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Evaluating states in trapped ions with local correlation between internal
and motional degrees of freedom
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We propose and demonstrate a scalable scheme for the simultaneous determination of internal and motional
states in trapped ions with single-site resolution. The scheme is applied to the study of polaritonic excitations in
the Jaynes-Cummings-Hubbard model with trapped ions, in which the internal and motional states of the ions
are strongly correlated. We observe quantum phase crossovers of polaritonic excitations in two ions by directly
evaluating their variances per ion site. Our work establishes an essential technological method for large-scale
quantum simulations of polaritonic systems.
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I. INTRODUCTION

Quantum simulations allow us to study the properties of
many-body quantum systems that are hard to investigate with
classical computers [1]. A promising platform for realiz-
ing quantum simulations is a system of trapped ions [2,3].
Trapped ions have advantages over other systems from such
perspectives as ease of preparation and control, and we can
address individual particles with little perturbation to neigh-
boring particles.

The Jaynes-Cummings (JC) model describes the atom-field
interaction in a combined system of a two-level atom and
a quantized electric-field mode [4]. An interconnected array
of two-level atoms interacting with quantized wave modes is
known as the Jaynes-Cummings-Hubbard (JCH) model, and
related systems of coupled cavity arrays have been extensively
investigated [5–11].

The JCH model can be realized with arrays of cavity QED
systems [12,13] and of circuit QED systems [14–18], as well
as systems of trapped ions [10,19–23]. These systems can be
flexibly controlled with sets of system parameters. Therefore,
they can be considered to be attractive systems for studying
quantum many-body phenomena.

In the JCH model, quasiparticles called polaritons play an
essential role. Each polariton is represented as the superpo-
sition of an internal excitation and a photon or a motional
excitation (phonon). Polaritons are well-defined particles in
the JCH model and their total number is conserved. The
implications for understanding the JCH model are apparent
in the quantum phase transition of a JCH system between
the Mott-insulator (MI) and superfluid (SF) phases, which
are characterized by a drastic change in the polariton-number
variance per site [7].

In the case of the JCH model with trapped ions [19], each
polariton is a correlated combination of an internal excita-
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tion and a vibrational quantum (local phonon [21,22,24–31]).
Therefore, by detecting the internal and motional states, the
states of polaritons can be precisely evaluated. It is not easy to
directly measure the motional states and they should instead
first be mapped to the internal states to be detected by, e.g.,
state-dependent fluorescence detection. However, this process
destroys the internal states. The internal and motional states
cannot be simultaneously determined even if we measure the
former and the latter consecutively in this order since the
measurement of the internal states with fluorescence detection
may destroy the motional states due to photon recoil during
several fluorescence cycles.

One approach to address this is a conditional measurement
method [19,32] using levels in such ions as 40Ca+, which
has a metastable state. In this method, a random guess of the
internal states (the ground state |g〉 or the metastable state |e〉)
of a particular ion is first made. If the guess is made for the
|g〉 or |e〉 state, a carrier π pulse or no pulse, respectively,
is applied to the |g〉–|e〉 transition. Then, laser light resonant
to the transition between |g〉 and a short-lived excited state
is exposed to the ions. If the ion scatters fluorescence at
this point, the initial guess was wrong and the measurement
result is discarded. Otherwise, the initial guess was right and
the internal state is subsequently transferred back to the |g〉
state. An analysis of the motional states using a blue-sideband
(BSB) Rabi oscillation is then performed. Fourier analyses
on a series of these results give information on the motional
states and the internal states that correspond to the initial
guesses. This combined information retains the local corre-
lation between the internal and motional states in the states of
interest. This method can be applied to the case of a single
ion.

In the case of an ion chain, the concept of local vibrational
modes (local phonons) becomes approximate. Each mode can
be coupled with those in different ion sites through Coulomb
couplings. When a particular ion site is heated due to photon
recoils during fluorescence cycles, the heat is transferred to
different ion sites and eventually the motional states at those
sites may be destroyed (mutual heating among ion sites).

2469-9926/2021/104(6)/062410(11) 062410-1 ©2021 American Physical Society

https://orcid.org/0000-0001-7320-1186
https://orcid.org/0000-0002-6073-8985
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.062410&domain=pdf&date_stamp=2021-12-06
https://doi.org/10.1103/PhysRevA.104.062410


MURALIDHARAN, OHIRA, KUME, AND TOYODA PHYSICAL REVIEW A 104, 062410 (2021)

In this article, we demonstrate the measurement of local
motional states conditioned on the internal states by shelving
part of the ions to a long-lived internal state. In this method,
fluorescence cycles are not used to determine the internal
states, and the probability amplitudes that are of no interest
are simply hidden in the auxiliary long-lived internal state.
Therefore, this method does not suffer from mutual heating
among ion sites as explained above, and is applicable to the
measurement of local motional states in a multi-ion crystal.
In this work, this method is applied to determine the polariton
number and its variance in the JCH model while the system
parameters are changed. The method is scalable with respect
to the number of ion sites, i.e., the same time sequence can be
used in principle for an arbitrary number of ions in the chain.

II. JCH MODEL

The JC model [4] was initially proposed by Jaynes and
Cummings in 1963. It is a quantum optics model that de-
scribes the interaction of a two-level atom with a single
quantized mode of an optical cavity electromagnetic field. The
model is widely used in such fields as cavity QED and circuit
QED. The Hamiltonian for the JC model is given as

HJC = h̄ωâ†â + 1
2 h̄ω0σ̂z + h̄g(σ̂+â + σ̂−â†), (1)

where ω is the oscillation frequency of the electromagnetic
field, â† and â are the creation and annihilation operators,
respectively, for the quantized mode of the electromagnetic
field, ω0 is the resonance frequency of the two-level atom, σ̂z

is the Pauli operator in the z direction, g is the JC coupling
coefficient, and σ̂+ and σ̂− are the atomic raising and lowering
operators, respectively. This model introduces superposition
states corresponding to dressed atoms or polaritons and a
semi-infinite series of eigenenergies called the JC ladder [4].
It leads to such phenomena as a vacuum-field Rabi oscillation
or collapses and revivals of atomic oscillations. The analogy
between a cavity QED system and a trapped-ion system leads
to implementing the JC model in trapped-ion experiments for
quantum information processing.

When trapped ions in an ion chain with relatively tight
confinement along the radial directions [24] are used and
optical fields resonant to the red-sideband (RSB) transitions
are applied, the two-level systems in the ions interacting with
radial local phonons can be considered as an interconnected
array of JC systems, which can be described with the JCH
model. The Hamiltonian for the JCH model in a system of
two trapped ions is given as [19]

HJCH = h̄
κ

2
(â†

1â2 + â1â†
2) + h̄�

∑
j=1,2

|e j〉 〈e j |

+ h̄g
∑
j=1,2

(â†
j σ̂

−
j + â j σ̂

+
j ), (2)

where κ is the hopping rate of the radial local phonons, â†
j and

â j are the creation and annihilation operators, respectively, for
phonons at the jth ion, � is the amount of detuning of the op-
tical field from the RSB transition, |e j〉 is the internal excited
state in the jth ion, and σ+

j ≡ |e j〉 〈g j | and σ−
j ≡ |g j〉 〈e j |

are the raising and lowering operators, respectively, for the
internal states in the jth ion, where |gj〉 is the internal ground

state in the jth ion. In this JCH system, quantum phase transi-
tions between the MI and SF phases are expected to occur
[5,7]. A quantum phase transition is similar to a classical
phase transition, while the cause of the transition is directly
related to quantum fluctuations instead of such parameters as
pressure or temperature. In the case of a small number of
involved particles, as in this work with two ions, quantum
phase transitions can be more adequately termed as “quantum
phase crossovers,” implying the finite nature of the system as
well as nonabrupt transitions.

III. MI-TO-SF QUANTUM PHASE CROSSOVERS
IN THE JCH MODEL

In the JCH model, a quantum phase crossover from the
MI phase to the SF phase in a trapped-ion chain is realized
by the adiabatic transfer process [5,6]. Here, we consider
that the ions are prepared in |ψMI〉 = |e1〉 |e2〉 |0〉1 |0〉2. This
state corresponds to a ground state, the MI state, in which
the excitations are localized. The parameters � and g can
be changed by varying the frequency and amplitude of the
laser, respectively. We linearly sweep � from a negative value
to a positive one and change the amplitude (and hence g)
following a Gaussian shape. In this case, the Hamiltonian
changes time dependently and an adiabatic transfer is induced
[33]. At the final stage of this transfer, a ground state called the
SF phase is created, which has the form |ψSF〉 = |g1〉 |g2〉 ⊗
[(1/

√
2) |1〉1 |1〉2 − (1/2) |2〉1 |0〉2 − (1/2) |0〉1 |2〉2] [34]. In

the intermediate region of the adiabatic transfer, polaritonic
MI and SF phases exist.

In an analogy to second-order phase transitions in statisti-
cal physics, quantum phase crossovers in the current system
can be understood by the emergence and disappearance of
certain ordered phases. The MI states are considered to have
an order in the excitation (polariton) number per site, in close
analogy to the Bose-Hubbard systems [35,36]. The SF states
in this system are believed to have coherence among multiple
sites. In the case of two ions, the phonon and polaritonic SF
states can be represented as superpositions of product states
over multiple sites [34]. Although it is not straightforward to
define an order parameter that embodies the coherence among
multiple sites, the order in the polariton number per site can
be readily defined.

Angelakis et al. proposed using the polariton-number vari-
ance per site to determine the different phases of the system
[7]; it tends to be zero for the MI phase, which has perfect
number order, while it takes finite values for the SF phase.
Accordingly, we use the variance for the total excitation num-
ber (polariton number) per site to determine quantum phase
crossovers in the JCH model. Other excitation-number vari-
ances (atomic and phonon) can be used for purposes such as
classifying the ground states of the system.

The variance for the total excitation number per site (to-
tal variance) is given by �N̂2

j ≡ 〈N̂2
j 〉 − 〈N̂j〉2, where N̂j =

|e j〉 〈e j | + â†
j â j . The variance for the atomic excitation num-

ber per site (atomic variance) is given by �N̂2
a, j ≡ 〈N̂2

a, j〉 −
〈N̂a, j〉2, where N̂a, j = |e j〉 〈e j |. This helps to identify polari-
tons. Additionally, the variance for the phonon number per
site (phonon variance) is defined as �N̂2

p, j ≡ 〈N̂2
p, j〉 − 〈N̂p, j〉2,
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TABLE I. Variances and classes of the ground states.

�Na,k = 0 �Na,k �= 0

�Nt,k = 0 Atomic MI Polaritonic MI
�Nt,k �= 0 Phonon SF Polaritonic SF

where N̂p, j = â†
j â j . This follows an increasing trend similar

to that for the total variance in MI-to-SF quantum phase
crossovers, while its detailed behavior in the intermediate re-
gion is different from that for the total variance. The values for
the total and atomic variances and the corresponding classes
of the ground states are summarized in Table I.

IV. CONDITIONAL MEASUREMENT OF INTERNAL
AND MOTIONAL STATES

The time sequences for the conditional-measurement
scheme are given in Figs. 1(a)–1(c). The overall time se-
quence is given in Fig. 1(a). The third section labeled as
“Meas.” [Figs. 1(b) or 1(c)] in the time sequence corresponds
to the conditional measurement, which is performed in two
different ways: one is conditioned on |g〉 [Fig. 1(b)] and the
other on |e〉 [Fig. 1(c)]. These two cases will be explained
in more details later. Figures 1(d)–1(f) shows the levels used
for the conditional-measurement scheme, as well as the rele-
vant probability amplitudes (green text) before the conditional
measurement [Fig. 1(d)], before the measurement of BSB
Rabi oscillations conditioned on |g〉 [Fig. 1(e)], and before that
conditioned on |e〉 [Fig. 1(f)].

In the scheme proposed here, an auxiliary long-lived inter-
nal state (a sublevel in the Zeeman manifold of the excited
state, denoted as |a〉) is used. The levels in the internal two-

level system {|g〉 , |e〉} are connected by a carrier transition
[denoted as “Carrier” in Figs. 1(d)–1(f)], while the internal
ground state |g〉 and the auxiliary state |a〉 are connected by
another carrier transition [denoted as “Shelving” in Figs. 1(d)–
1(f)]. We assume that the motional states can be treated as a
set of local vibrational modes. This is an approximate picture,
which is valid as long as the sideband Rabi frequencies used
for the analysis of the motional states during the conditional
measurements are much larger than the intersite coupling rates
of the motional states.

In the time sequence involving conditional measurements,
at first the system is cooled to the vibrational ground state
and an optical pumping to a particular Zeeman sublevel in
the internal ground-state manifold is performed [“State prep.”
in Fig. 1(a)]. Then a quantum simulation (equivalent to the
adiabatic transfer mentioned above) and a conditional mea-
surement are performed.

The conditional measurement is performed in two different
ways: one is conditioned on |g〉 [Fig. 1(b)] and the other on |e〉
[Fig. 1(c)]. We explain these two cases using a formulation,
assuming a chain of N ions, where each ion has three internal
states and an associated local vibrational mode. The Coulomb
couplings between different ion sites are ignored temporarily
for simplicity. The state of the ith ion is expressed as

|ψi〉 =
∑
x=g,e

|ψx〉i , (3)

where

|ψg〉i =
m∑

n=0

Cg,n |g, n〉i ,

|ψe〉i =
m∑

n=0

Ce,n |e, n〉i . (4)

FIG. 1. (a)–(c) Time sequences for conditional measurements and (d)–(f) level scheme with probability amplitudes. (a) Total time sequence.
First, the initial state is prepared. Then a quantum simulation (an adiabatic transfer) and a conditional measurement are performed. (b) Time
sequence for a measurement conditioned on |g〉. τ is the variable length of the BSB pulse, which is swept to obtain the BSB oscillation signals.
(c) Time sequence for a measurement conditioned on |e〉. τ is a variable length similar to the one above. (d) Level scheme and probability
amplitudes associated with the levels before a conditional measurement. The time corresponding to this is indicated in (a)–(c) with a dashed
arrow and a text “(d)” in thin blue. (e) Levels and probability amplitudes after conditioning the system to |g〉. The time corresponding to this
is indicated in (b) with a dashed arrow and a text “(e)” in thin blue. (f) Levels and probability amplitudes after conditioning the system to |e〉.
The time corresponding to this is indicated in (c) with a dashed arrow and a text “(f)” in thin blue.
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Here, |g, n〉i ≡ |g〉i |n〉i and |e, n〉i ≡ |e〉i |n〉i, where n is the
phonon number. It is assumed that the maximum number of
phonons in each vibrational mode is m. The coefficients Cg,n

and Ce,n are probability amplitudes satisfying
∑m

n=0(|Cg,n|2 +
|Ce,n|2) = 1. [See Fig. 1(d) for the initial arrangement of the
probability amplitudes.]

As a preparation step for performing an analysis of the
motional state in the conditional-measurement scheme, we
transfer the population in either |g〉 or |e〉 to a long-lived aux-
iliary state |a〉, depending on which state we want to analyze.

To analyze the probabilities associated with |g〉, we use the
time sequence given in Fig. 1(b). We first apply a π pulse
resonant to the transition |g〉 ↔ |e〉. This is followed by a
π pulse resonant to the |g〉 ↔ |a〉 transition and a second π

pulse resonant to the |g〉 ↔ |e〉 transition. These three pulses
effectively shelve populations originally in |e〉 to |a〉, and keep
those originally in |g〉 in the same state. The state after the
application of these pulses is represented as

|ψi〉 =
∑

x=g,a

|ψx〉i , (5)

where

|ψg〉i =
m∑

n=0

Cg,n |g, n〉i ,

|ψa〉i =
m∑

n=0

Ce,n |a, n〉i . (6)

[See Fig. 1(e) for the arrangement of the probability ampli-
tudes in this case.]

By applying a BSB pulse to this state, whose variable
length τ is swept from 0 to a certain time, Rabi oscillations
between |g, n〉 ↔ |e, n + 1〉 can be observed. By performing
Fourier analysis on the results, it is possible to deduce the
probabilities |Cg,n|2 originally associated with |g〉.

To measure the probabilities associated with |e〉, we use a
slightly different time sequence, as shown in Fig. 1(c). In this
case, the first π pulse used in the previous case is omitted,
while the following sequence is used as is. Before applying
the BSB pulse, the state is similar to Eq. (6), where Cg,n

and Ce,n are replaced with each other. [See Fig. 1(f) for the
arrangement of the probability amplitudes in this case.] By
applying a BSB pulse with a variable length τ and performing
Fourier analysis on the result, the probabilities |Ce,n|2 origi-
nally associated with |e〉 can be obtained.

Collecting the results of these measurements, it is possible
to evaluate the internal and motional states. For example, the
probability for states with k polaritons is given as

Pk
pol =

{|Cg,k|2 (k = 0)
|Cg,k|2 + |Ce,k−1|2 (k � 1).

(7)

We should mention the effective fraction of measurements
in this scheme. In contrast to the conditional-measurement
schemes used previously [19,32], which involve a dedicated
measurement of the internal state in advance of the measure-
ment of the motional state in each sequence, our scheme uses
shelving of the probability amplitudes that are of no interest to
an auxiliary internal state. This helps avoid unwanted effects
of heating from adjacent ion sites during fluorescence cycles,

and omits post-selections. However, the effective amount of
information acquired is reduced in this scheme due to the
fact that some of the probability amplitudes are hidden in the
auxiliary level. In this sense, this scheme is not superior to
those methods that use post-selections [19,32]. The overall
loss of information, on average, is estimated to be 50%. For
example, if we perform 100 measurement trials conditioned
on |g〉 and the same number of trials conditioned on |e〉, the
average net amount of the effective trials would be 100 in
total, and the respective ratio of the effective trials over the
total number may differ between |g〉 and |e〉, depending on the
internal-state population. The effective fraction of 50% does
not depend on the number of ions involved. Therefore, it can
be asserted that this scheme is scalable with respect to the
number of ions in this sense.

This loss of information manifests in the observed results
as a reduction in the contrasts in the BSB Rabi oscillation sig-
nals and associated offsets corresponding to the populations
hidden to the long-lived auxiliary state. (The populations in
the auxiliary state cannot be distinguished from those in the
excited state in our case.) The contrast in the results condi-
tioned on |g〉 or |e〉 should be proportional to the population
in that state before the conditional-measurement sequence.
Therefore, a fitting process should be adapted to such signals
with different contrasts and offsets. We will discuss this in
Sec. VII A.

V. EXPERIMENTAL PROCEDURE

Two 40Ca+ ions are trapped in a linear Paul trap. An rf
voltage of 23 MHz is applied for radial confinement. An
rf quadrupole electric field with a frequency of 23 MHz
is applied for radial confinement, and a dc potential is ap-
plied for axial confinement. The secular frequencies are
(ωx, ωy, ωz )/2π = (2.6, 2.4, 0.15) MHz. The distance be-
tween the two ions is 20 μm and the hopping rate of local
phonons [24,37] is 3.8 kHz. The ions are first cooled by
Doppler cooling along all directions, and then their vibrational
motion along the two radial directions (x and y) is reduced to
the ground state by sideband cooling [38,39]. Doppler cooling
is realized with 397-nm (S1/2–P1/2) and 866-nm (D3/2–P3/2)
laser beams and sideband cooling is realized with 729-nm
(S1/2–D5/2) and 854-nm (D5/2–P3/2) laser beams. Sideband
cooling is performed with a repetition of a pulse section 20
times, in each of which 729- and 854-nm pulses are simultane-
ously applied for 400 μs. The ions are intermittently optically
pumped to S1/2 by a 397-nm beam with σ− polarization
before, between, and after the pulse sections for sideband
cooling. The final vibrational quantum numbers along the ra-
dial directions after sideband cooling are {n̄x, n̄y} ∼ {0.2, 0.1}.

The y radial direction in the ion crystal is used for the mo-
tional degree of interest in this work. There are two collective
modes in this direction, i.e., the center-of-mass (COM) and
rocking modes, which are separated from each other in fre-
quency by a spacing similar to the hopping rate. The heating
rate for the y direction is estimated to be ∼5 quanta/s [30].

Excitation beams at 729 nm for S1/2–D5/2 are used to
induce JC coupling, as well as to prepare and analyze the
internal and motional states. The level scheme of 40Ca+

relevant for the manipulation of the internal and motional
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FIG. 2. Level scheme for a trapped 40Ca+ with internal ground
(|g, n〉), excited (|e, n〉), and auxiliary (|a, n〉) states, where n repre-
sents the motional quantum number in a local vibrational mode.

states is shown in Fig. 2. (In this figure, the motional state
is assumed to be that of a local vibrational mode in view of
applying this to the measurement scheme.) We use S1/2(mj =
−1/2), D5/2(mj = −1/2), and D5/2(mj = −5/2) as the in-
ternal ground (|g〉), excited (|e〉), and auxiliary (|a〉) states,
respectively. Figure 2 also shows the quantum numbers for the
local vibrational mode as the second arguments for the basis
kets.

The excitation beams at 729 nm are individually applied
to each of the two ions. The relative intensities of the beams
are adjusted to optimize equal illumination of the two ions,
by balancing the maximum Rabi frequencies between the two
ions.

The fluctuations in the radial secular frequencies are re-
duced by introducing a feedback-control system for the rf
amplitude [40].

The internal state of the two ions is determined by illumi-
nating them with lasers at 397 and 866 nm and by detecting
fluorescence photons with a photomultiplier tube or an elec-
tron multiplying charge-coupled-device camera.

In the quantum simulation of the JCH model, first
the system is prepared in the atomic MI state (|ψMI〉 =
|e1〉 |e2〉 |0〉1 |0〉2) by applying a carrier π pulse at 729 nm after
sideband cooling. Then an adiabatic transfer is performed,
with a duration of typically 960 μs. The duration is deter-
mined to satisfy the adiabaticity in the internal states, while
the adiabaticity in the motional state is not fully satisfied (dis-
cussed in Sec. VII C). The internal state during this adiabatic
transfer can be detected by truncating it and by illuminating
the ions with the lasers at 397 and 866 nm. A conditional
measurement, as explained above, involving the excitation of
the BSB transition, can also be performed by truncating the
adiabatic transfer.

VI. MEASUREMENT OF INTERNAL-STATE
POPULATIONS

The results of internal-state measurements from 0 to
960 μs are shown in Fig. 3. The measured population (blue
circles with error bars) and a numerical simulation for the
population (red dashed curve) are shown in Fig. 3(a). The
time dependence of the parameters used in the numerical

FIG. 3. (a) Experimentally observed adiabatic-transfer curve
(blue circles and error bars) and numerically simulated results (red
dashed curve). Each experimental point is the average of 100 ex-
periments, and the error is calculated by assuming a binomial
distribution. (b) Time dependence of the parameters for the optical
pulse assumed in the numerical simulation in (a): g (JC-coupling
constant) divided by π (red solid curve) and � (detuning) divided
by 2π (blue dashed curve) for the numerical simulation.

simulation in Fig. 3(a) is plotted in Fig. 3(b). The conditions
for the numerical simulation are summarized as follows. The
hopping rate κ/2π is 3.8 kHz. 2g/2π is swept in a Gaussian
form with a maximum value of 10.0 kHz. �/2π is varied from
−50 to 50 kHz during a time of 960 μs. The Lindblad master
equation [41] is used for the numerical simulation, in which
transverse relaxation for the BSB transition, for example due
to fluctuations of the sideband resonance frequencies, is taken
into account by using γT = 2π × 0.19 kHz as the rate. The
initial populations in the internal states are set to be 0.95 in |e〉
and 0.05 in |g〉 [42].

The greater than zero final population can be ex-
plained mainly by the effect of transverse relaxation. In our
estimation, the effect of diabaticity is not significant for this
particular case.

VII. CONDITIONAL MEASUREMENTS
AND EVALUATION OF VARIANCES

A. Evaluation of populations from fitting

In performing the conditional measurements to evaluate the
variances, we applied the two different time sequences given
in Figs. 1(b) and 1(c) in separate experimental runs, and the
BSB Rabi oscillations in both cases were measured. By ana-
lyzing the Rabi oscillation results in both cases via fitting with
model functions and by combining the acquired information,
the state populations were inferred and the variances were
then evaluated.

The atomic variance can be estimated if the internal-state
population is known. For the particular conditional measure-
ments in this work, we used the first points of the BSB Rabi
oscillations, for which no BSB pulse of a finite length is
applied, to infer the population in the internal states. These
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are equivalent to the internal-state populations just before the
application of the BSB pulses in Figs. 1(b) and 1(c). Those
populations are denoted as Pg and Pe for the ground and
excited states, respectively. Here, we assume that the system
is symmetric with respect to the permutation of the two ions,
and hence that the populations for the two ions are identical to
each other.

For the estimation of the phonon and total variances, espe-
cially for the latter, the information obtained from conditional
measurements is fully exploited. The obtained BSB Rabi os-
cillation signals are analyzed by fitting the obtained results
with model functions derived from those used in standard
analyses on sideband Rabi oscillations [43],


e(t ) = 1

2
a

[
1 +

m∑
n=0

P̃n cos2(�n,n+1t/2)e−γRt

]
+ (1 − a).

Here, 
e(t ) is the time-dependent excited-state population
during the BSB excitation, m is the maximum Fock-state
quantum number that is assumed, P̃n is the population in
each motional Fock state before the BSB excitation, �n,n+1 ≡
η�0

√
n + 1 is the BSB Rabi frequency (η is the Lamb Dicke

factor and �0 is the resonant Rabi frequency for an ion with-
out motion; the terms of higher orders in η are ignored here),
and γR is the common relaxation rate reflecting decoherence
and dephasing processes in sideband Rabi oscillations [44]. a
(0 � a � 1) is a factor that takes into account the reduction of
contrasts and the associated offsets as discussed above. Here,
a is determined from the estimated internal-state populations,
as explained in the last paragraph.

In the actual fitting process, the maximum Fock-state quan-
tum number m is set to 2 [45]. The base Rabi frequency �0,1

and (P̃0, P̃1, P̃2) (P̃0 + P̃1 + P̃2 = 1) for each result, as well
as the overall relaxation rate γR, are determined iteratively.
First, we use empirically known fixed values of (P̃0, P̃1, P̃2)
for each result and perform a fitting of all the results with the
least-squares method to determine �0,1 for each result and
γR (the latter is determined by finding the value that gives
the minimum value for the sum of the chi squares in fitting
of all the results). We then treat these values as fixed values
and repeat the fitting process, thereby determining the refined
values for (P̃0, P̃1, P̃2). This whole process is repeated multiple
times to obtain the final values for (P̃0, P̃1, P̃2). By multiplying
a by these values, the actual populations in the combined
internal and motional state basis states are determined. For
example, in the case for conditioning on |g〉 or |e〉, we ob-
tain (Pg,0, Pg,1, Pg,2) or (Pe,0, Pe,1, Pe,2), respectively, which is
equal to (aP̃0, aP̃1, aP̃2). Here, Px,n ≡ |Cx,n|2 (x = g, e) is the
population in each combined internal and motional basis state
|x, n〉. We also evaluate the error for each of the populations,
which is calculated as that propagating from the parameter
errors in the fitting process.

B. Evaluation of variances

The variances defined in Sec. III, including the total,
atomic, and phonon variances, are obtained from the com-
bined information acquired in both the cases conditioned on
|g〉 and |e〉. In this section, we present the method to calculate
the variances using populations based on the method in the

previous section. As mentioned above, we assume that the
system is symmetric with respect to the permutation of the two
ions, and omit the subscript j = 1, 2 representing the index
for the ion number in the following. The atomic variance is
obtained as

(�N̂a)2 = tr(ρN̂2
a ) − tr(ρN̂a)2

= Pe − P2
e , (8)

where ρ is the density operator for the total system and Pe =
〈e| ρ |e〉 (this is equal to

∑2
n=0 Pe,n when the phonon number n

is limited to 0 � n � 2). The phonon variance is obtained as

(�N̂p)2 

2∑

n=0

n2Pn −
(

2∑
n=0

nPn

)2

= P1 + 4P2 − (P1 + 2P2)2, (9)

where Pn ≡ Pg,n + Pe,n (n = 0, 1, 2). The total variance can be
expressed as

(�N̂ )2 = 〈(N̂a + N̂p)2〉 − 〈N̂a + N̂p〉2

= (〈N̂2
a 〉 − 〈N̂a〉2) + (〈N̂2

p 〉 − 〈N̂p〉2)

+2(〈N̂aN̂p〉 − 〈N̂a〉〈N̂p〉)

= (�N̂a)2 + (�N̂p)2 + 2Cov(N̂a, N̂p), (10)

where

Cov(N̂a, N̂p) ≡ 〈N̂aN̂p〉 − 〈N̂a〉〈N̂p〉



2∑

n=0

nPe,n − Pe

2∑
n=0

nPn

= Pe,1 + 2Pe,2 − Pe(P1 + 2P2) (11)

is the covariance between the two quantum mechanical ob-
servables, the atomic excitation number, and the phonon
number.

Using Eqs. (8)–(11), the total variance can be obtained as

(�N̂ )2 
 Pe − P2
e + P1 + 4P2 − (P1 + 2P2)2

+ 2[Pe,1 + 2Pe,2 − Pe(P1 + 2P2)]. (12)

We also evaluate the error for each of the variances, which
is calculated as that propagating from those of the evaluated
values for the populations [46]. See the Appendix A for the
estimation of errors in the variances.

C. Experimental results

The experimental Rabi oscillation results measured after
truncating the adiabatic transfer at certain selected points in
time (48, 432, 480, 528, and 912 μs), as well as the results
of fitting performed based on the above-mentioned procedure,
are shown in Fig. 4.

The subfigures in the upper row in Fig. 4 [i.e., Figs. 4(a),
4(c), 4(e), 4(g), and 4(i)] show the experimental results
conditioned on |g〉, which are obtained using the pulse se-
quence in Fig. 1(b). Similarly, the subfigures in the lower
row [Figs. 4(b), 4(d), 4(f), 4(h), and 4(j)] show those condi-
tioned on |e〉, which are obtained using the pulse sequence in
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FIG. 4. BSB Rabi oscillations (blue points) obtained by truncating the quantum simulation (adiabatic transfer) and by illuminating using
a square pulse with a variable duration. Here, only certain values for the duration of the quantum simulation are picked up. Each experimental
point is the average of 100 experiments, and the error is calculated by assuming a binomial distribution. The results for the fitting of the
Rabi-oscillation signals with model functions are also shown (red curves). For comparison, numerically simulated results based on the JCH
model (i.e., those including the effect of phonon hopping) are shown as green dashed curves (see the main text for details). The durations for
the quantum simulation (adiabatic transfer) are (a), (b) 48, (c), (d) 432, (e), (f) 480, (g), (h) 528, and (i), (j) 912 μs from the first column to
the fifth. The results in the upper row [(a), (c), (e), (g), and (i)] are taken from measurements conditioned on |g〉, and those in the lower row
[(b), (d), (f), (h), and (j)] on |e〉.

Fig. 1(c). The results in the upper row reflect such populations
as Pg,0, Pg,1, or Pg,2 for the original state before the conditional
measurement, while those in the lower row reflects such pop-
ulations as Pe,0, Pe,1, or Pe,2.

In Fig. 4(a), the peak-to-peak amplitude of the Rabi oscilla-
tion conditioned on |g〉 is shown to be ∼5%. This corresponds
to the population remaining in |g〉 at the start point of the
Rabi oscillation. The rest of the population (∼95%) is shelved
to the auxiliary state |a〉, and that corresponds to the large
offset in the population. On the other hand, in Fig. 4(b), the
peak-to-peak amplitude of the Rabi oscillation conditioned on
|e〉 is shown to be ∼95%. This corresponds to the population
hidden in |a〉 in Fig. 4(a).

In the upper row in Fig. 4, populations at t > 0
are determined by BSB Rabi dynamics against the ini-
tial populations {Pg,0, Pg,1, Pg,2, . . .}, while in the lower
row populations are determined by BSB Rabi dynam-
ics against {Pe,0, Pe,1, Pe,2, . . .}, which are mapped to
{|g, 0〉 , |g, 1〉 , |g, 2〉 , . . .} in advance by the carrier π pulse.

By using the parameter values obtained in the fitting as
shown in Fig. 4, values for the variances are obtained, which
will be explained later in this section.

For reference, we also performed numerical simulations of
the JCH dynamics for the composite sequence comprised of
an adiabatic passage [which is similar to what is shown in
Fig. 3(a), but is truncated at some point] and the successive
illumination of a BSB square pulse. The simulated results
during the latter are shown in Figs. 4(a)–4(j) as green dashed
curves. The same conditions for numerical simulations as in
Fig. 3(a) are used here again. Although there are certain quan-
titative discrepancies, we can confirm that the numerically
simulated results reproduce the qualitative behaviors of the
experimental results. We should note that this analysis is not
that categorized as a fitting. In general, it is not straightforward
to perform fitting of the BSB Rabi oscillation results using the

JCH model. A complete simulation of the JCH model requires
the information of various correlations in the system at the
initial time (especially those between motional modes that
belong to different ions), while such information is lacking in
the BSB Rabi oscillation results. Acquiring such information
necessitates procedures similar to quantum state tomography,
while it is not known to be scalable when the number of ions
is increased.

Values for the variances and internal-state population esti-
mated by processing the experimental Rabi oscillation results,
as well as those obtained in a numerical simulation, are shown
in Fig. 5. The atomic variance [blue circles with error bars
and dashed curve in Fig. 5(a)] shows a peak in the center.
In this region, the excitations of the system take the form of
polaritons, each of which is the superposition of an internal
excitation and a phonon. In this case, the internal-excitation
number fluctuates, resulting in the appearance of a peak in
the atomic variance. The phonon number variance [black cir-
cles with error bars and dashed curve in Fig. 5(b)] increases
around the center of the sweep. This indicates the emergence
of the phonon SF state. The total variance [red circles with
error bars and dashed curve in Fig. 5(c)] follows a similar
trend. The irregularly high experimental values (∼0.3) at 0 μs
in Figs. 5(b) and 5(c) are considered to be artifacts due to
technical imperfections [47].

In the numerically simulated results in Figs. 5(b) and 5(c),
at the region after 500 μs, oscillatory behavior with a period
of ∼150 μs is seen in both the phonon and total variances.
This feature may have arisen from the diabaticity in the mo-
tional states. Since the total sweep time of 960 μs is not
sufficiently long compared with the hopping time constant
(defined as the inverse of the hopping rate, ∼260 μs), the
system does not completely adiabatically follow the ground
states and additional phonon excitations may be generated.
This effect may be relaxed by choosing a longer sweep time.
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FIG. 5. (a) Atomic variance, excited-state population Pe, (b) phonon variance, and (c) total variance, which are obtained from an analysis
involving the fitting of experimental results (points with error bars) and numerical simulation (dashed and dash-dotted curves).

We suppose that the relatively large fluctuations in the ex-
perimental phonon and total variances [Figs. 5(b) and 5(c)]
observed in the region after 500 μs have an origin related to
this effect.

The internal-state population [cyan crosses with error bars
and dash-dotted curve in Fig. 5(a)] shows a relatively smooth
and solid transition. This indicates that adiabaticity of the
internal states is satisfied. This experiment confirms that the
method for conditional measurements described in this work,
which is capable of measuring the internal and motional states
simultaneously without mutual interference, is sufficient for
investigating the quantum phase crossovers in the current sys-
tem.

VIII. DISCUSSION

The study of the ground-state properties in a JCH sys-
tem, which can be dealt with by the conditional-measurement
method in this work, may provide a basis for dynamical stud-
ies of the system as well as many-body quantum dynamics.
The study of correlated particles such as polaritons may lead
us toward more profound quantum mechanical properties or
phenomena.

The conditional-measurement method described in this
work can be applied to larger numbers of ions in a straight-
forward manner. By increasing the number of ions, a steep
transition from one quantum phase to another is expected [48].
In a previous study using a Bose-particle system, a sudden
change of quantum phases against parameter changes was
observed [36]. The JCH system is expected to show a similar
steep variation of quantum phases against parameter changes
if an increased number of ions is used.

The fitting model functions used in this article assume that
sideband Rabi oscillations are bound within the state manifold
for each ion, and mutual interactions between ions are not
considered. Although this assumption simplifies the analysis,
it can lead to discrepancy between the experimental and fitted
results. This discrepancy could be overcome if the full JCH
model is used to obtain the fitting models in numerical sim-
ulations. However, this method of analysis is not considered
to be scalable since the numerical simulation of the full JCH

model becomes increasingly difficult for larger numbers of
ion sites and is effectively intractable [49]. In addition, fitting
necessitates setting suitable initial values, which may allow
arbitrariness to enter into the analysis process.

Another option that can overcome the shortcomings of
using fitting for the analysis would be the use of discrete
Fourier transforms. By not relying on fitting or numerical sim-
ulations of physical models to deduce phonon distributions,
this method of analysis may be applied to larger numbers of
ion sites with less difficulties and arbitrariness.

IX. CONCLUSIONS

In conclusion, we proposed a scalable scheme for the si-
multaneous determination of internal and motional states in
trapped ions based on conditional measurements. The scheme
was applied to a system of polaritons in the JCH model, and
a phase crossover was studied by evaluating the quantities
such as the variance for the total excitation number (polariton
number) per site. The scheme proposed here can be applied
to larger JCH systems where steeper phase crossovers and
transitions as well as nonequilibrium behaviors reflecting in-
teractions are expected. In addition, the scheme can also be
applied to other subjects in quantum simulations with trapped
ions where both the internal and motional degrees of freedom
are fully exploited as the simulation resources.
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APPENDIX: ESTIMATION OF ERRORS
IN THE EVALUATION OF VARIANCES

The errors in the evaluated values for the variances are
calculated based on the propagation of errors using the partial
derivatives of the variances with respect to certain quantities.
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The squared error in the atomic variance [Eq. (8)] is obtained
as

V [(�N̂a)2] 

{

∂[(�N̂a)2]

∂Pe

}2

V (Pe)

= (1 − 2Pe)2V (Pe).

Here, V (X ) represents the variance of a classical probabilistic
variable X , which takes into account statistical fluctuations.
This is contrasted with the variances in Eqs. (8)–(10), which
are those of quantum observables that take into account both
quantum and statistical fluctuations. V (Pe) is the variance of
Pe, which is calculate as that of a binomial distribution based
on the value of Pe and the number of samples.

Similarly, the squared error in the phonon variance
[Eq. (9)] is calculated as

V [(�N̂p)2]



2∑

n=0

{
∂[(�N̂p)2]

∂Pn

}2

V (Pn)

+
1∑

k=0

2∑
l=k+1

2
∂2[(�N̂p)2]

∂Pk∂Pl
Cov(Pk, Pl )

=
{

∂[(�N̂p)2]

∂P1

}2

V (P1) +
{

∂[(�N̂p)2]

∂P2

}2

V (P2)

+2
∂2[(�N̂p)2]

∂P1∂P2
Cov(P1, P2)

= (1 − 2P1 − 4P2)2V (P1) + (4 − 4P1 − 8P2)2V (P2)

+2(−4)Cov(P1, P2).

Here, Cov(P1, P2) represents the covariance of two classical
probabilistic variables P1 and P2. We use the relations P1 =
Pg,1 + Pe,1 and P2 = Pg,2 + Pe,2, and consider the fact that the
two sets of variables, {Pg,0, Pg,1, Pg,2} and {Pe,0, Pe,1, Pe,2}, are
determined, respectively, in separate experiments. There are
constraints in the fitting process that the sum of the popu-
lations {Pg,0, Pg,1, Pg,2} or {Pe,0, Pe,1, Pe,2} matches Pg or Pe,
respectively. Due to this, certain correlations (for example,
between Pg,1 and Pg,2 or Pe,1 and Pe,2) arise. We take into
account such correlations, while we do not take into account

other correlations. Thus, we assume

Cov(P1, P2) 
 Cov(Pg,1, Pg,2) + Cov(Pe,1, Pe,2),

V (P1) 
 V (Pg,1) + V (Pe,1),

V (P2) 
 V (Pg,2) + V (Pe,2).

The quantities in the right-hand sides of these expressions are
determined experimentally from the covariances and errors in
the fitting process. If those quantities are substituted to the
expression for V [(�N̂p)2], the squared error in the phonon
variance can be obtained.

The squared error in the total variance [Eq. (10)] can be
calculated in a similar way,

V [(�N̂t )
2]

=
{

∂[(�N̂p)2]

∂Pe

}2

V (Pe)

+
{

∂[(�N̂p)2]

∂Pg,1

}2

V (Pg,1) +
{

∂[(�N̂p)2]

∂Pe,1

}2

V (Pe,1)

+
{

∂[(�N̂p)2]

∂Pg,1

}2

V (Pg,2) +
{

∂[(�N̂p)2]

∂Pe,1

}2

V (Pe,2)

+ 2
∂2[(�N̂p)2]

∂Pg,1∂Pg,2
Cov(Pg,1, Pg,2)

+ 2
∂2[(�N̂p)2]

∂Pe,1∂Pe,2
Cov(Pe,1, Pe,2)

= [1 − 2Pe − 2(P1 + 2P2)]2V (Pe)

+ (1 − 2P1 − 4P2 − 2Pe)2V (Pg,1)

+ (1 − 2P1 − 4P2 + 2 − 2Pe)2V (Pe,1)

+ (4 − 4P1 − 8P2 − 4Pe)2V (Pg,2)

+ (4 − 4P1 − 8P2 + 4 − 4Pe)2V (Pe,2)

+ 2(−4)Cov(Pg,1, Pg,2) + 2(−4)Cov(Pe,1, Pe,2).

Here, again we only consider correlations arising in the pro-
cess of fitting [Cov(Pg,1, Pg,2), Cov(Pe,1, Pe,2)], and obtain the
squared error in the total variance using the above relation.
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