary
state parameters and Gc denotes GGM after optimizing both state
parameters and λ. In all the rounds, G is maximum at λc = 2/3,
thereby giving Gc although it is decreasing with the increase of the
number of rounds. Both the axes are dimensionless.

Let us now examine the behavior of GGM for the resulting
state with the tuning parameter λ of the measurement after
optimizing over input auxiliary systems in each round as
depicted in Fig. 3. From Eq. (4), it is clear that G vanishes
both at λ = 0 and λ = 1. We find that GGM increases with
λ till λc = 2/3 while it starts decreasing after that. In this
respect, we also notice that after the first round, when λ < λc,
the maximum eigenvalue required to evaluate G comes from
the third party while λ > λc, the maximum eigenvalue of the
reduced first-party state contributes, i.e.,

G = 1 − eA3 = 1

2

−
√

2

4

√
(1−λ)

(
1+λ+

√
(1−λ)(1+3λ)

)
, λ < λc,

= 1 − eA1 = 1 − 1

2
(1 + λ), λ > λc. (8)

Moreover, in this tripartite scenario, GGM is independent of
θ1, φ1 and critical value of GGM, Gc = 1/6, corresponding to
λc = 2/3 where eA3 and eA1 coincide. For notational simplic-
ity, we remove the superscript from the notation of Gc as seen
in Eq. (2). In fact, all the four resulting states corresponding
to other measurement outcomes lead to the same value of
GGM due to symmetry. From the second round onwards, we
perform optimization over all the {θi, φi} to obtain the max-
imum values of GGM at each values of λ, since eigenvalues
which contribute to GGM depends on θi, φis. Interestingly,
we observe that for a fixed value of λ, although G decreases
in each round, λc remains same in all the rounds, and Gc > 0,
thereby confirming genuine multipartite entanglement in all
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the output states via this process. We will later show the
behavior of GGM by varying the number of rounds.

Before moving to the other resource state, let us com-
pute the tangle [64,65], δC2 = C2(ρA1:A2A3 ) − ∑3

i=2 C2(ρA1Ai )
of the tripartite state, where C is the concurrence [66,67].
We know [64] that among three-qubit pure states, there exist
two inequivalent classes of states, the GHZ and the W class,
which cannot be transformed to each other by stochastic local
operations and classical communication (SLOCC) and can be
detected by using tangle. Specifically, δC2 = 0 for all the states
belonging to the W class, while it is positive for the GHZ-class
states. We find that after the first round, δ2

C vanishes for the
resulting states, thereby confirming that the three-party output
states belong to the W class. Notice that instead of a weak
measurement in Eq. (4), if we take a different weak measure-
ment of rank two (mixtures of two Bell states), we can create
GHZ class states too [68].

B. Nonmaximally entangled states are better
than maximally entangled ones

Let us start the protocol with nonmaximally entangled state
(NME) as resource, given by

|NME〉 = cos z|00〉 + sin z|11〉, 0 � z � π/4. (9)

By employing similar procedure as shown for the maximally
entangled state, we can again obtain the recursion relation for
the output state after an arbitrary round of measurement, say
n, in which |�n

k 〉 = 1
22n−1/2

√
pn

k

|Rn〉 and |an〉, |bn〉, |cn〉, and |dn〉
get modified accordingly. For example, the output state with
the measurement outcome being

√
M1 can be represented as

∣∣�1
1

〉 = 1√
p1

1

1

2
√

2
[|a1〉|ψ+〉 + |b1〉|ψ−〉 + |c1〉|φ+〉

+ |d1〉|φ−〉], (10)

where

|a1〉 = √
1 + 3λ[β1 cos z|0〉 + α1 sin z|1〉],∣∣b1

〉 = √
1 − λ[β1 cos z|0〉 − α1 sin z|1〉],∣∣c1

〉 = √
1 − λ[α1 cos z|0〉 + β1 sin z|1〉],∣∣d1

〉 = √
1 − λ[α1 cos z|0〉 − β1 sin z|1〉],

and p1
1 = 1

4 [1 − λ cos 2z cos θ ]. (11)

Notice that other outcomes of the measurement lead to the
same value of GGM after maximizing over state parameters.

Proposition. The critical GGM value for the nonmaximally
entangled state in the first round of the inflation procedure is
higher than that for the maximally entangled state.

Proof. As shown for the maximally entangled state, for λ <

λc, the maximum eigenvalue contributed for GGM is given by

eA3 = 1

2
+

√
X A3

4(1 − λ cos 2z cos θ1)
(12)

FIG. 4. Critical GGM, Gc (solid line) (left ordinate) and λc (solid-
dashed line) (right ordinate) against resource state parameter z of
|NME〉 state in Eq. (9) after the first round. Nonmaximally entangled
states are better than that of the maximally entangled ones. The
horizontal axis is in degree while the vertical axes are dimensionless.

with X A3 = (1 − λ)((1 + λ)(3+ cos 4z)+√
(1−λ)(1+3λ)

(1 − cos 4z) − 8λ cos 2z cos θ1) while for λ > λc, it is

eA1 = 1

2
+

√
X A1

4(1 − λ cos 2z cos θ1)
, (13)

where X A1 = 2 + 3λ2 + (2 − λ2) cos 4z − 2λ cos 2z(4 cos θ1 −
λ cos 2z cos 2θ1). We first notice that G is independent of φ1

of the auxiliary system and is maximized at θ1 = 0 for any
values of z. At λ = λc, we have

eA3 = eA1 ,

or λc = 8
(

cos4 z + csc2 z
√

cos2 z sin10 z
)

7 + cos 4z
, (14)

and the corresponding

Gc = 1 − [eA1 ]λ=λc (15)

with respect to z is shown in Fig. 4 which clearly indicates
that nonmaximally entangled states outperform the maximally
entangled ones for z � 8.02. �

Note here that we have excluded the region 0 � z < 8.02,
since optimizing G with respect to λ goes beyond the numeri-
cal precision. However, it is clear that the monotonic decrease
of Gc with the increase of z has a reverse behavior for small
values of z.

Suppose, we want to investigate the behavior of entangle-
ment of the reduced density matrix, ρA1A2 , after tracing out the
rest of the parties of the output state by varying the tuning
parameter λ in measurement. In this picture, since entangling
measurement is performed by a single observer and after
measurement, we trace out the ancillary system, it can be
represented as local operations. Specifically, we compute log-
arithmic negativity, EN (ρA1A2 (λ)) [69–72] in different rounds
after optimizing GGM of the output states over auxiliary state
parameters. The initial state is NME as well as maximally
entangled state as shown in Fig. 5. As expected, it starts
decreasing due to the operation, although the interesting part
is the nonmonotonic nature of EN (ρA1A2 (λ)) with respect to λ.

062412-5



HALDER, MAL, AND SEN(DE) PHYSICAL REVIEW A 104, 062412 (2021)

FIG. 5. EN (ρA1A2 (λ)) (vertical axis) against λ (horizontal axis)
for three-(pentagons), four-(filled squares), and five-party (hollow
squares) entangled states produced after measurements. Here, the
initial resources are (a) maximally entangled state (solid line) and
(b) NME state with z = 0.5 (dotted lines) in radian. Both the axes
are dimensionless.

1. Role of sharpness parameter on resource

After optimizing over auxiliary state parameters, the GGM
values of the multipartite state depends drastically on the
sharpness parameter λ of the measurement as seen in Fig. 3.
Analyzing the first round, it is clear that for a fixed λ value,
there exists a specific entangled state which can be used as
the initial state in the protocol, leading to a maximum multi-
partite entanglement. For example, when λ = 2/3, maximally
entangled state is the best resource. Such a relation continues
in any round of the protocol. Except for a very small values
of λ where almost all the entangled pure states result to a
similar amount of GGM after measurement, for a given λ, we
find that the moderate amount of entanglement in the resource
state is enough to create GME state having maximal GGM as
depicted in Fig. 6. It also indicates that the difference between
the bipartite entanglement content in the NME state and the
maximally entangled one can be compensated by introducing
entangling weak measurements like in Eq. (4) in the produc-
tion of multipartite entanglement.

2. Patterns of genuine multipartite entanglement
with increasing round

For a maximally entangled state, we observe that the
amount of multipartite entanglement decreases with the in-
crease of number of rounds (up to three) (see Fig. 3). At this
point, there are two natural questions that can be raised—
decreasing trends of GGM with more number of rounds and
independent patterns of critical GGM for all values of z. After
optimizing both λ and initial state parameters, we find that
even in the case of maximally entangled state, Gc decreases
with n, then fluctuate and saturates. For other values of z, the
decreasing trend is quite nicely visible from Fig. 7 for small
n, and then the fluctuation is also quite high for other values
of z.

Note also that, with the increasing round, number of pa-
rameters over which we have to maximize also increases. In

FIG. 6. Nonmaximally entangled pure states are better than max-
imally entangled ones except for λ = 2/3. G (ordinate) against initial
entanglement, Ein (abscissa) of the resource state, i.e., |NME〉 for
different fixed values of λ. Here Ein is the von-Neumann entropy [73]
of the local density matrix of |NMEA1A2 〉. It shows that maximally
entangled state is best, when λ = 2/3 and for each λ value, there is a
unique nonmaximally entangled state which can create a maximum
genuine multipartite entanglement. The vertical axis is dimensionless
while the horizontal axis is in ebits.

the nth round, we need to maximize over 2n auxiliary system
variables and also over λ, i.e., total 2n + 1 variables, thereby
making the optimization problem harder with each round.
Moreover, with the increase of number of parties, calculating
GGM becomes also complicated as one has to consider all
the bipartitions. Up to fifth rounds, we have computed all the
bipartition for computing GGM, and find that the contribution
in Gc is coming from eigenvalues of the reduced density ma-
trices, ρA1 ≡ ρAn+2 ≡ ρAn+1An+2 . And hence unless mentioned
otherwise, for the sixth round onwards, GGM is computed

FIG. 7. Critical GGM, Gc (y axis) with respect to number of
rounds, n (x axis) for different values of z of the NME state. As
the number of round increases, thereby the increase of the number
of parties in the output state, our optimization algorithm over state
parameters becomes inefficient and give a more fluctuating values of
Gc (up to 10−2 order) although the nature of the plot remains almost
same. Both the axes are dimensionless.
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by taking all single- and nearest-neighbor two-site density
matrices.

C. Haar-uniformly generated two-qubit pure states
as initial state for inflation

Instead of a specific class of pure states, let us find out
the universal trends of GGM for the resulting state when the
initial resource state is chosen Haar uniformly [61], given
by |φr〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉 with a = a′ + ia′′,
similarly b, c, d , and a′, a′′, . . . being chosen randomly from
Gaussian distribution with mean 0 and standard deviation
unity. Opting similar technique like the maximally entangled
state, we can again write down the output state after round n
as

∣∣�n
k

〉 = 1

22n−1/2
√

pn
k

|Rn〉,

where |Rn〉 can be suitably obtained via recursion relation in
terms of |an〉, |bn〉, |cn〉, and |dn〉 as in Eq. (7). Notice that the
change of resource states only effects the form of |a1〉, |b1〉,
|c1〉, and |d1〉. For example, after the first round with

√
M1

being the outcome of the measurement, the expression for the
resulting state is similar to the one given in Eq. (10) with

|a1〉 = √
1 + 3λ[β1(a|0〉 + c|1〉) + α1(b|0〉 + d|1〉)],

|b1〉 = √
1 − λ[β1(a|0〉 + c|1〉) − α1(b|0〉 + d|1〉)],

|c1〉 = √
1 − λ[α1(a|0〉 + c|1〉) + β1(b|0〉 + d|1〉)],

|d1〉 = √
1 − λ[α1(a|0〉 + c|1〉) − β1(b|0〉 + d|1〉)].

Let us study the behavior of critical GGM, Gc, for Haar
uniformly generated pure states in details after the first and
the second rounds. Towards this, we calculate the normalized
frequency distribution of Gc, denoted by fGc = N (Gc )

N , where
N (Gc) is the number of Haar uniformly generated state having
a fixed Gc value and N is the total number of states simulated.
The frequency distribution, given in Fig. 8, indicates the fol-
lowing observations which are in good agreement with the
previous results.

(1) We again observe that at λc, Gc obtained from non-
maximally entangled random states is higher than that of
maximally entangled states. We know that the average en-
tanglement in the random two-qubit pure states is around
0.48 [74] and as discussed before, if the initial state con-
tains a certain entanglement value, it is always possible to
tune the sharpness parameter in such a way that the resulting
state has more genuine multipartite entanglement than that
of the maximally entangled state. It again establishes that a
trade-off relation between sharpness parameter involved in the
entangling measurement and the entanglement content of the
resource state plays an important role towards the success of
the protocol.

(2) After second round of the protocol, the mean of Gc =
0.182 decreases compared to the first round which is 0.237,
as shown in Fig. 8. Similarly, the standard deviations of the
distribution in the first and the second rounds are respectively
0.02 and 0.017.

(3) All the resulting tripartite state after the first round
belong to the W class.

FIG. 8. Normalized frequency distribution, fGc (vertical axis),
against Gc (horizontal axis). We Haar uniformly generate random
pure states and create three- (solid bars) and four-party (check bars)
GME states after maximization over state and measurement param-
eters. In each case, the sample size is taken to be 5×103. Both the
axes are dimensionless.

D. Creation of multipartite entangled state from noisy
entangled two-qubit initial state

We move to a more realistic situation where the initial
shared state is noisy. In particular, we take the Werner state
[62],

ρW = p|φ+〉〈φ+| + (1 − p)
I4

4
(16)

as the initial resource. One of the main obstacle in this situ-
ation is to quantify multipartite entanglement content of the
output state after each round. To overcome it, we compute
negativity monogamy score [60,65] which measures the distri-
bution of entanglement in a multipartite state. Recently, it was
also argued that the overall behavior of monogamy scores is
quite similar to the multipartite entanglement measures [75].

Taking initial state as ρW ⊗ ρA3 ≡ ρW ⊗ |χ+
1 〉〈χ+

1 |, and
performing weak measurement on the part of the Werner state
and the auxiliary system, we compute δNc = max δN where
maximization is performed over the coefficients θ1, φ1 of the
auxiliary state and λ of the weak measurement. In the second
round, we take the resulting state of the first round as the ini-
tial state and another auxiliary state, i.e., ρA1A2A3 ⊗ |χ+

2 〉〈χ+
2 |

and so on. In the first round, by obtaining the outcome√
M1, the tripartite state reads ρ1

1 =
√

M1(ρW⊗ρA3 )
√

M1

p1
1

, where

p1
1 = Tr(

√
M1(ρW ⊗ ρA3 )

√
M1).

After maximizing δN with respect to variables θ1, φ1 of
auxiliary system, the variation of negativity monogamy score
of ρ1

1 with λ for different values of the noise parameter p is
shown in Fig. 9. Like pure states, we also observe here that
for a fixed value of p, there is a unique critical λ value up to
which δN increases with λ and then starts decreasing with λ.
Notice here that the probability of obtaining any of the four
outcomes {Mk}4

k=1 is again p1
k = 1

4 in the first round.
Interestingly, the negativity monogamy score does not

behave monotonically with the increase of noise, p in the
resource state. To visualize it, we consider the behavior of

062412-7



HALDER, MAL, AND SEN(DE) PHYSICAL REVIEW A 104, 062412 (2021)

FIG. 9. Optimized negativity monogamy score, δN (vertical
axis) with the sharpness parameter λ (horizontal axis), for different
values of noise parameter, p in the Werner state, ρW. Both the axes
are dimensionless.

the critical monogamy score, δNc with the increase of p
(see Fig. 9). At each round, we observe that the negativity
monogamy score reaches its maximum value when the state
is noisy compared to the pure state which again demonstrates
that there is a competition between the entanglement in the
measurement and in the resource state. For example, in the
first round, the maximum of δNc occurs at p = 0.858 while
it is p = 0.75 after completion of the second round, thereby
showing robustness in monogamy of entanglement against
noise. Notice also that unlike GGM, δNc increases with the
number of rounds, as shown in Fig. 10.

FIG. 10. Critical negativity monogamy score, δNc (ordinate),
against noise parameter p (abscissa) of the initial resource ρW

(Werner state) after the first (circles) and the second rounds (squares),
i.e., in the inflation process, 2 → 2 + 1, 2 + 2. The maximum
δNc obtained for p �= 1 (i.e., other than unity) ensures that noisy
entangled states can create a high amount of multipartite entan-
glement than that of its noiseless counterparts. Both the axes are
dimensionless.

IV. MULTIQUBIT PURE STATES FOR EXPANDING
MULTIPARTITE ENTANGLED STATE (3 → 3 + n):

W STATE IS BETTER THAN GHZ STATE

Let us now change the resource state from a bipartite state
to a tripartite one by keeping the product auxiliary systems
and the same unsharp measurements as in Eq. (4). We generate
three-qubit states Haar uniformly both from the GHZ as well
as the W class and compare their potential to expand genuine
multipartite entanglement in higher number of qubits via the
weak measurement strategy. Before that, let us consider two
important class of tripartite states, namely, the GHZ state,
given by |GHZ〉 = 1√

2
(|000〉 + |111〉) and the W state, |W 〉 =

1√
3
(|001〉 + |010〉 + |100〉) as inputs.
Interestingly, by using the similar recursion relation de-

rived for the maximally entangled state, we can show that
starting from |GHZ〉 ⊗ �n

i=1|χ+
i 〉, the maximal GGM ob-

tained after maximizing over auxiliary states is equal to the
GGM of the initial state having maximally entangled state
as resource in the nth round, i.e., for the initial state |φ+〉 ⊗
�n

i=1|χ+
i 〉 after measurements for each value of λ. Such

a correspondence also holds between the generalized GHZ
state, |gGHZ〉 = cos z|000〉 + sin z|111〉 and the nonmaxi-
mally entangled two-qubit states, |NME〉, i.e., Gc(|gGHZ〉) =
Gc(|NME〉) for a fixed value of z.

In case of the W state, the output state after the first mea-
surement with the outcome

√
M1 reads as

∣∣�1
1

〉 = 1√
p1

1

1

2
√

6
[|a1〉|ψ+〉 + |b1〉|ψ−〉 + |c1〉|φ+〉

+ |d1〉|φ−〉], (17)

where p1
1 is the probability of obtaining

√
M1, and

|a1〉 = √
1 + 3λ

(√
2β1|ψ+〉 + α1|00〉),

|b1〉 = √
1 − λ

(√
2β1|ψ+〉 − α1|00〉),

|c1〉 = √
1 − λ

(√
2α1|ψ+〉 + β1|00〉),

|d1〉 = √
1 − λ

(√
2α1|ψ+〉 − β1|00〉). (18)

Before performing optimization over λ, we study the behavior
of G after optimizing over {θ1, θ2, φ1, φ2} as seen in Fig. 11.
In the first round, for the W state, Gc = 0.168 while in the
second round, it becomes 0.138 and λc = 0.693 is same for
both the rounds. Notice that in case of the shared GHZ state,
λc = 2/3 = 0.678 and the corresponding Gc = 0.167 and
0.128 in the first and the second rounds respectively. In the
literature, the class of GHZ states are typically shown to be
more useful than the W-type states although there are coun-
terexamples [76–80]. Our results indicate that entanglement
inflation is another process which can show benefit of sharing
W state.

1. Spreading entanglement via random three-qubit states:
GHZ versus W class

Let us generate three-qubit states Haar uniformly, which
belong to the GHZ class, given by |GHZcl〉 = a|000〉 +
b|010〉+ c|001〉+ d|100〉+ e|011〉+ f |101〉+ g|110〉+h|111〉
where the coefficients are complex and are chosen from
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FIG. 11. GHZ vs W states. Maximized G (ordinate) vs λ (ab-
scissa). We create four- (filled squares) and five-party (hollow
squares) GME states by taking |GHZ〉 (solid lines) and |W 〉 (dashed
lines) states as initial resources. In the former case, λc = 2/3 while
the latter case, λc ≈ 0.693. Both the axes are dimensionless.

Gaussian distribution as discussed in case of two-qubit
random states. After the outcome

√
M1, we obtain the

resulting state, |�1
1 〉 = 1√

p1
1

1
2
√

2
|R1〉 which is in the same

form as in Eq. (17) where the coefficients can be modified as

|a1〉 = √
1 + 3λ(β1|X 〉 + α1|Y 〉),

|b1〉 = √
1 − λ(β1|X 〉 − α1|Y 〉),

|c1〉 = √
1 − λ(α1|X 〉 + β1|Y 〉),

|d1〉 = √
1 − λ

(
α1|X 〉 − β1|Y 〉),

and |X 〉 = a|00〉 + b|01〉 + d|10〉 + g|11〉,
|Y 〉 = c|00〉 + e|01〉 + f |10〉 + h|11〉.

After n rounds, the output state corresponding to the outcome,√
Mk , becomes |�n

k 〉 = 1√
pn

k

1
22n−1/2 |Rn〉 where |an〉, |bn〉, |cn〉

and |dn〉 can be written in terms of |a1〉, |b1〉, |c1〉, and |d1〉.
The normalized frequency distribution of Gc after the first
round is shown in Fig. 12, having mean 0.208 and standard
deviation 0.026. Comparing this average value with that of
the Haar uniformly generated two-qubit states, we find that
two-qubit states in this process is more resourceful than that
of the multiqubit states on average.

Similar analysis can be performed by simulating W-class
states, |W cl〉 = a|000〉 + b|010〉 + c|001〉 + d|100〉, Haar
uniformly and optimize the GGM value over λ and a set of
parameters {θ1, φ1} in the auxiliary system. In this case, the
resulting state can be represented similarly as in the case of
the GHZ class except the coefficients gets modified as

|a1〉 = √
1 + 3λ(β1|Z〉 + α1c|00〉),

|b1〉 = √
1 − λ(β1|Z〉 − α1c|00〉),

|c1〉 = √
1 − λ(α1|Z〉 + β1c|00〉),

|d1〉 = √
1 − λ(α1|Z〉 − β1c|00〉),

and |Z〉 = a|00〉 + b|01〉 + d|10〉.

FIG. 12. Normalized frequency distribution, fGc (vertical axis)
against critical GGM, Gc (horizontal axis). Haar uniformly generated
random three-qubit GHZ- (solid bars) and W-class states (check
bars) are used to generate four-party state in the 3 → 3 + 1 inflation
method in an optimal way. In each case, the sample size is 5×103.
Both the axes are dimensionless.

In this case, the mean, 〈Gc〉 = 0.20 and the standard deviation,
σGc = 0.028 of the frequency distribution of the critical GGM
which is quite close to that obtained for the GHZ-class states.

Let us observe the behavior of Gc against the GGM of
the initial shared state which reveals the role of entangle-
ment content of the inputs in this process (see Fig. 13).
We find that for same values of GGM, Gin, in the arbitrary
three-qubit state and the generalized GHZ state, after the
first round, the critical GGM values of the final state ob-
tained from the arbitrary three-qubit states (irrespective of
the class) is bounded above by that of the |gGHZ〉 state,

FIG. 13. Scattered plot of Gc (y axis) against GGM of the input
states, Gin (x axis) in 3 → 3 + 1 process. Input states are generalized
GHZ (circles), Haar uniformly generated GHZ-(triangles), and W-
class (crosses) states. Clearly, producing GME states from the gGHZ
state is the best option compared to the situations when the initial
states are Haar uniformly generated three-qubit states. The sample
size in both the GHZ- and W-class states are 5×103. Both the axes
are dimensionless.
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FIG. 14. Entanglement-based inflation scheme. Schematic dia-
gram of the inflation protocol where multiple copies of the initial
resources are available. Unlike the previous case, the resource state,
�A1A2 is used as auxiliary system between the node A3 and A4. In
this situation, A2 and A3 perform the weak entangling measurement
to create a multipartite entangled state and so on. Importantly, we
notice that in this case, the optimization over parameters of the
auxiliary system is no more required. This scenario is exactly same as
the entanglement swapping performed in a chain. However, instead
of weak measurements, if one performs projective measurements
in nodes, those nodes gets disconnected, thereby no production of
multipartite entangled state. To discriminate this protocol from the
previous one, we denote it as 2 → 2 + 2̃n.

i.e., Gc(|gGHZ〉) � Gc(|GHZcl〉)(Gc(|W cl〉)). It manifests that
among all the three-qubit states, the generalized GHZ state
is the best resource for expanding genuine multipartite
entanglement.

V. MULTIPLE COPIES OF ENTANGLED RESOURCE
ARE NOT ALWAYS POWERFUL FOR INFLATING

MULTIPARTITE ENTANGLED STATES

Let us change the gear and analyze the situation when the
resources are increased. Specifically, in the previous scenario,
an entangled state and multiple copies of auxiliary states are
initially given while in this scenario, several copies of entan-
gled states are used as resource as shown in Fig. 14. Specif-
ically, n copies of the initial state are shared where unsharp
measurements [e.g., measurements in Eq. (4)] are applied in
a chain to expand multipartite entanglement—it is a mod-
ified version of entanglement swapping [36–39,42,44] with
unsharp measurement. The major difference of this protocol
and the original entanglement swapping protocol is that it
transfers entanglement from a pair to an another pair while the
protocol via unsharp measurement can create (2n + 2)-party
state after n rounds. Since the difference between the previous
and current methods is the choice of auxiliary states, we refer
this method as entanglement-based (EB) inflation compared
to the previous product-based one. The idea is again to maxi-
mize GGM with respect to sharpness parameter, λ in Eq. (4).

By employing similar technique as discussed in the pre-
ceding section, we can again find the recursion relation of
the resulting state. Since we want to find the advantages be-
tween the previous protocols and the entanglement-based one,
we consider again maximally, nonmaximally, Haar uniformly
simulated entangled states and the Werner state. Notice, how-
ever, that the resources used in this protocol grows with n
which in the previous case, remains constant to the initial
entanglement. Moreover, it should be mentioned that in this

scenario, one may invoke much more general measurement
schemes to optimize GME states.

Nonmaximally entangled pure states. Before considering
|NME〉, let us first take |φ+〉 as the initial resource and another
|φ+〉 as the auxiliary system, i.e., the initial state, |φ+〉 ⊗ |φ+〉
and make the joint measurement on the second and the third
party, we obtain the four-party state as∣∣�1

k

〉 = 1

2
√

2
[(|0〉|F 1

+〉 + |1〉|E1
−〉)|0〉

+ (|0〉|E1
+〉 + |1〉|F 1

−〉)|1〉]

= 1

2
√

2
[|Y 1〉|0〉 + |Z1〉|1〉], (19)

while after the second round, i.e., after measuring the fourth
and the fifth party, the six-party state becomes∣∣�2

k

〉 = 1

4
√

2
[(|Y 1〉|F 2

+〉 + |Z1〉|E2
−〉)|0〉

+ (|Y 1〉|E2
+〉 + |Z1〉|F 2

−〉)|1〉]

= 1

4
√

2
[|Y 2〉|0〉 + |Z2〉|1〉].

Here

|En
+〉 = mn

1|ψ+〉 + mn
2|ψ−〉,

|En
−〉 = mn

1|ψ+〉 − mn
2|ψ−〉,

|F n
+〉 = mn

3|φ+〉 + mn
4|φ−〉,

|F n
−〉 = mn

3|φ+〉 − mn
4|φ−〉,

where the coefficients mn
ks depend on which of the four

outcomes of the measurement, {Mk}4
k=1 have clicked in the

nth round. If Mk is the outcome, mn
k = √

1 + 3λ and mn
l =√

1 − λ for l �= k. Similarly, in the round n, after measuring
jointly on the nodes, 2n and 2n + 1, the (2n + 2)-party state
produced, denoted by 2 → 2 + 2̃n, can be represented as

|�n
k 〉 = 1

2n
√

2
[|Y n〉|0〉 + |Zn〉|1〉], (20)

where

|Y n〉 = [|Y n−1〉|F n
+〉 + |Zn−1〉|En

−〉],
|Zn〉 = [|Y n−1〉|En

+〉 + |Zn−1〉|F n
−〉],

and |Y 1〉 = [|0〉|F 1
+〉 + |1〉|E1

−〉],
|Z1〉 = [|0〉|E1

+〉 + |1〉|F 1
−〉]. (21)

Notice that these relations are quite similar to the one in
Eqs. (6) and (7) although |χ〉s and |ξ 〉s are replaced by en-
tangling operators. In this situation, some interesting features
emerge due to the symmetry of the problem.

(1) After the first round, GGM, G depends on λ, as shown
in Fig. 15. The maximal eigenvalues required to compute
GGM comes from the reduced state, ρA1A2 with λ < λc and
from ρA2A3 for λ > λc. The maximum eigenvalues for λ < λc

and λ > λc are respectively

eA1A2 = 1
8 [3 − λ +

√
(1 − λ)(1 + 3λ)

+ 2
√

2
√

(1 − λ) + (1 + λ +
√

(1 − λ)(1 + 3λ))],

eA2A3 = 1
4 (1 + 3λ),
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FIG. 15. Plot of G (ordinate) vs λ (abscissa) in the EB inflation
process. Four- (squares) and six-party (pentagons) GME states are
generated by taking different NME states (for different values of z
mentioned in each plots). Both the axes are dimensionless.

leading to the critical value of GGM, i.e., Gc = 0.25 at λ = λc.
It is clearly higher than that obtained from the previous PB
protocol.

(2) Interestingly, in the second and third rounds, the GGM
remains same at all values of λ (see Fig. 15).

(3) In each round, the probabilities of obtaining any of the
outcomes are always equal. In case of nonmaximally entan-
gled state, |NME〉, after the round, n, the state looks similar
to the one given in Eq. (20) with the updated normalization,

1
(2

√
2)n

1√
pn

k

, coefficients, |Y n〉 → cos z|Y n〉, |Zn〉 → sin z|Zn〉,
and

|Y 1〉 = cos z[sin z|0〉|F 1
+〉 + cos z|1〉|E1

−〉],
|Z1〉 = sin z[cos z|0〉|E1

+〉 + sin z|1〉|F 1
−〉]. (22)

The observations made for maximally entangled state do not
remain valid for |NME〉 as well as Haar uniformly generated
state, |φr〉. Specifically, GGM changes in each round although
for moderate values of entanglement content of the state, G
remains almost same in rounds as shown in Fig. 15. This is due
to the fact that the entanglement available to expand multipar-
tite entangled state also gradually increases with rounds which
is in sharp contrast with the previous product-based inflation
process.

To make the comparison between PB and EB inflation
processes more concrete, let us examine Gc for a given ini-
tial bipartite entanglement of the resource state, Ein, after
the first round of measurement on Haar uniformly generated
pure states. Interestingly, it turns out that 54.25% of states
creates less genuine multipartite entanglement via the EB
protocol than the one that can be achieved by PB scheme
and for the rest, i.e., for 45.75% of states, EB procedure wins
(see Fig. 16).

Considering Werner state as initial as well auxiliary states,
let us investigate the EB protocol and compare the results
with the PB ones. For p � 1/3, negativity monogamy score
vanishes for all values of λ as expected. For p > 1/3, the

FIG. 16. Entanglement- vs product-based multipartite inflation
procedure. Critical GGM, Gc is plotted against initial entanglement,
Ein of different resource states. After the first round, the critical GGM
is computed for generating states Haar uniformly as well as for NME
states (pentagons). The symbols representing PB and EB schemes are
respectively triangles and crosses. The number of states simulated in
5×103. Although the vertical axis is dimensionless, the horizontal
axis is in ebits.

variation of negativity monogamy scores reveal the following
trends.

(1) Role of noise in EB process. For a fixed λ, the behav-
ior of negativity monogamy score, δN can be divided into
two regions—(1) when the initial states has less amount of
entanglement content, i.e., it is more noisy states with low
p, after the first and the second rounds, δN for the resulting
states almost coincide; (2) when the resource and the auxiliary
states contain substantial amount of entanglement, δN can be
made higher with the increase of rounds as depicted in Fig. 17,
especially near critical value of λ.

FIG. 17. Negativity monogamy scores, δN (vertical axis) vs λ

(horizontal axis) with Werner state being the input as well as aux-
iliary states. Different p values are chosen as mentioned in plots.
Squares and pentagons represent the first and the second rounds,
respectively. Both the axes are dimensionless.
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FIG. 18. δNc (ordinate) with respect to noise parameter p
(abscissa) of ρW. Comparison of δNc of the four-party mixed multi-
partite states obtained in both EB (circles) and PB (squares) protocols
from initial resource ρW are made. Both the axes are dimensionless.

(2) PB versus EB inflation. Interestingly, δNc with PB pro-
tocol is always higher than that of the EB protocol for any
strength of noise, p as shown in Fig. 18. Notice, however, that
for a fixed amount of noise in the channel and for a fixed
sharpness parameter, λ, EB method can also give advantage
than that of the product ones.

VI. CONCLUSION

Sharing genuine multipartite entangled (GME) states is
undoubtedly advantageous for designing several quantum
protocols ranging from measurement-based quantum com-
putation to secret key distribution. Over the years, several
processes have been developed to create and detect entangle-
ment in shared multipartite systems. Such production schemes
include series of single-qubit as well as two-qubit quantum
gate operations, projective measurements in a star network,
quantum state transfer via teleportation to name a few.

In this paper, we developed a mechanism to inflate a
genuinely multipartite entangled state with the aid of a sin-
gle bipartite or multipartite entangled state, several auxiliary
systems and controlled unsharp measurement, which we re-
ferred to as a product-based (PB) inflation process. Notice that
instead of unsharp measurement, if we use projective mea-
surement, such multipartite entanglement production is not
possible. The successful generation of a multipartite entangled
state is guaranteed by measuring multipartite entanglement
geometrically, as well as by using monogamy-based mea-
sures. Specifically, starting from bipartite pure states, we
determined a recursion relation for obtaining a multipartite
state after arbitrary rounds. In the case of initial bipartite
states, we illustrated that for a given sharpness parameter,
there is a unique nonmaximally entangled state that can create
a maximal GME state, thereby showing the importance of
sharing nonmaximally entangled states over maximally en-
tangled ones. The results were supported also by simulating
Haar uniformly generated pure states and for noisy entangled
states, namely, the Werner state as inputs. In particular, in

the latter situation, we found that in each round, there is a
threshold noise at which multipartite entanglement produced
is maximum. It clearly indicates that there is a trade-off rela-
tion between the entanglement content of the initial state and
the entangling positive operator-valued measurement acted
on two parties. We then extended the idea for the situation
when the initial shared state is the tripartite state instead of
two-party states. Here we showed that after the first round, the
states belonging to the W- and the GHZ-class states perform
equally good to create multipartite entangled states. It seems
plausible that different initial states along with suitable weak
measurements can lead to different classes of multipartite
entangled states, which are potential candidates for quantum
information processing tasks.

Instead of single-qubit auxiliary states, if we use several
copies of the initial entangled states as the starting point, the
unsharp measurements can again create a highly multipar-
tite entangled state, which we call entanglement-based (EB)
inflation scheme. Surprisingly, we manifested that although
the resource in this process is monotonically increasing with
rounds, there exist certain percentages of pure as well as
mixed states, for which the PB method can produce higher
GME states compared to that of EB ones. The entire analy-
sis reveals that there is a competition between entanglement
in inputs and the entangling measurement operators which
requires much more careful analysis in different information
processing tasks.
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APPENDIX A: MULTIPARTITE ENTANGLEMENT
QUANTIFIER

A multipartite pure state is said to be genuinely multiparty
entangled if it is not product in any bipartition. Genuine
multipartite entanglement can be quantified by using the
geometry of quantum states. In particular, generalized ge-
ometric measure (GGM), G, of a given pure state, |ψN 〉
is the minimum distance between the given state with the
set of nongenuinely multipartite entangled states, denoted
by nG. By using Schmidt decomposition in each bipartition
[10,59], it reduces to G(|ψN 〉) = 1 − max{|φ〉∈nG} |〈φ|ψN 〉|2 =
1 − max({λm

A:B)}, where λm
A:B is the maximum Schmidt coeffi-

cients in all the nontrivial bipartitions of |ψN 〉. Although the
measure can be computed easily for pure states with reason-
able number of parties, it is hard to get a closed form for mixed
states.

We use negativity monogamy score to measure entan-
glement distribution in multipartite mixed state [60,65]. It
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is defined for arbitrary density matrix, ρ12...N , as δN =
N (ρ1:2...N ) − ∑N

i=2 N (ρ1i ), where N (ρ1:2...N ) is the negativity
in the bipartition of 1:2 . . . N , and N (ρ1i )s are the reduced
density matrices of ρ12...N . Here, for two-qubit states, negativ-
ity, N (ρ12) [69–72] reduces to the absolute value of a negative
eigenvalue of the partial transposed state with respect to one
of parties [82,83] while logarithmic negativity is defined as
EN (ρ12) = log2(2N (ρ12) + 1).

APPENDIX B: PROBABILITIES OF THE OUTCOME
IN INFLATION PROCESS

When the shared state is the maximally entangled state
and the qubits auxiliary systems are used for the expansion
of multipartite entanglement, we now discuss the structure of
the probabilities to obtain the specific outcome at each round.
In the first round, each of the four measurements has the same
probability, p1

k = 1/4, independent of θ1, φ1.
When the outcome is

√
M1 both in the second and the third

rounds, the corresponding probabilities which depend on the
auxiliary state parameters read as

p2
1 = 1

p1
1

× 1

64

[
4 − 2λ

(
1 − λ +

√
(1 − λ)(1 + 3λ)

)

×(cos θ1 cos θ2 − cos(φ1 − φ2) sin θ1 sin θ2)
]

(B1)

and

p3
1 = 1

p2
1

× 1

64

[
4 − 2λ

(
1 − λ +

√
(1 − λ)(1 + 3λ)

)
×(cos θ1 cos θ2 + cos θ2 cos θ3

− cos(φ1 − φ2) sin θ1 sin θ2)

+2λ
(
λ(1 − λ) +

√
(1 − λ)(1 + 3λ)

)
× (cos(φ2 − φ3) sin θ2 sin θ3)

+ 4λ2(1 − λ)(cos θ1 cos θ3

+ λ cos(φ1 − φ3) sin θ1 sin θ3)
]
.

Similarly, if
√

M1 clicks successively in all the n rounds, the
probability of clicking it reduces to

pn
1 =

〈
Zn

1

∣∣∣∣Zn
1

〉
pn−1

1

, (B2)

where |Zn
k 〉 is given in Eq. (5). Therefore one can compute

the probabilities of obtaining any outcome in a specific round
based on the outcomes of the previous rounds via the recursion
relation.
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