
PHYSICAL REVIEW A 104, 062411 (2021)

Fast and scalable classical machine-learning algorithm with similar performance
to quantum circuit learning

Naoko Koide-Majima1,2,* and Kei Majima 3,4,*

1Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology,
Osaka 565-0871, Japan

2Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
3Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

4Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
and JST PRESTO, Saitama 332-0012, Japan

(Received 30 April 2020; accepted 8 October 2021; published 7 December 2021)

The application of near-term quantum devices to machine learning (ML) has attracted much attention.
Recently, Mitarai et al. [Phys. Rev. A 98, 032309 (2018)] proposed a framework to use a quantum circuit
for ML tasks, called quantum circuit learning (QCL). Due to the use of a quantum circuit, QCL employs an
exponentially high-dimensional Hilbert space as its feature space. However, its efficiency compared to classical
algorithms remains unexplored. Here, we present a classical ML algorithm that uses the same Hilbert space. In
numerical simulations, our algorithm demonstrates similar performance to QCL for several ML tasks, providing
a perspective for the computational and memory efficiency of quantum ML algorithms.

DOI: 10.1103/PhysRevA.104.062411

I. INTRODUCTION

Because quantum computers with tens or hundreds of
qubits are becoming available, their application to ma-
chine learning has attracted much attention. To use noisy
intermediate-scale quantum (NISQ) devices [1] efficiently,
many quantum-classical hybrid algorithms have been pro-
posed. For example, the variational quantum eigensolver
has recently been used to find the ground state of a given
Hamiltonian [2–5] and the quantum approximate optimization
algorithm enables us to obtain approximate solutions to com-
binatory optimization problems [6–8]. More recently, several
studies have proposed algorithms that use NISQ devices for
machine-learning tasks [9–29], some of which have been ex-
perimentally tested using actual quantum devices [30–36].

In one such attempt, Mitarai et al. [26] proposed a frame-
work to train a parametrized quantum circuit for supervised
classification and regression tasks; this is called quantum cir-
cuit learning (QCL). In QCL, input data (i.e., feature vectors)
are nonlinearly mapped into a 2Q-dimensional Hilbert space,
where Q is the number of qubits, and then a parametrized uni-
tary transformation is applied to the mapped data (see Sec. II).
The parameters of the unitary transformation are tuned to min-
imize a given cost function (i.e., a prediction error). According
to the original QCL study [26], QCL is considered to have four
unique properties as a machine-learning model.

(1) Nonlinear mapping into the high-dimensional Hilbert
space provides QCL with the ability to learn nonlinear rela-
tionships.

(2) The unitary transformation maintains the norm of the
weight vector (i.e., coefficient vector) at 1, which mitigates
the risk of overfitting.

*These authors contributed equally to this work.

(3) The weight vector is randomly parametrized.
(4) The parameters of the weight vector can be optimized

using a gradient method with analytical gradients.
While these four properties lead to advantages in practical

machine-learning tasks, it remains uncertain whether they are
exclusive features of quantum machine learning against clas-
sical machine learning.

In this paper, we present a classical machine-learning algo-
rithm with the above four properties the computational time
and required memory size of which are linear with respect
to the hyperparameter corresponding to the number of qubits,
which we refer to as quantum circuitlike learning (QCLL).
To implement QCLL, we introduce the technique known as
“count sketch” [37–40], which is a randomized algorithm for
linear algebra computation. Given a high-dimensional vec-
tor space, the count sketch technique provides a projection
from the given space to a lower-dimensional space that ap-
proximately preserves the inner product in the original space
(see Sec. II). Therefore, this enables us to use the same 2Q-
dimensional Hilbert space as the feature space with a low
computational cost. To demonstrate the similarities between
QCL and QCLL as machine-learning algorithms, we perform
numerical simulations in which these two algorithms are ap-
plied to several machine-leaning tasks. Our numerical results
demonstrate that the behavior and performance of QCLL are
very similar to those of QCL.

Specifically, the contributions of our paper are as
follows.

(1) We proposed a classical machine-learning algorithm
that uses a 2Q-dimensional Hilbert space as its feature space
while keeping the computational time and required memory
size linear with respect to Q.

(2) To efficiently compute the inner product in the
2Q-dimensional Hilbert space, several statistical techniques

2469-9926/2021/104(6)/062411(11) 062411-1 ©2021 American Physical Society

https://orcid.org/0000-0002-2405-4113
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.062411&domain=pdf&date_stamp=2021-12-07
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.104.062411

NAOKO KOIDE-MAJIMA AND KEI MAJIMA PHYSICAL REVIEW A 104, 062411 (2021)

)b()a(

(c)

u(θ) v(x)v(x)x ψ
in
(x)

Count sketch

Tensor sketch

Inner productEncode

x ψ
in
(x) ψ

in
(x)U(θ)U(θ)

Encode

Unitary transformationQCL

QCLL
=

-v
2
+ v

5

v
1

v
3
- v

4

v
1

v
2

v
3

v
4

v
5

0

1

0

-1

0

0

0

0

1

0

0

-1

1

0

0

v
v C

Count sketch Count sketch matrix

Original vector

FIG. 1. Quantum circuit learning (QCL) and quantum circuitlike learning (QCLL). (a) Flowchart of QCL. In QCL, an input vector is
encoded (mapped) into a quantum state and then a parametrized unitary transformation is applied to it. (b) Count sketch technique. An
example of a 3 × 5 count sketch matrix is shown. This provides a projection from a five-dimensional space to a three-dimensional space. (c)
Flowchart of QCLL. In QCLL, the count sketch of the quantum state vector that encodes an input vector is computed by the tensor sketch
algorithm. The tensor sketch algorithm enables us to perform this computation without accessing the quantum state vector, which is typically
high dimensional. Then, the inner product between the resultant count sketch and a parametrized unit vector is computed as the output.

developed in the field of machine learning are introduced. We
combined them with the gradient-based optimization proce-
dure developed in the previous QCL study [26].

(3) We demonstrated that our proposed algorithm achieves
prediction performance similar to QCL on the machine-
learning tasks used in the original QCL study [26]. This
similarity was also confirmed through practical benchmark
tasks in the field of machine learning.

While we numerically demonstrate that QCLL shows sim-
ilar prediction performance to QCL, it should be noted that
our results are consistent with the expectations from pre-
vious quantum machine-learning studies. Several theoretical
studies have shown that the difference in learning efficiency
(i.e., the number of training samples required to achieve a
given prediction performance) between quantum and classical
machine-learning algorithms is at most polynomial [41–44].
Therefore, theoretically, for any given quantum machine-
learning algorithm, there exists a classical machine-learning
algorithm with similar prediction performance. Further dis-
cussion on this point is provided in Sec. IV.

The remainder of this paper is organized as follows: The
algorithms used in this paper are described in Sec. II. Section
III then presents the experimental results. Discussion and con-
cluding remarks are given in Sec. IV.

II. ALGORITHM

This section is organized as follows. First, we introduce
QCL based on the work of Mitarai et al. [26]. In the following
subsection, we explain the count sketch technique, which is
a randomized algorithm for linear algebra computation and
is used as a subroutine in QCLL. Finally, we explain QCLL.
Note that a PYTHON implementation of QCLL is available at
our GitHub repository [45].

A. Quantum circuit learning

Here, we introduce the QCL framework proposed by
Mitarai et al. [26]. In supervised learning, an algorithm

is given a training dataset D = {(xn, yn)}N
n=1 of N pairs of

D-dimensional real input vectors xn ∈ RD and target outputs
yn. The outputs yn take continuous or discrete values in the
case of regression or classification. The algorithm is required
to predict the target output for a new input vector xnew ∈ RD.
In QCL, the prediction model is constructed using a quantum
circuit with multiple learnable parameters as follows [see also
Fig. 1(a)].

(1) Encode input vectors xn (n = 1, . . . , N) into quantum
states |ψin(xn)〉 = Uenc(xn)|0〉⊗Q by applying unitary gates
Uenc(xn) to the initialized state |0〉⊗Q.

(2) Apply a θ -parametrized unitary U (θ) to the states
|ψin(xn)〉 and generate the output states |ψout (xn, θ)〉 =
U (θ)|ψin(xn)〉.

(3) Measure the expectation values of a predefined observ-
able B for the output states |ψout (xn, θ)〉. Using a predefined
function F (·), a scaling parameter a, and an intercept param-
eter b, the predictions from this machine-learning model are
defined as

ŷn = F (a〈ψout (xn, θ)|B|ψout (xn, θ)〉 + b). (1)

(4) Minimize the cost function

C(a, b, θ) =
N∑

n=1
E (yn, ŷn) (2)

with respect to the parameters (a, b, θ), where E (·, ·) : R ×
R → R is a function to measure the prediction error.

(1) Make a prediction for a new input vector xnew by
computing

F (a〈ψout (xnew, θ)|B|ψout (xnew, θ)〉 + b). (3)

In step 1 above, the input vectors are nonlinearly mapped
into a 2Q-dimensional Hilbert space, where Q is the number
of qubits used for encoding. In Mitarai et al. [26], the unitary
gates Uenc(xn) were constructed using rotations of individ-
ual qubits around the y axis. Following their procedure, in
this paper, we treat a case in which a given input vector

062411-2

FAST AND SCALABLE CLASSICAL MACHINE-LEARNING … PHYSICAL REVIEW A 104, 062411 (2021)

x = (x1, . . . , xD)T ∈ RD is encoded in

|ψin(x)〉 = ⊗D
d=1

{⊗Qd
qd =1(xd ,

√
1 − xd

2)
T}

, (4)

where Qd is the number of qubits used to encode the dth ele-
ment of the vector x. Note that Q = ∑D

d=1 Qd . The elements
of the vector |ψin(x)〉 include high-order polynomials such as
xd

Qd ; this introduces nonlinearity into the prediction model.
In step 2, a parametrized unitary transformation U (θ) is

applied to the states prepared in step 1. In Mitarai et al. [26],
this unitary transformation was constructed as a chain of rota-
tions of individual qubits and random unitary transformations.
Following their procedure here, we assume a case where U (θ)
takes the form

U (θ) = RM (θ)UMRM−1(θ)UM−1 · · · R1(θ)U1, (5)

where M is the depth of the quantum circuit,
R1(θ), . . . , RM (θ) are rotations of individual qubits the angles
of which are specified by elements of θ , and U1, . . . ,UM are
random unitary transformations. As a result, each element of
the output vector (i.e., the output state) |ψout (x, θ)〉 has the
form of the inner product between |ψin(x)〉 and a unit vector
randomly parametrized by θ . In other words, when we denote
|ψin(x)〉 and |ψout (x, θ)〉 by

vin(x) = (vin,1(x), . . . , vin,2Q (x))T

and

vout (x, θ) = (vout,1(x, θ), . . . , vout,2Q (x, θ))T,

each element of |ψout (x, θ)〉 has the form

vout,i(x, θ) = ui(θ) · vin(x) (i = 1, . . . , 2Q), (6)

where ui(θ) is a unit vector randomly parametrized by θ .
The predefined function F (·) and the loss function E (·, ·)

used in steps 3 and 4 are manually defined. In a regression
task, F (x) = x and E (y, ŷ) = (y−ŷ)2 are often used. In a clas-
sification task, the softmax and cross-entropy functions are
often used. To minimize the cost function C(a, b, θ), gradient-
based methods can be used [26], which was also adopted in
our numerical simulation.

B. Count sketch technique

To approximately compute the inner product in the 2Q-
dimensional Hilbert space in an efficient manner on classical
computers, we use a technique called “count sketch.” In this
section, we assume that we want to approximate the inner
product of K-dimensional vectors.

Definition 1. Given two independent hash functions h :
{1, . . . , K} → {1, . . . , K ′} and s : {1, . . . , K} → {+1,−1},
the K ′ × K matrix the (k′, k) entry of which is{

s(k) (h(k) = k′)

0 (otherwise)
(7)

is called a count sketch matrix.
Note that, because h and s are hash functions with ran-

domness, the count sketch matrix specified by h and s is a
random matrix. According to convention, a sample (i.e., an

observation) drawn from a count sketch matrix is also called a
count sketch matrix in this paper; however, the interpretation
is clear from the context. An example of a count sketch matrix
is shown in Fig. 1(b).

Definition 2. Given a K ′ × K count sketch matrix C, the
count sketch of a K-dimensional column vector v is defined
as the K ′-dimensional vector Cv.

Count sketches are random vectors. According to conven-
tion, the random vector Cv and a sample (i.e., an observation)
from Cv are both called the count sketch of v.

Count sketch matrices have the property shown in Theorem
1; this allows us to use count sketches as compact representa-
tions of high-dimensional vectors.

Theorem 1. We assume that C is a K ′ × K count sketch
matrix. Given two K-dimensional column vectors v1 and v2,

EC[Cv1 · Cv2] = v1 · v2, (8)

VarC[Cv1 · Cv2] � 1

K ′ {(v1 · v2)2 + ‖v1‖2‖v2‖2}, (9)

where Ex[f (x)] and Varx[f (x)] denote the expectation and
variance, respectively, of a function f (x) with respect to a
random variable x.

Proof. See [37,39].
Using the above property, we can approximate v1 · v2 by

computing Cv1 · Cv2. Once we obtain Cv1 and Cv2, this com-
putation can be performed in O(K ′) time because Cv1 and
Cv2 are K ′-dimensional vectors. This computational time is
independent of the original dimensionality K of the space.
Note that, because vectors we primarily treat in later sections
are unit vectors, the variance (i.e., the approximation error)
is always smaller than 2/K ′ in such a case. Based on the
numerical results in a previous study [37], K ′ was set to 100
in our numerical experiments.

In QCL, we treat vectors that take the form v = ⊗Q
q=1vq

[see Eq. (4)]. In the following, we describe an algorithm to
compute the count sketch of a vector with this form in a
computationally efficient manner.

Theorem 2. We assume that a Dprod-dimensional vector v
can be represented by

v = ⊗Q
q=1vq, (10)

where vq (q = 1, . . . , Q) are Dq-dimensional vectors, and we
assume that C and Cq are K ′ × Dprod and K ′ × Dq count sketch
matrices, respectively. The random vector Cv and the convo-
lution of the random vectors C1v1, . . . ,CQvQ follow the same
distribution.

Proof. See [38].
Because the convolution of vectors can be computed using

a fast Fourier transform (FFT), Cv in the above can be com-
puted as follows.

(1) Compute Cqvq (q = 1, . . . , Q), where vq are given
Dq-dimensional vectors and Cq are K ′ × Dq count sketch ma-
trices.

(2) Compute FFT(Cqvq) using FFT.
(3) Compute FFT(C1v1) 	 · · · 	 FFT(CQvQ) where 	 de-

notes the elementwise product.
(4) Compute FFT−1(FFT(C1v1) 	 · · · 	 FFT(CQvQ)).

Return this as the output of the algorithm.

062411-3

NAOKO KOIDE-MAJIMA AND KEI MAJIMA PHYSICAL REVIEW A 104, 062411 (2021)

According to convention, we call this algorithm “ten-
sor sketch” in this paper. Note that the computation of
Cqvq (q = 1, . . . , Q) in step 1 of the tensor sketch algorithm
takes O[K ′(D1 + D2 + · · · + DQ)] computational time. This
is smaller than O(K ′D1D2 · · · DQ), which is the time for direct
computation, and the computational time for steps 2–4 does
not depend on the dimensionality of vq (i.e., Dq).

Among variants of the FFT algorithm, we used the Cooley-
Tukey algorithm for our numerical experiments, which
exactly computes the discrete Fourier transform of a given
sequence without approximation.

C. Quantum circuitlike learning

Using the count sketch technique and the tensor sketch
algorithm, we present a machine-learning algorithm with sim-
ilar properties to QCL. As in QCL, we assume that the
algorithm is given a training dataset D = {(xn, yn)}N

n=1. The
hyperparameter corresponding to the number of qubits used
for encoding the dth element of the input vectors is denoted
by Qd .The QCLL algorithm is as follows [see also Fig. 1(c)].

(1) Draw Q = ∑D
d=1 Qd samples from a K ′ × 2 count

sketch matrix, and compute the count sketches of vin(xn) =
⊗D

d=1{⊗Qd
q=1(xnd ,

√
1 − xnd

2)
T} using the tensor sketch algo-

rithm. Denote the resultant count sketches by v̂in(xn).
(2) Draw P samples from a K ′ × 2 count sketch

matrix, and compute the count sketch of u(θ) = ⊗P
p=1

(cos θp, sin θp)T using the tensor sketch algorithm. Repeat
this I times, and denote the resultant count sketches by
ûi(θ) (i = 1, . . . , I). Then, compute v̂out,i(xn, θ) = ûi(θ) ·
v̂in(xn), and denote them collectively by v̂out (xn, θ) =
(v̂out,1(xn, θ), . . . , v̂out,I (xn, θ)).

(3) Using a predefined Hermitian matrix B, compute
v̂out (xn, θ)†Bv̂out (xn, θ). Using a predefined function F (·), a
scaling parameter a, and an intercept parameter b, the predic-
tions from this machine-learning model are defined as

ŷn = F (av̂out (xn, θ)†Bv̂out (xn, θ) + b). (11)

(4) Minimize the cost function

C(a, b, θ) =
N∑

n=1
E (yn, ŷn) (12)

with respect to the parameters (a, b, θ), where E (·, ·) : R ×
R → R is a function to measure the prediction error.

(5) Make a prediction for a new input vector xnew by
computing

F (av̂out (xnew, θ)†Bv̂out (xnew, θ) + b). (13)

In step 1 of the above algorithm, 2Q-dimensional vec-

tors ⊗D
d=1{⊗Qd

q=1(xnd ,
√

1 − xnd
2)

T} are encoded as the K ′-
dimensional vectors v̂in(xn). According to Theorem 1, the
values of the norm of v̂in(xn) are 1.0 on average and, for an
arbitrary pair of input vectors xn1 and xn2 , v̂in(xn1) · v̂in(xn2)
is equal to vin(xn1) · vin(xn2) on average. This indicates that
the pairwise similarities between input vectors in the 2Q-
dimensional Hilbert space are approximately preserved in the
K ′-dimensional space constructed by this step.

In step 2, each element of v̂out (xn, θ) takes the same form
as in Eq. (6) of QCL. The ith element of v̂out (xn, θ) can be

written as

v̂out,i(xn, θ) = ûi(θ) · v̂in(xn) (i = 1, . . . , I). (14)

According to Theorem 1, on average, ûi(θ) is a unit vector
randomly parametrized by θ , which has the same property
as ui(θ) in Eq. (6) of QCL. It should be noted that, because
randomly sampled different count sketch matrices are used
to produce ûi(θ) and v̂in(xn), v̂out (xn, θ) is generally not a
separable state vector. To introduce more flexible random
parametrization into QCLL, one can optionally insert a ran-
domly sampled unitary matrix in Eq. (14) as follows:

v̂out,i(xn, θ) = ûi(θ)†Rv̂in(xn) (i = 1, . . . , I), (15)

where R is a random unitary matrix. For simplicity, we
adopted Eq. (14) in our main experiments because almost the
same results were observed in the comparison between QCLL
using Eq. (14) and that using Eq. (15) (see the Appendix
for details). Further discussion on the comparison between
Eqs. (14) and (15) is given in Sec. IV.

Note that steps 3–5 of QCLL are completely the same as
those of QCL if we replace v̂out (·, ·) with |ψout (·, ·)〉. Using
the tensor sketch algorithm, we can perform QCLL in O(Q)
computational time.

Similar to QCL, we can use gradient-based methods to
minimize the cost function in step 4 of QCLL. To com-
bine QCL with gradient-based methods, inspired by Li et al.
[46], Mitarai et al. [26] proposed a method to calculate
∂ ŷn/∂θp. Similar to their approach, in QCLL, we can calculate
∂ v̂out,i(xn, θ)/∂θp by evaluating v̂out,i(xn, θ + �θ), where �θ

is a vector the pth element of which is π/2 and the other
elements of which are zero. By combining this and the chain
rule, we can calculate the derivative of the cost function in
step 4 of QCLL.

III. RESULTS

In this section, we demonstrate that the behavior and pre-
diction performance of QCLL are similar to those of QCL
using numerical simulations. In the first subsection, we com-
pared QCL and QCLL on the machine-learning tasks used in
the original QCL study [26]. In the second subsection, the
algorithms were compared using representative benchmark
datasets from the field of machine learning. In the final sub-
section, we conducted a complementary analysis to evaluate
the ability of QCLL to approximate QCL.

A. Behavior for simulation data

Following the numerical simulations in Mitarai et al. [26],
we treat the same regression and classification tasks using
QCL and QCLL. First, we performed a regression analysis
where the functions f (x) = x2, ex, sin x, and |x| were learned
(estimated) from a given training dataset D = {(xn, yn)}100

n=1.
Following the procedure in Mitarai et al. [26], the input vec-
tors xn are one-dimensional, and were randomly sampled from
the range [−1, 1]. The target outputs yn were set to f (xn).
The number of qubits (Q) was set to 6, and the depth of
the quantum circuit (M) was set to 6. A matrix the first five
diagonal entries of which are 1 and the other entries of which
are zero was used as the predefined Hermitian matrix B. As

062411-4

FAST AND SCALABLE CLASSICAL MACHINE-LEARNING … PHYSICAL REVIEW A 104, 062411 (2021)

)b()a(

(c) (d)

Training samples
QCL (final)
QCL (initial)

QCLL (final)
QCLL (initial)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1.0

0.5

0.0

-0.5

-1.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

x

y

x

y

x

y

x

y

FIG. 2. Demonstration of the performances of QCL and QCLL
on regression tasks. As regression tasks, four functions (a) y = x2, (b)
y = ex , (c) y = sin x, and (d) y = |x| were learned (estimated). Out-
puts from QCL (orange) and QCLL (red) prior to training (dashed
line) and after training (solid line) are shown together with the
training samples (green dots).

the parametrized unitary matrix U (θ) of QCL, we used the
form of Eq. (5) with

Rm(θ) = ⊗6
q=1

(
cos (θ6(m−1)+q) − sin (θ6(m−1)+q)
sin (θ6(m−1)+q) cos (θ6(m−1)+q)

)

(m = 1, . . . , M)

and random unitary matrices Um. Using the procedure applied
in a previous study [47], we sampled Um from the unitary
group U (26) uniformly by orthonormalizing complex vectors
the components of which were sampled from the standard
normal distribution. The number of learnable parameters was
exactly the same for QCL and QCLL. In other words, θ

in both QCL and QCLL is a 36-dimensional vector in this
numerical simulation. F (x) = x and E (y, ŷ) = (y−ŷ)2 were
adopted as the predefined function F (·) and the loss function
E (·, ·), respectively. To minimize the cost function, we used a
gradient-based method, SLSQP [48]. The number of iterations
was set to 100. To avoid local minima of the cost function, for
the same training data, we repeated the SLSQP algorithm ten
times with different initializations and the parameters (a, b, θ)
showing the lowest cost function value were used for the
prediction. The results are shown in Fig. 2. The outputs of
QCL and QCLL were fitted to the target functions with similar
degrees.

1.0

0.0

-1.0
-1.0 0.0 1.0

class 2class 1
1.0

class 1 class 2

0.0

-1.0
-1.0 0.0 1.0

QCL QCLL)c()b(

(a)

1.0

0.0

-1.0
-1.0 1.0

Predictive prob.

0 0.2 0.4 0.6 0.8

1.0

0.0

-1.0
-1.0 0.0 1.0

Predictive prob.

0 0.2 0.4 0.6 0.8 1.0

Input dimension 1

In
pu

t d
im

en
si

on
 2

Input dimension 1

0.0

In
pu

t d
im

en
si

on
 2

Input dimension 1 Input dimension 1

FIG. 3. Demonstration of the performances of QCL and QCLL
on a classification task. (a) Training data in the input feature space.
The blue and red dots in the left panel indicate the training samples
for classes 1 and 2, respectively. These training data were uniformly
sampled from the colored areas in the right panel. (b) Predictive
probability from QCL after training. QCL was tuned using the train-
ing data shown in panel (a). Outputs (i.e., the predictive probability)
for individual grid points are shown. (c) Predictive probability from
QCLL after training. The formats and procedures are the same as
those in panel (b).

Next, we treated a classification task. Following the numer-
ical simulations in Mitarai et al. [26], the simple nonlinear
binary classification task shown in Fig. 3(a) was treated. The
number of training samples was 200 (100 for class 1 and 100
for class 2). To treat this binary classification problem, two
Hermitian matrices (i.e., observables) B1 and B2 were used in
step 3 of both algorithms. Here, a matrix the first five diagonal
entries of which are 1 and the other entries of which are zero
was used as B1. A matrix the sixth to tenth diagonal entries
of which are 1 and the other entries of which are zero was
used as B2. The softmax function was used as the predefined
function F (·). The cross-entropy function was used as the loss
function E (·, ·). The number of qubits used to encode each
input dimension was set to 3, and the depth of the quantum
circuit was set to 3. The same optimization method as used in
the previous regression task was used. The results are shown
in Figs. 3(b) and 3(c). QCL and QCLL show similar behavior
for this classification task.

Finally, using the same regression task, where f (x) = x2

was estimated, we investigated the dependency of the models

062411-5

NAOKO KOIDE-MAJIMA AND KEI MAJIMA PHYSICAL REVIEW A 104, 062411 (2021)

on the amount of training data and their robustness to noise. In
the analysis to investigate the dependency of the models on the
amount of training data, the number of training samples was
changed within the range from 10 to 100. In the analysis to
investigate their robustness to noise, the models were trained
with training data including Gaussian noise. The training data
were generated in the same manner as in the previous re-
gression analysis except that the target outputs yn were set
to f (xn) + εn where εn followed a Gaussian distribution with
a mean of zero and a standard deviation of σ . σ was varied
within the range from 0.0 to 0.45. To quantitatively evaluate
the prediction accuracy of a model trained with given training
data, we computed the root-mean-squared error (RMSE) be-
tween f (x) and the model prediction across points in [−1.0,
1.0]. As done in the Appendix of Mitarai et al. [26], as another
machine-learning algorithm to be compared, we trained a
simple linear regression model (i.e., ordinary least squares)

using {x6, x5
√

1 − x2, x4(1 − x2), x3
√

1 − x23
, x2(1 − x2)2

,

x
√

1 − x25
, (1 − x2)3} as basis functions, these being poly-

nomials appearing in |ψin(x)〉 of QCL and v̂in(x) of QCLL.
As in Mitarai et al. [26], we examined how much QCL and
QCLL avoided the risk of overfitting compared to this simple
regression model.

To compare the dependency of the models on the amount of
training data used, we evaluated the RMSE of each algorithm
while changing the number of training samples [Fig. 4(a)]. In
addition, to compare the robustness of the models to noise,
we evaluated the RMSE of each algorithm while changing
the level of Gaussian noise [Fig. 4(b)]. In both analyses, QCL
and QCLL showed similar RMSEs, both of which were much
lower than that of the simple linear regression. Those results
suggest that QCL and QCLL efficiently avoid the risk of
overfitting in similar manners.

B. Behavior for real benchmark datasets

We evaluated the prediction performance of QCL, QCLL,
and the linear regression using several benchmark datasets.
We conducted almost the same experiment as shown in
Fig. 4(a) while replacing the simulation data with data from
real benchmark datasets. Three representative benchmark
datasets, the Boston house-prices dataset [49], the Diabetes
dataset [50], and the Iris flower dataset [51], were used. We
performed regression analysis using the first two datasets, and
performed classification analysis using the third dataset. To
evaluate the prediction performance for independent test data,
we divided each dataset into two groups: training data and
test data. We randomly selected 20% of the samples in each
dataset and used them as the test data, with the remaining
data used as training data. The prediction error was quanti-
fied based on the RMSE for regression analysis and on the
percentage of incorrect answers for classification analysis.
To examine the ability to prevent overfitting, each machine-
learning model was fitted (trained) with randomly selected
r% of the training data, and the prediction error was then
computed with the test data. The value of r was changed
across the range of {10, 20, 30, 40, 50, 75, 100}. Boston
house-prices, Diabetes, and Iris flower datasets consist of 13,
10, and 4 input features (input variables), respectively. We

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2
-1.0 -0.5 0.0 0.5 1.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2
-1.0 -0.5 0.0 0.5 1.0

)b()a(

Training samples
QCL (final) Linear regression
QCL (initial)

QCLL (final)
QCLL (initial)

0.5
0.4
0.3
0.2
0.1
0.0

-0.1

0.6

10 20 30 40 50 75 100

R
M

S
E

Number of samples

0.20

0.15

0.10

0.05

0.00

0.25

0.00 0.10 0.20 0.30 0.40

R
M

S
E

Noise level

x

y

x

y

FIG. 4. Dependency of the models on the amount of training
data and their robustness to noise. (a) Dependency on the amount
of training data. QCL, QCLL, and a simple linear regression model
were trained with a small number of samples (N = 25, top). The
formats are the same as in Fig. 2. The root-mean-squared error
(RMSE) averaged across ten simulation repetitions is plotted as a
function of the number of training samples (bottom). (b) Robustness
to noise. The three regression models were trained with training data
including Gaussian noise (σ = 0.2, top). The formats are the same
as in Fig. 2. The RMSE averaged across ten simulation repetitions is
plotted as a function of the noise level (bottom).

picked up a pair of input features and those were fed to each
machine-learning model. The prediction error was computed
for each of all possible pairs in each dataset. For QCL and
QCLL, the number of qubits used to encode each input feature
was set to 3 and the depth of the quantum circuit was set to 6.
The other settings and procedures are the same as the previ-
ous regression or classification analysis. The linear regression
was also trained using the basis functions (polynomials) that
appear in QCL and QCLL. The RMSE and classification error
were shown as functions of the proportion of the training
data used (Fig. 5). QCL and QCLL show better prediction
performance compared with the simple linear regression.

C. Complementary analysis to examine the approximation
performance of QCLL

To quantitatively evaluate the ability of QCLL to approxi-
mate QCL, we performed a complementary analysis. In this
analysis, we computed the proportion of the functions that
QCLL can approximate among all the functions represented
by QCL as follows.

(1) Prepare a QCL model in which the learnable pa-
rameters (i.e., θ) and unitary transformations specifying the
parametrization [i.e., U1, . . . ,UM in Eq. (5)] are randomly
set. Denote the function that this QCL model represents by
fQCL(x).

062411-6

FAST AND SCALABLE CLASSICAL MACHINE-LEARNING … PHYSICAL REVIEW A 104, 062411 (2021)

QCL (final) Linear regressionQCLL (final)

Boston house-prices dataset

10 20 30 40 50 10075

Proportion of used training data (%)

10

9

8

7

6

11

R
M

S
E

(a)

80

75

70

65

60

85

R
M

S
E

Diabetes dataset

10 20 30 40 50 10075

Proportion of used training data (%)

(b)

Iris flower dataset

10 20 30 40 50 10075

Proportion of used training data (%)

40

30

20

10

0

60

50

C
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

(c)

FIG. 5. Prediction performance for benchmark datasets. (a) Prediction performance for Boston house-prices dataset. QCL, QCLL, and
a simple linear regression model were trained and tested using this dataset. The prediction error averaged across different input features
was shown as a function of the amount of the training data. Error bars indicate the standard deviation across input features. (b) Prediction
performance for the Diabetes dataset. The formats are the same as panel (a). (c) Prediction performance for the Iris dataset. The formats are
the same as panel (a) except that the classification error is plotted.

(2) Using the above QCL model, prepare a dataset D =
{(xn, yn)}100

n=1 where x1, x2, . . . , x100 are distributed in [−1,+1]
with equal spacing and yn = fQCL(xn).

(3) Prepare a QCLL model in which the count sketch
matrices are randomly set.

(4) Fit the above QCLL model to fQCL(x) by optimizing
the learnable parameters of the QCLL model using D as the
training data. Denote the resultant function by fQCLL(x).

(5) Compute the Pearson correlation coefficient between
fQCL(x) and fQCLL(x) for x distributed in [−1,+1]. Denote
the resultant correlation value by ρ.

(6) Repeat steps 1–5 a sufficient number of times (1000
times) and compute the probability that ρ is larger than a
predefined threshold ρthre (e.g., 0.90).

We referred to the probability value computed in the above
step 6 as “coverage” in this paper, and this value indicates
the proportion of the functions that QCLL can approximate
with an approximation accuracy higher than the predefined

threshold among all the functions represented by QCL. For
example, if the coverage is 100%, it indicates that QCLL
can approximate any functions represented by QCL. For all
numerical simulations reported here, the number of learnable
parameters was matched between QCL and QCLL, and this
number was varied. While setting the other settings to the
same as in Fig. 2, we plotted the coverage as a function of
the number of learnable parameters [Fig. 6(a)]. The coverage
monotonically increased with an increase in the number of
learnable parameters, and the coverage reached more than
90%, even for a high predefined threshold (ρthre = 0.99). We
also examined whether this tendency was consistently ob-
served when varying the number of qubits (i.e., Q) in QCL.
In the settings adopted in Fig. 2, the number of qubits was set
to 6. Here, we varied it from 3 to 6 and plotted the coverages
in the same manner [Fig. 6(b)]. The coverage monotonically
increased when the number of learnable parameters increased
in all cases. We also found that the coverage monotonically

)b()a(

100

80

60

40

20

C
ov

er
ag

e
(%

)

Number of learnable parameters

100

80

60

40

20

0
6 12 18 24 30 36

C
ov

er
ag

e
(%

)

Number of learnable parameters

ρthre = 0.95
ρthre = 0.90

ρthre = 0.99
Number of qubits = 5
Number of qubits = 4

Number of qubits = 6

Number of qubits = 3

6 12 18 24 30 36

FIG. 6. Approximation performance of QCLL. (a) Approximation performance of QCLL as a function of the number of learnable
parameters. To evaluate how well QCLL can approximate QCL, we compute the proportion of the functions that QCLL can approximate
with an approximation accuracy higher than a predefined threshold ρthre among all the functions represented by QCL. The resultant proportion
value is referred to as “coverage.” The coverage is plotted with three different predefined thresholds (ρthre = 0.90, 0.95, and 0.99) as a function
of the number of learnable parameters. The other settings are the same as in Fig. 2 (the number of qubits in QCL is set to 6). (b) Approximation
performance of QCLL for QCL with different numbers of qubits. The coverage is computed while the number of qubits in QCL is varied from
3 to 6. The coverages for the different numbers of qubits are shown in the same format as in panel (a). ρthre is set to 0.90.

062411-7

NAOKO KOIDE-MAJIMA AND KEI MAJIMA PHYSICAL REVIEW A 104, 062411 (2021)

1.0

0.5

0.0

-0.5

-1.0

-1.0 -0.5 0.0 0.5 1.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-1.0 -0.5 0.0 0.5 1.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2
-1.0 -0.5 0.0 0.5 1.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2
-1.0 -0.5 0.0 0.5 1.0

(a)

)d()c(

Training samples
QCL (final)
QCL (initial)

QCLL (final)
QCLL (initial)

(b)

x

y

x

y

x

y

x

y

FIG. 7. Performance of modified QCLL on regression tasks. The
formats and procedures are the same as in Fig. 2.

increased when the number of qubits increased. These results
suggest that, although QCLL cannot approximate all the func-
tions represented by QCL, QCLL can approximate a large
proportion of them, especially when QCL consists of a large
number of qubits and a large number of learnable parameters.

IV. DISCUSSION AND CONCLUSIONS

We proposed a classical machine-learning algorithm that
shares several properties with QCL. Specifically, our proposed
algorithm, QCLL, internally uses the same 2Q-dimensional
Hilbert space as that used in QCL. Despite this property,
QCLL can be run on a classical computer with a low com-
putational cost. Both algorithms also share the property of
maintaining the norm of the weight vector (i.e., coefficient
vector) at 1, which mitigates the risk of overfitting. The nu-
merical simulations show that QCLL has similar behavior and
performance to QCL on the machine-learning tasks treated
in the original QCL study. This provides a perspective from
which to consider the advantages of QCL in terms of these
properties.

While we demonstrated that QCLL shows similar predic-
tion performance to QCL in several machine-learning tasks,
it should be noted that these results are consistent with the
expectations from previous quantum machine-learning stud-
ies. Using the framework of probably approximately correct
(PAC) learning, previous studies compared the number of
training samples to achieve a given prediction performance
between quantum and classical machine-learning algorithms
with the same Vapnik-Chervonenkis (VC) dimension, and

1.0

0.0

-1.0
-1.0 0.0 1.0

class 2class 1
1.0

class 1 class 2

0.0

-1.0
-1.0 0.0 1.0

QCL QCLL)c()b(

(a)

1.0

0.0

-1.0
-1.0 1.0

Predictive prob.

0 0.2 0.4 0.6 0.8

1.0

0.0

-1.0
-1.0 0.0 1.0

Predictive prob.

0 0.2 0.4 0.6 0.8 1.0

Input dimension 1

In
pu

t d
im

en
si

on
 2

Input dimension 1

0.0

In
pu

t d
im

en
si

on
 2

Input dimension 1 Input dimension 1

FIG. 8. Performance of the modified QCLL applied on a classi-
fication task. The formats and procedures are the same as in Fig. 3.

proved that their difference is only up to polynomial with
respect to their VC dimension [41–44]. Thus, theoretically, for
any given quantum machine-learning algorithm, there exists a
classical machine-learning algorithm with similar prediction
performance. In our numerical experiments, the prediction er-
ror of QCL was similar to but slightly lower than that of QCLL
(Figs. 4 and 5). Because the above-mentioned PAC learning
framework assumes that the training data are noiseless, this
observed difference might be explained by the effect of noise
on the training data [52], as well as the polynomial factor
expected by the PAC learning framework.

Similarly, our results do not contradict recent literature on
time complexity because (1) QCL’s computational advantage
over classical algorithms has not been clear or proven and
(2) even for quantum machine-learning algorithms that had
been believed to have exponential speedup (e.g., quantum
algorithm for linear equations [53], quantum principal com-
ponent analysis [54], and quantum recommendation systems
[55]), classical counterparts only polynomially slower than
those algorithms were recently proposed [56–60]. An attempt
to construct a computationally efficient classical algorithm
that directly approximates QCL may be helpful for further
characterization of QCL.

In contrast to the quantum advantage in standard machine-
learning tasks, a series of recent studies has suggested that
quantum machine-learning algorithms can be exponentially
more efficient than their classical counterparts in quantum
state tomography [61] while acknowledging the power of the

062411-8

FAST AND SCALABLE CLASSICAL MACHINE-LEARNING … PHYSICAL REVIEW A 104, 062411 (2021)

)b()a(

Training samples
QCL (final) Linear regression
QCL (initial)

QCLL (final)
QCLL (initial)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2
-1.0 -0.5 0.0 0.5 1.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2
-1.0 -0.5 0.0 0.5 1.0

0.5
0.4
0.3
0.2
0.1
0.0

-0.1

0.6

10 20 30 40 50 75 100

R
M

S
E

Number of samples

0.20

0.15

0.10

0.05

0.00

0.25

0.00 0.10 0.20 0.30 0.40

R
M

S
E

Noise level

yy

x x

FIG. 9. Dependency of the modified QCLL on the amount of
training data and its robustness to noise. The formats and procedures
are the same as in Fig. 4.

classical machine-learning algorithms [62,63]. The quantum
advantage of QCL can also be characterized by assessing
its efficiency in the context of quantum state tomography
[64].

To make the random parametrization of the QCLL model
more flexible, we can optionally use a random unitary matrix
in QCLL by adopting Eq. (15). Such a modification might lead
to better prediction performance in machine-learning tasks.
We tested this in our preliminary experiments and found that
the performance and behavior of QCLL with Eq. (15) are
almost the same as those of the original QCLL using Eq. (14)
(see the Appendix). Thus, for simplicity, we adopted QCLL
along with Eq. (14) in the main part of this paper.

To approximate the inner product in the high-dimensional
Hilbert space, we introduced two statistical techniques, count

sketch and tensor sketch. For a similar purpose, several
other approximation techniques have been developed in the
machine-learning field. The pioneering work by Rahimi and
Recht [65] first presented a random projection-based al-
gorithm to approximate the inner product associated with
shift-invariant kernels (e.g., Gaussian kernel). While their
original method can be applied only to shift-invariant kernels,
subsequent studies extended this technique to generalized ra-
dial basis kernels [66], polynomial kernels [67], and additive
kernels [68,69]. Because random projections are also utilized
in our method, our method can be regarded as an extension of
the above line of work for the inner product of vectors in the
form of Eq. (10).

While we introduced the count and tensor sketch tech-
niques to create QCLL in this paper, their application to
quantum simulation might also be possible. For this purpose,
although out of the scope of this paper, investigating what
class of quantum states can be efficiently treated by such
sketch algorithms remains an important challenge, which may
provide insights into their properties.

ACKNOWLEDGMENTS

The authors would like to thank Shinji Nishimoto and
Chikako Koide for preparing the environment for the analysis,
and Kazuho Watanabe and Kohei Hayashi for helpful com-
ments on the paper. This research was supported by Japan
Society for the Promotion of Science KAKENHI Grant No.
20K16465; Ministry of Education, Culture, Sports, Science,
and Technology, Quantum Leap Flagship Program (Q-LEAP)
Grant No. JPMXS01 20330644; Japan Science and Technol-
ogy Agency (JST) ERATO Grant No. JPMJER1801; and JST
PRESTO Grant No. JPMJPR2128.

APPENDIX: EFFECT OF DIFFERENT CHOICES
OF RANDOM PARAMETRIZATION

Using Eq. (15) instead of Eq. (14) in QCLL, we performed
the analyses the same as in Figs. 2–4 and 6. The results are
shown in Figs. 7–10. Almost the same behavior and perfor-
mance were observed for QCLL with Eq. (14) and QCLL with
Eq. (15).

100

80

60

40

20

0
6 12 18 24 30 36

C
ov

er
ag

e
(%

)

Number of learnable parameters

100

80

60

40

20

6 12 18 24 30 36

C
ov

er
ag

e
(%

)

Number of learnable parameters

)b()a(

ρthre = 0.95
ρthre = 0.90

ρthre = 0.99
Number of qubits = 5
Number of qubits = 4

Number of qubits = 6

Number of qubits = 3

FIG. 10. Approximation performance of the modified QCLL. The formats and procedures are the same as in Fig. 6.

062411-9

NAOKO KOIDE-MAJIMA AND KEI MAJIMA PHYSICAL REVIEW A 104, 062411 (2021)

[1] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[2] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A varia-
tional eigenvalue solver on a photonic quantum processor, Nat.
Commun. 5, 4213 (2014).

[3] J. R. McClean, K. J. Sung, I. D. Kivlichan, Y. Cao, C. Dai, E. S.
Fried, C. Gidney, B. Gimby, P. Gokhale, T. Häner, T. Hardikar,
V. Havlíček, O. Higgott, C. Huang, J. Izaac, Z. Jiang, X. Liu, S.
McArdle, M. Neeley, T. O’Brien, B. O’Gorman, I. Ozfidan, M.
D. Radin, J. Romero, N. Rubin, N. P. D. Sawaya, K. Setia, S.
Sim, D. S. Steiger, M. Steudtner, Q. Sun, W. Sun, D. Wang, F.
Zhang, and R. Babbush, OpenFermion: The electronic structure
package for quantum computers, arXiv:1710.07629.

[4] B. Bauer, D. Wecker, A. J. Millis, M. B. Hastings, and M.
Troyer, Hybrid Quantum-Classical Approach to Correlated Ma-
terials, Phys. Rev. X 6, 031045 (2016).

[5] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J.
M. Chow, and J. M. Gambetta, Hardware-efficient variational
quantum eigensolver for small molecules and quantum mag-
nets, Nature (London) 549, 242 (2017).

[6] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approxi-
mate optimization algorithm, arXiv:1411.4028.

[7] E. Farhi and A. W. Harrow, Quantum supremacy
through the quantum approximate optimization algorithm,
arXiv:1602.07674.

[8] J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M.
Block, B. Bloom, S. Caldwell, N. Didier, E. S. Fried, S. Hong,
P. Karalekas, C. B. Osborn, A. Papageorge, E. C. Peterson,
G. Prawiroatmodjo, N. Rubin, C. A. Ryan, D. Scarabelli, M.
Scheer, E. A. Sete, P. Sivarajah, R. S. Smith, A. Staley, N.
Tezak, W. J. Zeng, A. Hudson, B. R. Johnson, M. Reagor, M.
P. da Silva, and C. Rigetti, Unsupervised machine learning on a
hybrid quantum computer, arXiv:1712.05771.

[9] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Parame-
terized quantum circuits as machine learning models, Quantum
Sci. Technol. 4, 043001 (2019).

[10] M. Benedetti, D. Garcia-Pintos, O. Perdomo, V. Leyton-Ortega,
Y. Nam, and A. Perdomo-Ortiz, A generative modeling ap-
proach for benchmarking and training shallow quantum circuits,
Npj Quantum Inf. 5, 45 (2019).

[11] M. Benedetti, E. Grant, L. Wossnig, and S. Severini, Adversar-
ial quantum circuit learning for pure state approximation, New
J. Phys. 21, 043023 (2019).

[12] Y. Du, M.-H. Hsieh, T. Liu, and D. Tao, The expressive power
of parameterized quantum circuits, arXiv:1810.11922.

[13] X. Gao, Z.-Y. Zhang, and L.-M. Duan, A quantum machine
learning algorithm based on generative models, Sci. Adv. 4,
eaat9004 (2018).

[14] L. Cincio, Y. Subaşı, A. T. Sornborger, and P. J. Coles, Learn-
ing the quantum algorithm for state overlap, New J. Phys. 20,
113022 (2018).

[15] E. Farhi and H. Neven, Classification with quantum neural
networks on near term processors, arXiv:1802.06002.

[16] M. Schuld and N. Killoran, Quantum Machine Learning
in Feature Hilbert Spaces, Phys. Rev. Lett. 122, 040504
(2019).

[17] W. Huggins, P. Patil, B. Mitchell, K. B. Whaley, and E. M.
Stoudenmire, Towards quantum machine learning with tensor
networks, Quantum Sci. Technol. 4, 024001 (2019).

[18] J.-G. Liu and L. Wang, Differentiable learning of quantum
circuit born machines, Phys. Rev. A 98, 062324 (2018).

[19] M. Schuld, A. Bocharov, K. Svore, and N. Wiebe, Circuit-
centric quantum classifiers, arXiv:1804.00633.

[20] M. Fanizza, A. Mari, and V. Giovannetti, Optimal univer-
sal learning machines for quantum state discrimination, IEEE
Trans. Inf. Theory 65, 5931 (2019).

[21] M. Watabe, K. Shiba, M. Sogabe, K. Sakamoto, and T. Sogabe,
Quantum circuit parameters learning with gradient descent us-
ing backpropagation, arXiv:1910.14266.

[22] P.-L. Dallaire-Demers and N. Killoran, Quantum generative
adversarial networks, Phys. Rev. A 98, 012324 (2018).

[23] I. Cong, S. Choi, and M. D. Lukin, Quantum convolutional
neural networks, Nat. Phys. 15, 1273 (2019).

[24] K. Fujii and K. Nakajima, Harnessing Disordered-Ensemble
Quantum Dynamics for Machine Learning, Phys. Rev. Appl.
8, 024030 (2017).

[25] S. Ghosh, A. Opala, M. Matuszewski, T. Paterek, and T. C.
H. Liew, Quantum reservoir processing, Npj Quantum Inf. 5,
(2019).

[26] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Quantum
circuit learning, Phys. Rev. A 98, 032309 (2018).

[27] S. Lloyd and C. Weedbrook, Quantum Generative Adversarial
Learning, Phys. Rev. Lett. 121, 040502 (2018).

[28] J. Zeng, Y. Wu, J.-G. Liu, L. Wang, and J. Hu, Learning and
inference on generative adversarial quantum circuits, Phys. Rev.
A 99, 052306 (2019).

[29] J. Romero and A. Aspuru-Guzik, Variational quantum gen-
erators: generative adversarial quantum machine learning for
continuous distributions, arXiv:1901.00848.

[30] M. Negoro, K. Mitarai, K. Fujii, K. Nakajima, and M.
Kitagawa, Machine learning with controllable quantum dynam-
ics of a nuclear spin ensemble in a solid, arXiv:1806.10910.

[31] T. Kusumoto, K. Mitarai, K. Fujii, M. Kitagawa, and M.
Negoro, Experimental quantum kernel machine learning with
nuclear spins in a solid, arXiv:1911.12021.

[32] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A.
Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning
with quantum-enhanced feature spaces, Nature (London) 567,
209 (2019).

[33] D. Zhu, N. M. Linke, M. Benedetti, K. A. Landsman, N.
H. Nguyen, C. H. Alderete, A. Perdomo-Ortiz, N. Korda, A.
Garfoot, C. Brecque, L. Egan, O. Perdomo, and C. Monroe,
Training of quantum circuits on a hybrid quantum computer,
Sci. Adv. 5, eaaw9918 (2019).

[34] C. Zoufal, A. Lucchi, and S. Woerner, Quantum generative
adversarial networks for learning and loading random distribu-
tions, Npj Quantum Inf. 5, 103 (2019).

[35] H. Situ, Z. He, Y. Wang, L. Li, and S. Zheng, Quantum genera-
tive adversarial network for discrete data, arXiv:1807.01235.

[36] L. Hu, S.-H. Wu, W. Cai, Y. Ma, X. Mu, Y. Xu, H. Wang, Y.
Song, D.-L. Deng, C.-L. Zou, and L. Sun, Quantum genera-
tive adversarial learning in a superconducting quantum circuit,
Sci. Adv. 5, eaav2761 (2019).

[37] N. Pham and R. Pagh, Fast and scalable polynomial kernels via
explicit feature maps, in Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining: KDD ’13 (ACM, Chicago, 2013), p. 239.

[38] R. Pagh, Compressed matrix multiplication, ACM Trans.
Comput. Theory 5, 1 (2013).

062411-10

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/ncomms5213
http://arxiv.org/abs/arXiv:1710.07629
https://doi.org/10.1103/PhysRevX.6.031045
https://doi.org/10.1038/nature23879
http://arxiv.org/abs/arXiv:1411.4028
http://arxiv.org/abs/arXiv:1602.07674
http://arxiv.org/abs/arXiv:1712.05771
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1038/s41534-019-0157-8
https://doi.org/10.1088/1367-2630/ab14b5
http://arxiv.org/abs/arXiv:1810.11922
https://doi.org/10.1126/sciadv.aat9004
https://doi.org/10.1088/1367-2630/aae94a
http://arxiv.org/abs/arXiv:1802.06002
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1088/2058-9565/aaea94
https://doi.org/10.1103/PhysRevA.98.062324
http://arxiv.org/abs/arXiv:1804.00633
https://doi.org/10.1109/TIT.2019.2916646
http://arxiv.org/abs/arXiv:1910.14266
https://doi.org/10.1103/PhysRevA.98.012324
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1103/PhysRevApplied.8.024030
https://doi.org/10.1038/s41534-019-0149-8
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevLett.121.040502
https://doi.org/10.1103/PhysRevA.99.052306
http://arxiv.org/abs/arXiv:1901.00848
http://arxiv.org/abs/arXiv:1806.10910
http://arxiv.org/abs/arXiv:1911.12021
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1126/sciadv.aaw9918
https://doi.org/10.1038/s41534-019-0223-2
http://arxiv.org/abs/arXiv:1807.01235
https://doi.org/10.1126/sciadv.aav2761
https://doi.org/10.1145/2493252.2493254

FAST AND SCALABLE CLASSICAL MACHINE-LEARNING … PHYSICAL REVIEW A 104, 062411 (2021)

[39] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J.
Attenberg, Feature hashing for large scale multitask learning,
in Proceedings of the 26th Annual International Conference on
Machine Learning: ICML ’09 (ACM, Montreal, 2009), pp. 1–8.

[40] M. Charikar, K. Chen, and M. Farach-Colton, Finding frequent
items in data streams, Theor. Comput. Sci. 312, 3 (2004).

[41] R. A. Servedio and S. J. Gortler, Equivalences and separations
between quantum and classical learnability, SIAM J. Comput.
33, 1067 (2004).

[42] A. Atici and R. A. Servedio, Improved bounds on quantum
learning algorithms, Quantum Inf. Process. 4, 355 (2005).

[43] S. Arunachalam and R. de Wolf, Optimal quantum sample com-
plexity of learning algorithms, arXiv:1607.00932.

[44] C. Zhang, An improved lower bound on query complexity for
quantum PAC learning, Inf. Process. Lett. 111, 40 (2010).

[45] https://github.com/nkmjm/.
[46] J. Li, X. Yang, X. Peng, and C.-P. Sun, Hybrid Quantum-

Classical Approach to Quantum Optimal Control, Phys. Rev.
Lett. 118, 150503 (2017).

[47] F. Mezzadri, How to generate random matrices from the classi-
cal compact groups, arXiv:Math-Ph/0609050.

[48] D. Kraft, A software package for sequential quadratic program-
ming, Report No.: DFVLR-FB–88-28 (Wiss. Berichtswesen d.
DFVLR, 1988), http://www.opengrey.eu/item/display/10068/
147127.

[49] D. Harrison and D. L. Rubinfeld, Hedonic housing prices and
the demand for clean air, J. Environ. Econ. Manage. 5, 81
(1978).

[50] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Least angle
regression, Ann. Statist. 32, 407 (2004).

[51] R. A. Fisher, The use of multiple measurements in taxonomic
problems, Ann. Eugenics 7, 179 (1936).

[52] D. Ristè, M. P. da Silva, C. A. Ryan, A. W. Cross, A. D.
Córcoles, J. A. Smolin, J. M. Gambetta, J. M. Chow, and B.
R. Johnson, Demonstration of quantum advantage in machine
learning, Npj Quantum Inf. 3, 16 (2017).

[53] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum Algorithm
for Linear Systems of Equations, Phys. Rev. Lett. 103,150502
(2009).

[54] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum principal
component analysis, Nat. Phys. 10, 631 (2014).

[55] I. Kerenidis and A. Prakash, Quantum recommendation sys-
tems, arXiv:1603.08675.

[56] E. Tang, A quantum-inspired classical algorithm for recom-
mendation systems, in Proceedings of the 51st Annual ACM

SIGACT Symposium on Theory of Computing (ACM, Phoenix,
AZ, 2019), pp. 217–228.

[57] E. Tang, Quantum-inspired classical algorithms for
principal component analysis and supervised clustering,
arXiv:1811.00414.

[58] E. Tang, Quantum Principal Component Analysis Only
Achieves an Exponential Speedup Because of Its State Prepara-
tion Assumptions, Phys. Rev. Lett. 127, 060503 (2021).

[59] N.-H. Chia, A. Gilyén, T. Li, H.-H. Lin, E. Tang, and
C. Wang, Sampling-based sublinear low-rank matrix arith-
metic framework for dequantizing quantum machine learning,
in Proceedings of the 52nd Annual ACM SIGACT Sym-
posium on Theory of Computing (ACM, Chicago, 2020),
pp. 387–400.

[60] A. Gilyén, S. Lloyd, and E. Tang, Quantum-inspired low-rank
stochastic regression with logarithmic dependence on the di-
mension, arXiv:1811.04909.

[61] H.-Y. Huang, R. Kueng, and J. Preskill, Information-Theoretic
Bounds on Quantum Advantage in Machine Learning, Phys.
Rev. Lett. 126, 190505 (2021).

[62] H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many prop-
erties of a quantum system from very few measurements, Nat.
Phys. 16, 1050 (2020).

[63] H.-Y. Huang, R. Kueng, G. Torlai, V. V. Albert, and J. Preskill,
Provably efficient machine learning for quantum many-body
problems, arXiv:2106.12627.

[64] S. Aaronson, Shadow tomography of quantum states, in Pro-
ceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing (ACM, Los Angeles, 2018), pp. 325–338.

[65] A. Rahimi and B. Recht, Random Features for Large-Scale
Kernel Machines, Advances in Neural Information Processing
Systems, edited by J. Platt, D. Koller, Y. Singer, and S. Roweis
(Curran Associates, Inc., 2008), Vol. 20.

[66] S. Vempati, A. Vedaldi, A. Zisserman, and C. V. Jawahar, Gen-
eralized RBF feature maps for efficient detection, in Procedings
of the British Machine Vision Conference 2010 (British Machine
Vision Association, Aberystwyth, 2010), pp. 2.1–2.11.

[67] P. Kar and H. Karnick, Random feature maps for dot product
kernels, arXiv:1201.6530.

[68] S. Maji and A. C. Berg, Max-margin additive classifiers for
detection, in 2009 IEEE 12th International Conference on Com-
puter Vision (IEEE, Kyoto, 2009), pp. 40–47.

[69] A. Vedaldi and A. Zisserman, Efficient additive kernels via
explicit feature maps, IEEE Trans. Pattern Anal. Mach. Intell.
34, 480 (2012).

062411-11

https://doi.org/10.1016/S0304-3975(03)00400-6
https://doi.org/10.1137/S0097539704412910
https://doi.org/10.1007/s11128-005-0001-2
http://arxiv.org/abs/arXiv:1607.00932
https://doi.org/10.1016/j.ipl.2010.10.007
https://github.com/nkmjm/
http://
https://doi.org/10.1103/PhysRevLett.118.150503
http://arxiv.org/abs/arXiv:Math-Ph/0609050
http://www.opengrey.eu/item/display/10068/147127
https://doi.org/10.1016/0095-0696(78)90006-2
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1038/s41534-017-0017-3
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/nphys3029
http://arxiv.org/abs/arXiv:1603.08675
http://arxiv.org/abs/arXiv:1811.00414
https://doi.org/10.1103/PhysRevLett.127.060503
http://arxiv.org/abs/arXiv:1811.04909
https://doi.org/10.1103/PhysRevLett.126.190505
https://doi.org/10.1038/s41567-020-0932-7
http://arxiv.org/abs/arXiv:2106.12627
http://arxiv.org/abs/arXiv:1201.6530
https://doi.org/10.1109/TPAMI.2011.153

