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Open quantum dynamics with singularities: Master equations and degree of non-Markovianity
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Master equations describing open quantum dynamics are typically first-order differential equations. When
such dynamics brings the trajectories in state space of more than one initial state to the same point at finite
instants in time, the generator of the corresponding master equation becomes singular while the dynamical
map becomes noninvertible. The first-order, time-local, homogeneous master equations then fail to describe the
dynamics beyond the singular point. Retaining time locality in the master equation necessitates a reformulation
in terms of higher-order differential equations. We formulate a method to eliminate the divergent behavior of
the generator by using a combination of higher-order derivatives of the generator with suitable weights and
illustrate it with several examples. We also present a detailed study of the central spin model and we propose the
average rate of information inflow in non-Markovian processes as a quantity that captures a different aspect of
non-Markovian dynamics.
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I. INTRODUCTION

Almost all realistic quantum systems are open systems
with their dynamics determined by interactions with the en-
vironment also. Although the evolution of the system in the
presence of its environment does not follow unitary dynamics,
the combined evolution of the system and environment is
unitary in nature. The reduced dynamics of the system of
interest is then obtained by tracing over the environmental
degrees of freedom from the time-evolved combined density
matrix as ρS (t ) = TrE [ρSE (t )]. The reduced system dynamics
induced by the joint evolution of the system and its environ-
ment can be modeled by a dynamical map given by ρS (t ) =
EtρS (0) [1–4]. While the dynamical maps describe changes
in the state of the open system across finite-time intervals
akin to the unitary time-evolution operator for closed systems,
continuous-time description of open quantum evolution is
typically formulated in terms of quantum master equations
[5,6]. Open quantum systems endowed with a large separation
in timescales of the system and environment are modeled
using the Markov approximation and their dynamics is de-
scribed by a Markovian master equation. The quantum master
equation under the Markov approximation can be written in
the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form
that corresponds to completely positive and trace preserving
open quantum system dynamics [7,8].

There are processes for which the Markovian approxi-
mation is not valid and we have to turn to non-Markovian
dynamics. Time-dependent, local-in-time, master equations of
GKSL form can be formulated for the non-Markovian case as

*abhayhegde16@iisertvm.ac.in
†shaji@iisertvm.ac.in

well [9–12]. In this paper we present several physically realiz-
able non-Markovian cases for which forcing the description of
the system dynamics into a time-local master equation leads
to a singular generator. The propagation of states after the sin-
gularity cannot be done formally using the time-local master
equation. Motivated by the rapid developments in the ability
to study open quantum dynamics experimentally, we address
this gap in the formalism and in the process also propose a
minor but useful modification to one of the standard ways of
quantifying information backflow and non-Markovianity.

We investigate how processes in which the trajectories of
distinct states diverge after a singularity can be mathemati-
cally described. Note that the trajectories we consider in the
following are in the space of all possible quantum states of
the system of interest. A suitable parametrization of the state
space, for instance, with the Bloch ball of states of a single
qubit, will allow us to visualize these trajectories as well.
We see how a general master equation for such dynamics
that holds true for all time can be constructed in certain
cases. Specifically, we propose higher-order master equations
to weed out the singularities in a manner that their solutions
reduce to that of the traditional first-order equation at all
other points. The proposed higher-order equations naturally
take care of propagating the state through the singularities.
Dynamics with singular points are typically non-Markovian.
Different approaches to characterize the non-Markovianity
resulting from the divergent behavior of generators were
studied in [13–17] and a measure to characterize the nature
and degree of the singularity was proposed in [18]. De-
pending on the nature of the singularity in the generator of
the first-order master equation, we arrive at different forms
of equivalent higher-order master equations that avoid the
singular behavior. We are interested in exploring the connec-
tion, if any, between the nature of the singularity and the
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nature of the non-Markovianity in the system. This however
requires a comparison of the degree of non-Markovianity
in different processes. There are several proposed measures
of non-Markovianity available in the literature [19–33], but
they do not typically allow for a direct comparison between
processes as explained later on. The characterization of the
singularity in [18] also is not suitable for comparison of
different processes. To circumvent these difficulties, we in-
troduce a quantity to capture the persistence of information
inflow, which in turn can lead to meaningful comparison of
different non-Markovian processes. In addition to using this
quantity to compare the singular processes, we extend its
applicability and demonstrate its utility in comparing generic
non-Markovian processes as well.

This paper is structured as follows. In Sec. II we introduce
the relevant definitions and the problem. We reinforce the
issues of singular dynamics with an illustrative example in
Sec. III. A discussion on possible avenues to resolve the issue
is presented in Sec. IV. In Sec. V we apply our results to
the example presented in Sec. III. We comment on differ-
ent classes of examples in Sec. VI using our methods. A
new quantity that enables comparison of the observed non-
Markovianity in different processes is proposed in Sec. VII.
Section VIII contains a brief discussion and our conclusion.

II. DYNAMICAL MAPS AND MASTER EQUATIONS

The dynamics of an open quantum system that is initially
in a product state with its environment can be expressed in
terms of the completely positive and trace preserving (CPTP)
dynamical maps Et . The open system we will be considering
is a single qubit. Using the left-right vectorization formalism
[34] to write the equations of motion for the open dynamics
of the qubit, we represent its quantum states ρt by real vectors
and the quantum dynamical maps Et as real four-dimensional
matrices. Since the Hilbert space associated with a qubit is a
subset of the four-dimensional linear space of Hermitian qubit
operators, it follows that any quantum state can be written
as ρ = (I + �r · �σ )/2, where |�r | � 1 and �σ = (σx, σy, σz ) is
a vector of Pauli operators. The condition |�r | � 1 enforces
positivity of ρ and the states of the qubit can be represented
as points in the Bloch sphere. The vector (1, �r ) furnishes the
real, four-dimensional representation of the quantum state.
The affine form of Et acting on the state (1, �r ) is

Et =
(

1 �0
�s T

)
, (1)

with �s a translation vector and T a real three-dimensional
matrix. The Bloch sphere vectors transform as �r ′ ≡
Et (�r ) = T �r + �s.

The state of the system at time t is given by the dynamical
map as

ρt = Et [ρ0], (2)

with ρ0 ≡ ρt=0. When Et is an invertible map, one finds its
time-local generator as

Lt = ĖtE−1
t . (3)

Assuming the semigroup property Et+s = EtEs, we can write
a time-local master equation ρ̇t = Lt [ρt ] in the well-known
GKSL form (choosing h̄ = 1)

ρ̇t = −i[H, ρt ] +
3∑

i=1

γi(Liρt L
†
i − 1

2
{L†

i Li, ρt }), (4)

where tr(Li ) = 0 and tr(LiL j ) = tr(LjLi ) = δi j . In other
words, the Lindblad operators Li are traceless and
orthonormal. The dynamics described by the semigroup
master equation is Markovian. The Markovian master
equation may be generalized by introducing time-dependent
Lindblad-like operators and time-dependent decay rates γi(t )
in Eq. (4). This results in a GKSL form for generators Lt of
open dynamics that are not Markovian in general,

ρ̇t = −i[H (t ), ρt ] +
3∑

i=1

γi(t )[Li(t )ρt L
†
i (t )

− 1

2
{L†

i (t )Li(t ), ρt }]. (5)

The presence of negative rates γi(t ) < 0 for some i and t can
be regarded as non-Markovian behavior [14,31–33].

Since the time-local master equation is first order in time,
knowing the state at time t allows one to uniquely determine
the state at all later times t ′ > t . In particular, it follows that
if the trajectories of two states ρ1(t ) and ρ2(t ) intersect at
some time t = tc, i.e., ρ1(tc) = ρ2(tc), the trajectories will
move together for all subsequent times, i.e., ρ1(t ′) = ρ2(t ′) for
t ′ > tc. Since any such merging of trajectories is irreversible,
the dynamical map in Eq. (2) becomes noninvertible in all
such cases and thus the generator as defined in Eq. (3) ceases
to exist. However, there are several examples of physically
valid processes in which the trajectories of multiple states
converge at distinct points in time and then are again separate
for t > tc. Moreover, the trajectories of qubit dynamics visu-
alized on the Bloch sphere for all such processes are analytic,
even at those instants of time when the inverse dynamical
map does not exist. Clearly, the first-order equation fails to
describe the dynamics of these processes. We illustrate such
a process using the central spin model in the next section
and then propose a way of describing such dynamics using
higher-order differential equations.

III. EXAMPLE: CENTRAL SPIN MODEL

To illustrate the problem at hand, we examine here a central
spin model used to simulate the interaction of a single electron
spin confined to a quantum dot with a bath of nuclear spins
[35]. Consider a bath consisting of N spin- 1

2 particles coupled
to a central spin- 1

2 particle. The interaction Hamiltonian is

H =
N∑

k=1

Akσz ⊗ σ (k)
z , Ak = A√

N
, (6)

such that each spin in the bath is interacting with the central
spin via the Pauli σz operator. Note that we have scaled the
coupling constant appearing in the Hamiltonian by a factor of
1/

√
N that will keep the total interaction energy between the

central spin and the ones around constant irrespective of N .
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FIG. 1. Trajectories of two initially distinct states are shown at
different times on the Bloch sphere. The figure corresponds to the
evolution given by the Hamiltonian in Eq. (6) with N = 1.

We will see later on that this choice is required if we are to
compare different non-Markovian processes. We begin with
an initial product state for the total system of N + 1 particles
such as η0 = ρ0 ⊗ I/2N . The final state of the central spin
after tracing out the bath of N surrounding spins at time t is

ρt = TrE(e−iHtη0eiHt )

=
(

ρ11 cosN ( 2At√
N

)ρ12

cosN ( 2At√
N

)ρ21 ρ22

)
, (7)

with ρi j for i, j = {1, 2} as the elements of ρ0. The master
equation typically used to describe this process is [18]

ρ̇t = A
√

N tan

(
2At√

N

)
(σzρtσz − ρt ). (8)

The rate appearing in the equation above is proportional
to tan(t ) and the equation is singular for all t = √

N (2k +
1)π/4A for k = 0, 1, 2, . . .. However, this model is known to
be exactly solvable for all N [35]. Moreover, it is easy to see
that the dynamical map corresponding to this process,

E spin
t = diag

(
1, cosN

(
2At√

N

)
, cosN

(
2At√

N

)
, 1

)
, (9)

is a well-defined diagonal matrix for all t . The trajectories
of a pair of initial states of the central spin are plotted on
the Bloch sphere in Fig. 1. We see that the two trajectories
intersect at t = tc and the inverse map E−1

t becomes one to
many and singular at this point. The master equation (8) fails
to describe the observed trajectory beyond this (first) singu-
lar point since beyond tc the first-order differential equation

yields identical evolution for both intersecting trajectories.
The dynamical map outputs the correct final state for all times
nevertheless and yields diverging trajectories after t = tc as
shown in the figure. The failure of the master equation to
predict the evolution beyond tc prompts us to explore the
existence of an alternate differential equation that is consistent
with the dynamics given by the map while at the same time
does not exhibit singularities.

IV. HIGHER-ORDER MASTER EQUATIONS

Since any nondiagonal dynamical map can be made
diagonal by a suitable choice of operator basis [36], we ex-
plore the case of a general diagonal map. For the sake of
simplicity we will stick to unital maps for which �s = 0 in
Eq. (1). We point out that our arguments can also be extended
to nonunital maps in a straightforward manner, as shown in
examples later (see Sec. VI B below). Choosing the affine map
in Eq. (1) as a diagonal matrix that describes the transforma-
tions of a state in each subspace, we define

T = diag ( fx(t ), fy(t ), fz(t )). (10)

Writing the initial state in the vectorized form ρ0 =
(1, x, y, z)T , the action of this unital map corresponds to the
master equation

dρ

dt
= Ėtρ0

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 ḟx

fx
0 0

0 0 ḟy

fy
0

0 0 0 ḟz

fz

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

1
fxx
fyy
fzz

⎞
⎟⎟⎠

= ĖtEt
−1ρt ≡ Ltρt .

Here Lt would be indeterminate if 1/ fi were singular. In such
a case, we seek well-defined higher-order derivatives to obtain
a valid description for the evolution of states. Assuming that
any function fi in the map has a zero at tc and supposing that
ḟi(tc) is nonzero, then ḟi/ fi does not exist at tc. Here we can
Taylor expand both fi(t ) and ḟi(t ) around the critical time tc
with fi(tc) = 0. If f̈i(tc) is also zero and ḟi(tc) is nonzero, then

f̈i

fi
=

˙̇ ˙fi(tc)

ḟi(tc)

is a well-defined quantity at tc as well. Since E and L are both
diagonal, it is straightforward to see that

d2ρ

dt2
= L(2)

t ρt

is a differential equation for ρ(t ) devoid of the singulari-
ties that beset the first-order equation. Here we have defined
higher-order generators as

L(n)
t ≡ E (n)

t E−1
t = dnEt

dtn
E−1

t , (11)

with L(1)
t ≡ Lt . If the order of derivatives considered above

does not lead to a nonsingular equation, we extend the same
method to higher derivatives until we obtain a nonzero finite
value for the ratio.
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Note that this method may still not yield a finite value
for some cases even if we consider all orders of derivatives.
In such cases we find that a combination of different order
generators with suitable weights of the form∑

n

pnρ
(n)
t = 0 (12)

would yield a nondiverging time-local master equation that
holds for all time. The coefficients pn can be obtained from the
higher derivatives of the generator L(n)

t as described in the next
section. The exact dynamics can be found by solving these
differential equations which require specifying more initial
conditions than that for the traditional master equation. Our
approach is valid for nondiagonal maps as well. For reasons of
mathematical complexity and the lack of experimental litera-
ture requiring the usage of time-dependent Lindblad (or jump)
operators, the singularities present in such dynamics are left
unexplored in this paper.

V. MASTER EQUATION FOR THE SPIN MODEL

The concept of higher-order equations can be nicely il-
lustrated considering the example of the central spin model
described earlier. It also offers a viable experimental setup to
validate our findings. In general, characterizing the dynamics
observed in an experiment requires an accurate description
of the decay rates. Using the techniques of quantum process
tomography, one may infer the relevant rates with sufficient
accuracy as described below.

In terms of traceless operators Fα , Eq. (4) can be
rewritten as

ρ̇ = −i[H (t ), ρt ] + 1

2

d2−1∑
α,β=1

cαβ (t )([Fαρt , F †
β ]

+ [Fα, ρt F
†
β ]). (13)

We choose Fα to be Pauli operators (up to a normalization con-
stant) and H = hασα is the Hamiltonian. Substituting this in
Eq. (13) outputs a traceless matrix for ρ̇. Since Pauli matrices
form a basis for 2 × 2 matrices, we can express �̇r ≡ (ẋ, ẏ, ż)
in terms of the nine Kossakowski coefficients cαβ and three
parameters of the Hamiltonian. From the experimentally ob-
served data, we can determine the values of (ẋ, ẏ, ż) at each
time t using ḟ = limh→0[ f (t + h) − f (t )]/h for f ≡ (x, y, z).

Corresponding to 12 unknowns (nine from cαβ and three
more from hi) and three known quantities (ẋ, ẏ, ż), we can set
up 12 independent linear equations by choosing four linearly
independent initial states. For example, the set of states ρ1 =
|0〉 〈0|, ρ2 = |1〉 〈1|, ρ3 = |+〉 〈+|, and ρ4 = |−〉 〈−|, where
|+〉 ≡ (|0〉 + |1〉)/

√
2 and |−〉 ≡ (|0〉 + i |1〉)/

√
2, furnishes

one such choice. Determining all the unknowns involves solv-
ing the resulting linear equations. The first-order traditional
master equation so obtained from the experimental data can
now be used to locate the singular points.

The quantum process tomography [37–41] described above
leads to the equation of motion given in Eq. (8) and the
corresponding dynamical map given in Eq. (9). The generator
of the dynamics is singular when one or more of the elements
of the diagonal dynamical map goes to zero. By inspection,
we see that these points correspond to the zeros of cosN (ωt )

where ω ≡ 2A/
√

N . As mentioned earlier, despite the singu-
larities in Lspin

t = Ė spin
t (E spin

t )−1, the dynamical map in Eq. (9)
is analytic for all t . In order to construct a higher-order differ-
ential equation that avoids the singular behavior, we therefore
start from the dynamical map ρt = Etρ0, where we have taken
E spin

t ≡ Et for simplicity. We consider higher derivatives of the
equation involving the dynamical map,

ρ
(k)
t = E (k)

t ρ0, (14)

with the equation for ρ
(1)
t being the same as Eq. (8). The

strategy we adopt is as follows. The terms that appear in
E (k)

t are derivatives of cosN (ωt ), which in turn are functions
of sin(ωt ) and cos(ωt ). Computing a sufficient number of
derivatives as in Eq. (14) allows us to invert these functions
and write them in terms of ρ

(k)
t and the next suitable higher

derivative of ρt can be expressed fully in terms of its lower
derivatives, leading to a higher-order dynamical equation of
the form given in Eq. (12).

The x component for the Bloch vector representing ρt is
transformed by the dynamical map as ρt,x = cosN (ωt )ρ0,x.
Since the y component also follows the same pattern and
since the map is diagonal, we focus on obtaining a higher-
order differential equation for ρt,x without loss of generality.
The equation so obtained also applies to the full density
matrix. Exploiting the properties of derivatives of sin(ωt )
and cos(ωt ), we express any higher-order cosN (ωt ) into a
binomial sum of exponentials that upon simplification turns
to a sum of cosines

cosN (ωt ) = 1

2N

N∑
j=0

(
N

j

)
ei(N−2 j)ωt . (15)

For even N we obtain a binomial sum of cosines as follows:

cos2m(ωt ) = 1

4m

(
2m

m

)
+ 1

22m−1

m∑
j=1

(
2m

m + j

)
cos(2 jωt ).

(16)

Odd-order derivatives of ρt,x contain m terms, each containing
sin(2 jωt ) for j = 1, . . . , m. The first m odd-order derivatives
can be collected and rewritten as a system of linear equations
of the form⎡

⎣a11 · · · a1m

· · · · · · · · ·
am1 · · · amm

⎤
⎦

⎡
⎣ sin(2ωt )ρ0,x

...

sin(2mωt )ρ0,x

⎤
⎦ =

⎡
⎢⎣ ρ

(1)
t,x
...

ρ
(2m−1)
t,x

⎤
⎥⎦,

where ai j denotes the coefficients gathered from odd differen-
tiations,

ai j = (−1)i 1

22m−1

(
2m

m + j

)
(2 jω)2i−1. (17)

The superscript on ρt,x denotes the order of the time deriva-
tive. The binomial coefficient that appears in ai j is distinct
and nonzero for each value of j, while the factor (2 jω)2i−1 is
nonzero and different for each value of i given a value of j.
So we find that each ai j is nonzero and distinct, which means
that the determinant of the m × m matrix A = [ai j] is always
nonzero. This system of linear equations can therefore be
inverted so as to express sin(2 jωt )ρ0,x in terms of d jρt,x/dt j
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for j = 1, 3, . . . , 2m − 1. The right-hand side of the equation
for the (2m + 1)th derivative of ρt,x is then completely deter-
mined by sin(2 jωt )ρ0,x for j = 1, . . . , m, which in turn can
be now written in terms of the odd derivatives of ρt,x. This
leads to a differential equation of order 2m + 1 of the form∑m

j=0 p2 j+1ρ
(2 j+1)
t = 0. Here we have used the fact that both

ρt,x and ρt,y have the same dynamics to write the differential
equation for the full density matrix.

For odd N we can do a similar analysis starting from

cos2m+1(ωt ) = 1

22m

m∑
j=0

(
2m + 1

j

)
cos[(2m − 2 j + 1)ωt].

(18)

The first m + 1 odd-order derivatives (ρ (1)
t,x , . . . , ρ

(2m+1)
t,x )T can

be equated to⎡
⎣ a11 · · · a1,m+1

· · · · · · · · ·
am+1,1 · · · am+1,m+1

⎤
⎦

⎡
⎣ sin(ωt )ρ0,x

...

sin[(2m + 1)ωt]ρ0,x

⎤
⎦,

with

ai j = (−1)i 1

22m

(
2m + 1

m + j

)
[(2 j − 1)ω]2i−1. (19)

This system of linear equations again yields sin[(2 j + 1)ωt]
for j = 0, 1, . . . , 2m in terms of the odd-order derivatives of
ρt,x. Differentiating ρt,x twice more leads to a master equation
as desired. Note that when N → ∞, cosN (ωt ) → e−2A2t2

with
the singular behavior is pushed to t → ∞. A Markovian, first-
order, dephasing master equation is obtained in this limit with
many states being mapped to the same state on the z axis of
the Bloch sphere asymptotically only.

For example, a third-order master equation is obtained for
N = 2 and ω = 1 in the central spin model. The correspond-
ing dynamical map is E (t ) = diag (1, cos2(t ), cos2(t ), 1).
Rewriting cos2(t ) as [1 + cos(2t )]/2 leads to ρ̇t =
− sin(2t )ρ0, ρ̈t = −2 cos(2t )ρ0, and ˙̇ ˙ρt = +4 sin(2t )ρ0.
Combining these derivatives, we see that

4ρ̇t + ˙̇ ˙ρt = 0. (20)

This higher-order master equation for the central spin model
with N = 2 is numerically solved for a pure initial state r0 =
(1/2, 1/

√
2, 1/2) as shown in Fig. 2. While the first-order

equation (8) is singular at π/2 and hence is unable to prop-
agate the solution beyond that point, we see that the dynamics
obtained from Eq. (20) is smooth at all times, just as desired.

It is important to note that the higher-order equations can
also be obtained by directly using the diverging generator
and its derivatives leading to an equation that closely re-
sembles Eq. (12). We use ρ

(n)
t = L(n)

t ρt in Eq. (12) so that∑
n pnL(n)

t ρt = 0 holds true for all ρt , which in turn yields∑
n

pnL(n)
t = 0. (21)

For the central spin model it is possible to start from ρ
(1)
t =

Ltρt instead of Eq. (14) and arrive at Eq. (21) without consid-
ering the dynamical map. However, the steps involved will
be more complicated when using the generator rather than

FIG. 2. Numerical solutions of the higher-order master equation
(20) (dashed curves in white) are plotted componentwise along with
the elements of the dynamical map from Eq. (9) with N = 2 (colored
solid curves). This plot displays the evolution of each component
of the Bloch vector for the initial pure state �r0 = (1/2, 1/

√
2, 1/2).

Solutions given by higher-order equations exactly agree with that of
the dynamical map and the dashed white curves fall exactly on top
of the solid colored ones. This is unlike the solution of the first-order
equation, which blows up at π/2 and cannot be propagated further.
Time on the x axis is shown in units of 1/ω.

the map because of the ρt appearing on the right-hand side.
While using Eq. (14) makes it simpler to see how the higher-
order equation is obtained, it also gives the impression that
knowledge of the full dynamics in terms of the map at all
times is necessary for obtaining the higher-order equation. We
point out here that this is not the case and starting from the
(singular) generator obtained using the process tomography
steps outlined at the beginning of this section, one can directly
obtain the higher-order master equation.

We illustrate this approach for the central spin model with
N = 2 and ω = 1. As noted previously, the x and y compo-
nents of Bloch vector undergo the same dynamics and so we
consider only the x component ρt,x. Denoting the x component
of generator by Lt,x, we have

Lt,xρt,x = −2 tan(t )ρt,x,

L(2)
t,x ρt,x ≡ (L̇t,x + L2

t,x )ρt,x = 2[tan2(t ) − 1]ρt,x,

L(3)
t,x ρt,x ≡ (L̈t,x + 3Lt,x ˙Lt,x + L3

t,x )ρt,x = 8 tan(t )ρt,x.

From the equations above, as expected, we recover Eq. (20) in
the form 4Lt + L(3)

t = 0.
From either of the methods we described above to obtain

the higher-order equations, it is clear that their order is N + 1
for even N and N + 2 for odd N . Consequently, we would
need as many specified initial conditions to overcome the
issue of singularity. In other words, it is mandatory to know
the history of the particle to determine the further evolution
of a state. As this feature suggests the presence of memory
effects to varying extents, it is then natural to speculate if
a correspondence between the number of bath spins and the
degree of non-Markovianity can be established. More on this
is discussed in Sec. VII.
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VI. HIGHER-ORDER MASTER EQUATIONS FOR OTHER
TYPES OF SINGULAR OPEN DYNAMICS

The singular behavior for the first-order master equation of
the central spin model is not unique to this model. We present
several examples of CPTP maps with singularities, the first-
order master equations, and their corresponding higher-order
master equations whose solutions are free of singularities.
As before, we phrase our discussion in terms of dynamical
maps because of the simplicity and clarity afforded by this ap-
proach. Having the dynamical maps at hand also helps in ver-
ifying that the solutions of the higher-order master equations
that are obtained indeed do reproduce the dynamics faith-
fully. We reiterate that as with the central spin model, the
(singular) generator is sufficient to obtain the corresponding
higher-order equations and knowledge of the full dynamics
in terms of the dynamical map for all t is not needed. We
categorize the examples considered based on the dynamical
map being unital or not.

A. Unital dynamical maps

We continue with the central spin model and consider a
case where the locations of the singularities of the first-order
master equation can be moved around by changing the model
parameters. This means that the difficulties encountered in
the numerical propagation of the first-order equation can be
modulated and for certain choices of model parameters such
solutions can become impracticable or even impossible to
obtain. In this case, if one were to take the restricted point
of view of an observer who has access only to the central
spin and does process tomography to determine the form
of the generator, the dynamical map for all times remains
inaccessible to the observer since even numerical integration
of the obtained first-order master equation may be precluded.
Proceeding to construct the higher-order master equation then
appears to be the only path forward for this restricted observer
in order to gain predictive power over its evolution.

We consider a central spin under the influence of two
environment spins with unequal interaction strengths as given
by the Hamiltonian

H = ω1

2
(σz ⊗ I ⊗ σz ) + ω2

2
(σz ⊗ σz ⊗ I)

and Et = diag (1, cos(ω1t ) cos(ω2t ), cos(ω1t ) cos(ω2t ), 1) is
the map describing the reduced dynamics of the first qubit.
The generator will include two tangent functions, each with a
different argument. It is possible to change the location of the
singularity by altering the strength of interaction. In addition,
if we increase the number of environment spins, the num-
ber of tangent functions in the generator will also increase.
When singularities are aggregated, propagating the first-order
differential equation beyond them without accumulating sig-
nificant errors becomes increasingly difficult. For the case of
two environment spins, equations of motion for the x and y
components of the Bloch vector of the state of the central spin
are again the same (the dynamics of the z component does
not exhibit any singular behavior). The higher-order equation
for ρt,x is

ρ
(4)
t,x + 2

(
ω2

1 + ω2
2

)
ρ

(2)
t,x + (

ω2
1 − ω2

2

)2
ρt,x = 0. (22)

Solving this fourth-order equation yields the correct
dynamics.

As a second example consider the dynamical map given
below which is CPTP for all γ , ω � 0 and has no inverse
at ωt = (m + 1

2 )π , m ∈ Z, due to the singular nature of the
dynamics of the x and y components of the Bloch vector:

Et =

⎛
⎜⎝

1 0 0 0
0 e−γ t cos(ωt ) 0 0
0 0 e−γ t cos(ωt ) 0
0 0 0 e−γ t

⎞
⎟⎠. (23)

The functions appearing in this dynamical map are nonperi-
odic and the singularities in the dynamics occur at periodic
intervals of π/ω.

The traditional master equation for the above map is

ρ̇t = 1
4 {γ (σxρtσx − ρt ) + γ (σyρtσy − ρt )

+ [γ + 2ω tan(ωt )](σzρtσz − ρt )}. (24)

For simplicity, assume that ω = γ = 1. The higher-order mas-
ter equation for this example looks like

ρ
(4)
t + Mρt = 0, (25)

where M = diag(0, 4, 4,−1). Choosing different values of ω

and γ results in a master equation of different degree than the
above.

It would be misleading to dismiss the singularities in the
first-order equations as manually avoidable by choosing to
“jump” over those discrete points while regularizing the tra-
ditional master equations, either by analytically integrating
the rates or via forceful numerical techniques. Although one
may try to “escape” the singular points by carefully choosing
the integration limits, it relies on having the exact knowledge
of location of singularities. However, one can come up with
examples where it is impossible to obtain all singular points
analytically. The advantage of using higher-order equations
is further emphasized by the fact that it is not necessary to
know when singularities occur, as shown in the next example.
Returning to the generic form in Eq. (10) for the diagonal
unital map, consider the following choice:

fx(t ) = fy(t ) = 1
6 [2 + 4e−γ t − 3 sin2(ωt )], (26a)

fz(t ) = 1
3 (4e−γ t − 1). (26b)

This dynamical map is constructed in such a way that it is not
possible to obtain all the singular points analytically. In addi-
tion to γ t = log(4) and ωt = (m + 1

2 )π for m = 0, 1, 2, . . .

for any γ , ω � 0, the dynamics exhibits singular behav-
ior whenever the following transcendental equation holds
true: γ t = log 4 − log[3 sin2(ωt ) − 2]. The traditional master
equation is

ρ̇t = γ

4 − eγ t
[(σxρtσx − ρt ) + (σyρtσy − ρt )]

+
(

γ

eγ t − 4
+ 4γ + 3ωeγ t sin(2ωt )

8 + eγ t [1 + 3 cos(2ωt )]

)
(σzρtσz − ρt ).

(27)

The higher-order equation provides a reliable description
since it naturally gets rid of all the singularities regardless of
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our knowledge of their whereabouts. We obtain the following
higher-order master equation when γ = ω = 1 that holds for
all times:

ρ
(5)
t = 4ρ

(1)
t − 3ρ

(3)
t . (28)

In this last example for unital maps, we demonstrate the
presence of singularities due to the presence of zeros at dis-
crete times, in all three diagonal elements of the dynamical
map. For 1/n1 + 1/n2 + 1/n3 � 1 and a1, a2, a3 � 0, the fol-
lowing choice of diagonal elements of the map from Eq. (10)
stays CPTP:

fx(t ) = 1 − 2

(
1 − e−a1t

n1
+ 1 − e−a2t

n2

)
, (29a)

fy(t ) = 1 − 2

(
1 − e−a1t

n2
+ 1 − e−a3t

n3

)
, (29b)

fz(t ) = 1 − 2

(
1 − e−a2t

n2
+ 1 − e−a3t

n3

)
. (29c)

The constants aj and n j determine when the singularities
occur and we can identify one set of singular points observed
for each component of the Bloch vector of the state of the
system qubit at times

t j = 1

a j
ln

(
1

1 − n j

4

)
, j = 1, 2, 3.

The rates appearing in the traditional master equation are
given by

γx = 1

4

(
ḟx

fx
− ḟy

fy
− ḟz

fz

)

and its cyclical permutations among x, y, z. For this map,
singularities occur in all three Bloch vector components at
distinct times determined by the constants aj and n j . The
higher-order equation without singularities that holds for all
times is given by

M1ρ
(3)
t + M2ρ

(2)
t + M3ρ

(1)
t = 0, (30)

where

M1 = diag(0, 1, 1, 1),

M2 = diag(0, a1 + a2, a1 + a3, a2 + a3),

M3 = diag(0, a1a2, a1a3, a2a3).

B. Nonunital dynamical maps

The Jaynes-Cummings Hamiltonian in the interaction
picture for a two-level atom coupled to a quantized electro-
magnetic field is given by

ĤJC = ω(aσ+ + a†σ−). (31)

This model corresponds to a nonunital dynamical CPTP
map [5]:

EJC(t ) =

⎡
⎢⎢⎣

1 0 0 0
0 f (t ) 0 0
0 0 f (t ) 0

f 2(t ) − 1 0 0 f 2(t )

⎤
⎥⎥⎦. (32)

The corresponding generator is

LJC(t ) =

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 ḟ
f 0 0

0 0 ḟ
f 0

2 ḟ
f 0 0 2 ḟ

f

⎤
⎥⎥⎥⎥⎦. (33)

This example is presented to show that our method can be
applied to nonunital maps also. For a real function f , the time
evolution corresponds to a time-local Lindblad-like master
equation [13]

ρ̇(t ) = − ḟ (t )

f (t )
[2σ−ρtσ+ − σ+σ−ρt − ρtσ+σ−], (34)

where σ+ = |e〉 〈g| and σ− = |g〉 〈e|. Choosing f (t ) =
cos(ωt ) corresponds to the Jaynes-Cummings model on reso-
nance, describing the interaction of an atom with a cavity field.
We see that Eq. (34) is singular just like Eq. (8) because of the
tan(ωt ) term. However, the regularized higher-order master
equation in this case will be different from the spin model
(N = 1) described earlier which has a second-order master
equation. Noticing that

L(4) + 4ω2L(2) = diag(0,−3ω4,−3ω4, 0), (35)

a straightforward calculation reveals that

M1ρ
(4)
t + M2ρ

(2)
t + M3ρt = 0, (36)

where

M1 = diag(0, 1, 1, 1),

M2 = diag(0, 4ω2, 4ω2, 4ω2),

M3 = diag(0, 3ω4, 3ω4, 0).

We can equivalently rewrite Eq. (35) as

ρ
(4)
t + 4ω2ρ

(2)
t = 3

2ω4(σzρtσz − ρt ). (37)

The right-hand side of Eq. (37) has a different set of operators
compared to Eq. (34) and it resembles a dephasing term with
σz operators rather than the σ± appearing in the first-order
master equation. This highlights the fact that the higher-order
master equations may have a substantially different form from
the first-order ones in general. However, the presence of the
higher derivatives means that these equations do not lend
themselves to the usual interpretation of rates or Lindblad
operators. For instance, in the present case, the operator M3

acting on the state ρt cannot be understood as a generator of
time translations in the same manner as LJC. The meaning
imparted by extra terms present in higher-order equations
appear to be context dependent and thus inferring their exact
meaning is beyond the scope of this study. It may be noted
that the dynamics described by both Eqs. (34) and (37) are the
same except at the singular points.

VII. COMPARING NON-MARKOVIAN PROCESSES

The necessity to explore higher-order differential equations
for a clear description of singular processes naturally begs
the question of the relationship, if any, between the extent of
non-Markovianity and the order of equations, or essentially
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the nature of singularities. This prompts us to seek a means of
comparing different singular non-Markovian processes using
existing measures of non-Markovianity. Non-Markovianity
manifests itself in various ways such that there is no single
measure or a set of instructions by which comparison of its
“degree” can be conclusively done. Multiple measures have
been developed as indicators of non-Markovian dynamics in
the past, based on, for example, the nearest approximation to
Markovian channels [22], entanglement between the system
and ancilla along with the deviations from the divisibility of
dynamical maps [23], nonmonotonic behavior of fidelity [24],
quantum Fischer information [25], the volume of accessible
states [26], nonzero quantum discord [27], and the behavior
of trace distance [28–30]. There have been multiple studies
to investigate the inflow of information and some of these
studies have also considered those cases when the map is
noninvertible [15–17]. Our interest, however, is on the rela-
tionship between the nature of singularities and the extent of
non-Markovianity from the perspective of information inflow.
We will mainly focus on the trace distance measure defined
in [28] owing to its quantitative nature and applicability to
experimental realizations [42].

A quantum process is non-Markovian if there is an initial
pair of states ρ1(0) and ρ2(0) such that the trace distance
D(ρ1(t ), ρ2(t )) starts to increase for some time t > 0. A mea-
sure of non-Markovianity introduced by Breuer et al. [28]
defined in terms of this property is

N (Et ) = max
ρ1,2(0)

∫
t,σ>0

dt σ (ρ1(0), ρ2(0), t ), (38)

where

σ (ρ1(0), ρ2(0), t ) = dD(Etρ1(0), Etρ2(0))
dt

(39)

denotes the time derivative of the trace distance of the evolved
pair of states. The trace distance for states ρ1 and ρ2 in turn is
given by

D(ρ1, ρ2) = 1
2 Tr‖ρ1 − ρ2‖, (40)

where the modulus of an operator A is ‖A‖ =
√

A†A. The
integral over time in Eq. (38) extends over all intervals in
which σ (t ) > 0. The maximum is taken over all pairs of
initial states ρ1,2(0). Note that the Breuer-Laine-Piilo (BLP)
measure N (Et ) is a positive functional of the dynamical map
Et and that it acts as a measure for the maximal total inflow
of information from the environment back to the open system.
By construction, all Markovian processes have N (Et ) = 0.

For the spin model, σ (t ) is positive at periodic intervals and
N (E spin

t ) adds up to infinity for any N when the contributions
from all the periods are added up. Therefore, this measure
cannot be used to compare the degree of non-Markovian
behavior corresponding to different values of N . Analysis of
other measures of non-Markovianity like the one quantified
based on the change in Bloch sphere volume V (t ) of the set
of accessible states of the evolved system [26] also reveals a
similar behavior independent of N , precluding the comparison
that we seek. The divergent behavior of the BLP and related
measures is not unique to the central spin model we consider.

Information inflow from the environment to the system
is an unmistakable signature of non-Markovian evolution.

FIG. 3. Mutual information between the central spin and envi-
ronment is plotted for a varying number of spins in the bath. The
numbers of spins in the bath are placed as labels next to each curve
in the plot. The higher the number of interacting spins, the longer
the interval between vanishing of mutual information, eventually
reaching infinity for large N . Here we have chosen A = 0.5 with
Ak = 0.5/

√
N . Time on the x axis is shown in units of 1/ω.

In order to explore the exchange of information of between
the two in the central spin model, we look at the mutual
information between the central spin and its environment of
spins. Using the von Neumann entropy S for a system ρ cal-
culated as S(ρ) = −Tr(ρ log ρ), the mutual information I is
evaluated as

I (ρsys, ρenv) = S(ρsys) + S(ρenv) − S(ρjoint ),

where ρsys is the state of the system as in Eq. (7), ρenv = I/2N

is the bath state, and ρjoint = Uη0U † for U = e−iHspint , all
evaluated at time t . This mutual information is plotted for
different values of N in Fig. 3. We see from the oscillatory
behavior of the mutual information that information is de-
localized between the system and the environment and then
localized back in the respective components in an alternating
manner. The rate at which this exchange occurs depends on
the number of environment spins, N . The time taken by the
information, once delocalized, to again return to the central
spin scales as

√
N . Note that this scaling is connected to the

choice we made in Eq. (6) for the Hamiltonian where the
coupling between the central spin and the environment spins
scaled as 1/

√
N . We emphasize that this is different from

the example considered in Ref. [28], wherein the interaction
Hamiltonian was not scaled with the number of spins in the
environment. This choice resulted in a process that had no
Markovian limit as a function of N . However, in our case, we
recover the expected case of Markovian evolution as N → ∞
with the delocalized information never returning to the central
qubit.

The dynamics of the mutual information highlights an
aspect of non-Markovian evolution that is not typically ad-
dressed by the various known measures of non-Markovianity.
While the amount of inflow of information from the environ-
ment is captured by a measure of non-Markovianity like the
BLP measure, we see that central spin models with different
N are also characterized by the timescales at which the inflow
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happens. Non-Markovianity is indeed recognized as a feature
that makes mathematical descriptions of physical phenomena
rather difficult. In the absence of a comprehensive under-
standing of non-Markovian quantum evolution, we are led to
consider the possibility that more than one measure may be
necessary for capturing different aspects of non-Markovianity.
We consider whether persistence of information exchange is
an aspect of non-Markovianity that can be quantified in a
manner that complements the existing measures. In addition
to the central spin model, several processes allow the identi-
fication of cycles in their evolution such that the contribution
of further dynamics to the BLP measure after the first cycle is
redundant. Taking a cue from this, we propose supplementing
the BLP measure with another quantity that determines a
characteristic time τ over which the integral defining the BLP
measure in Eq. (38) can be limited to. The average rate of
inflow of information over one such cycle can then be used
as an effective quantifier that allows us to compare the degree
on non-Markovianity of different processes belonging to the
same family. In other words, the ratio N (Et )/τ with N (Et )
redefined as

N (Et ) = max
ρ1,2(0)

∫ τ

t,σ>0
dt σ (ρ1(0), ρ2(0), t ) (41)

becomes the figure of merit we explore in the subsequent
discussion.

Finding an optimal pair of states that maximize the integral
under consideration in Eq. (41) is made easier with the help of
theorems proved in Ref. [43], which state that an optimal pair
of states must be orthogonal to each other and are restricted to
the boundary of the state space. For qubit systems, this choice
reduces to finding the optimal pair of pure, mutually orthog-
onal states that lie on the surface of the Bloch sphere. For all
the examples discussed below, we have found the optimal pair
of states by discretizing the surface of the Bloch sphere and
evolving the antipodal states by the chosen dynamical map.
The maximum of the sum of trace distances between evolved
states over all the time intervals in [0, τ ] for which σ > 0 is
then divided by τ for determining the quantity of interest

Mτ (Et ) := N (Et )

τ
. (42)

This rate of information inflow can be applied to any generic
non-Markovian process.

The purpose of cutoff time τ is to identify the time limit
by which a predetermined amount of information flows into
the system from its environment. The interval τ varies greatly
depending on the required proximity to the initial state. This
statement is equivalent to choosing an error tolerance ε > 0
for comparing the similarity of the dynamical map at a later
time Et with the initial map E0 = I. It is well known that
in finite-dimensional state spaces, all norms are equivalent
[44]. Without loss of generality, we employ the L1-norm for
measuring the distance between the dynamical maps. In other
words, we need the first occurrence of time τε for which
‖Eτε

− E0‖1 = ∑
i, j |(Eτε

)i j − (E0)i j | � ε, where i and j de-
note row and column indices, respectively, and (dEt/dt )|τε

<

0 so as to select only those times for which the map is re-
turning. Choosing a sufficiently smaller tolerance typically
leads to longer recurrence times. Although for the purpose

FIG. 4. L1-norm for the dynamical map from Eq. (23) for the
initial time and intermediate time plotted as a function of time. The
tolerance level is fixed at 0.5. The first arrivals of information inflow
to the required tolerance are denoted by τ 1

0.5 and τ 2
0.5 for different os-

cillation frequencies, respectively. The lesser time for the recurrence
of information inflow indicates a higher degree of non-Markovianity.
Note that time has the units of 1/γ in this figure.

of comparing different non-Markovian processes belonging to
the same family the first occurrence of information inflow up
to the prescribed tolerance level is sufficient, one might as well
choose any such occurrence as long as comparisons are done
on an equal footing.

We will demonstrate the discussion above using
the example described in Eq. (23), namely, Et =
diag (1, e−γ t cos(ωt ), e−γ t cos(ωt ), e−γ t ). Consider two such
processes with ω1 = 100, ω2 = 50, and γ1 = γ2 = 1 ≡ γ .
Any general non-Markovian process, especially the ones
with non-Markovian decay, need not bring the dynamical
map as close to the identity matrix as desired and thus the
tolerance level for comparison must be carefully chosen.
We can mitigate this problem by choosing the first local
minima for both processes as the respective tolerance limits
and then choose the maximum of the two to ensure both
processes witness the norm reaching the assigned limits. For
the processes at hand, we fix a tolerance level of ε = 0.5.
We desire to find the time τ for which ‖Eτ − I‖1 � 0.5. We
determine that τ0.5 is 0.0568 and 0.1169 for the first and
second processes, respectively, as is evident from Fig. 4. The
quantity M1

τ for the first process turns out to be 30.1507
and M2

τ is 14.3495 for the second, which is consistent with
the observation that the process having frequent oscillations
turns out to be more non-Markovian than the one with slower
oscillations.

Defining a process-independent cutoff time τ for a nonpe-
riodic process is a challenging task. Hence, one may naively
assign an infinite-time period for all such processes, allow-
ing the BLP measure to also accumulate to infinity over an
unbounded time interval. It is easy to see that Mτ (Et ) for
any process is a bounded quantity. The key point is that the
BLP measure is limited by the maximum difference in the
trace distance for a pair of states and thus is always bounded
by 1 for qubits. Since this increase in trace distance happens
over a finite time, the proposed measure will always have a
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finite limiting value. However, it may not be straightforward
to obtain the measure value in such cases.

For the spin model, choosing tolerance limits as ε = 10−2

and 10−3 leads to cutoff times τ = 6.184 and 6.252, respec-
tively, both of which are close to 2π . The corresponding
measure values turn out to be 0.3226 and 0.3198. One may as
well choose ε = 0, indicating complete inflow of information
resulting in a cutoff time the same as the period of the process
which is 2π . In addition to the generic procedure to find the
cutoff time τ for any process, the periodic and quasiperiodic
processes offer simpler ways of fixing it.

A. Periodic cases

All periodic processes repeat their dynamics after their
respective time periods T and thus naturally furnish a time
τ until which the BLP measure must be calculated. The com-
plete dynamics of the system is captured by the dynamical
map Et whose period will then ensure that all the states on the
Bloch sphere revisit their initial configuration corresponding
to t = 0 exactly and any dynamics beyond this period is re-
dundant for eliciting the degree of non-Markovian behavior.
Note that multiple pairs of states might revisit their initial
configurations even before one cycle of the dynamical map is
complete. By choosing the period of the map we are insisting
that all states return to their positions in state space. The initial
configurations are typically ones in which there are no system-
environment correlations, particularly if one considers only
completely positive dynamical maps. Since all system states
have reset their correlations, if any, with the environment at
intervals defined by the period of the map, we can use T as the
upper limit of the integral in Eq. (41). The integral itself will
have the same value if integrated over any interval of length
T . The average rate of information inflow is then defined as

Mτ (Et ) = 1

T
max
ρ1,2(0)

∫ T

0
σ>0

dt σ (ρ1(0), ρ2(0), t ). (43)

We demonstrate the utility of Eq. (43) by applying it to the
spin model described in Sec. III. Extension to other periodic
cases is straightforward. For the spin model, the time period of
the map depends on N . We find that T = 2π

√
N for odd N and

π
√

N for even N and σ > 0 in the interval [π
√

N/2, π
√

N]
for all N and additionally in the interval [3π

√
N/2, 2π

√
N]

for odd N . The average rate of information inflow for this
example is Mτ (E spin

t ) = 1/π
√

N . We see that Mτ (E spin
t ) is

able to distinguish between central spin models with different
numbers of bath spins and allows comparisons among them
in terms of their degree of non-Markovianity. This is unlike
the previously proposed measure of singular behavior from
Ref. [18], where the value of the measure is 1

2 irrespective
of N . In our discussion of the dynamics of mutual informa-
tion earlier, we noted that Markovian evolution is expected
as N → ∞. We see that, as expected, Mτ (E spin

t ) converges
to zero as N becomes large as shown in Fig. 5, indicating
Markovian limiting behavior.

We would like to highlight that the scaling constant directly
affects the decay rate. Suppose the interaction strength in
the Hamiltonian of the central spin model in Eq. (6) is B.
The corresponding average inflow rate from Eq. (43) is then

FIG. 5. Average rate of information inflow Mτ (E spin
t ) for the

central spin model plotted against the number of bath spins. Scaling
the coupling constant in Eq. (6) as 1/

√
N plays an important role

in keeping the total interaction energy between the central spin and
the environment constant, independent of N . In this case we see that
the evolution becomes Markovian when N → ∞, as expected with
Mτ (E spin

t ) approaching zero in this limit.

proportional to B. In the discussion above, we have considered
the interaction strength as A/

√
N with A = 1

2 .

B. Quasiperiodic cases

In what follows, we supplement our proposal for modifi-
cation of the BLP measure with an example where we find
τ , although the map has only an approximate periodicity.
Consider the three-spin model with the Hamiltonian

H = 1 + π

4
(σz ⊗ I ⊗ σz ) + 1 − π

4
(σz ⊗ σz ⊗ I)

and the corresponding map describing the reduced
dynamics of the first qubit, Et = diag (1, [cos(t ) +
cos(πt )]/2, [cos(t ) + cos(πt )]/2, 1). Clearly, there does
not exist a period for this map since the two frequencies
appearing (1 and π in this case) are incommensurate. We
propose two different approaches for finding the suitable
time τ .

For all quasiperiodic processes, the general method can be
understood as a corollary of the Poincaré recurrence theorem.
The theorem states that for all finite-dimensional systems
with a time-independent Hamiltonian, the state vector |ψ (T )〉
returns arbitrarily close to the initial state |ψ (0)〉 [45]. Pro-
ceeding with the method of obtaining τ earlier, we fix the error
limit ε to 0.1 for the three-spin example considered above
which results in τ0.1 = 5.92. Integrating Eq. (43) over all the
intervals wherein the trace distance between a pair of states
in increasing until τ0.1, we find the modified measure Mτ0.1 to
be 0.5204. Similarly, τ0.01 = 43.95 and τ0.001 = 43.98 yield
the measure values as 0.5130 and 0.5128, respectively. No-
ticeably, these values are more or less similar for different
tolerance levels. Since higher accuracy can only be achieved
after longer times, BLP measure values will also accumulate
proportionally for the optimal pair of states. Thus we conjec-
ture that the measure values remain almost the same for lesser
tolerance values as well.
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The presence of quasiperiodicity allows us to adopt an
alternative procedure which is as simple as rationalizing the
irrational frequencies that appear so that the resulting terms
of the dynamical map have a well-defined period. Since the
irrationals are dense in R, we are always guaranteed to find
the rational approximation of any irrational number to the
needed accuracy. For the case at hand, choosing 22

7 as the
approximation of π yields the period as 14π . The proposed
measure N (Et )/τ then has the value 0.5129, which is also
closer to the values obtained by the other method.

In the sense of information inflow, we may conclude that
certain processes are more non-Markovian than the others, as
evidenced by the measure we introduced. In essence, the pro-
posed addition to the BLP measure captures the differences in
the degree of non-Markovianity between any two processes as
advertised.

VIII. DISCUSSION AND CONCLUSION

State preparation or initialization of a quantum system is a
ubiquitous and important step in pretty much all experiments
exploring the quantum realm. Initialization is an important
step in running any algorithm in a quantum information pro-
cessor and it is called for in most other applicable quantum
technologies as well. Whether it is in the context of initializing
an ensemble of identical quantum systems that are in different
states into a common initial state or in the context of driving a
single quantum system in an arbitrary state deterministically
into a specific initial state, the preparation device has to induce
dynamics on the system such that it is a many-to-one map
of the kind we have discussed at length. During initializa-
tion, the quantum system of interest undergoes open quantum
dynamics in contact with a preparation device that serves
as its immediate environment. Our analysis shows that the
preparation step can very well correspond to a singular point
in the dynamics. Unless the strong assumption is made that
after initialization the system and the preparation device are
in a completely uncorrelated product state, further evolution
of the system state may depend on the state from which the
initialization process started. Note that, in fact, the preparation
device must return to the same quantum state after initializa-
tion irrespective of the system state that was prepared for all
preparations to yield identical subsequent dynamics.

In this paper we have explored in detail how such sin-
gular behavior in open quantum dynamics can be described
mathematically using master equations with higher-order time
derivatives. We see that such singular behavior may be much
more common than previously imagined in the context of
state preparations, lending added significance to our results.
Our construction not only provides a means of propagating
system states across the singular points of the normal first-
order master equations, it also highlights the role that the
environment can play in endowing various trajectories in state
space that meet at the singular point with independent and dis-
tinct subsequent evolution. It may even be possible to observe
subtle variations in subsequent trajectories of the same ini-
tial state in quantum process tomography experiments arising
from differences in the starting point of state initialization and
residual correlations that may exist between the system and
state preparation device.

It is interesting to note that from the various examples
we have considered wherein higher-order master equations
turned out to be useful, there is no particular discernible
pattern for the structure of such equations. While a detailed
characterization of the families of higher-order equations that
may appear is beyond the scope of the present work, one
way of understanding the possible origin of this variety is the
following. Since the trajectories of multiple states coincide at
the singular points, it is safe to say that at these points, relevant
information that determines the future of each trajectory no
longer resides in the state of the system. Given that quantum
information can lie delocalized across multiple subsystems,
this information can either lie delocalized across the system
and its environment or be contained entirely in the state of
the environment or both. The trajectories separating again
can then be attributed to this information flowing back. The
information inflow need not always produce a change in the
state of the system that is first order in time. It may affect
higher-order time derivatives due to the interplay between the
system-environment dynamics and the flow of information
from the environment and/or from the delocalized form back
to the system state.

In a different context, this idea was presented in [46]
where, using the Jaynes-Cummings model, an example was
constructed in which two different system-environment inter-
actions can lead to identical master equations but different
trajectories for a qubit. The difference between the two
Hamiltonians involves an instantaneous switch in the parame-
ters that happens at a singular point in the dynamics such that
the first-order master equation remains the same. However,
two different solutions of the same master equation starting
from the same initial state are obtained with and without the
switch. From our point of view, the switch corresponds to
rapidly changing the system-environment parameters exactly
when the information that determines and differentiate sub-
sequent dynamics of the qubit is not available in its state.
The effect of the switch is in modifying higher-order time
derivatives of the system state and so it does not appear in
the first-order master equation. The trajectories followed by
the same initial state with and without the switch are both
solutions of the first-order equation, but looking at the overall
evolution it is easy to distinguish the two as expected.

The role of information inflow from the environment into
the system that disambiguates trajectories after singular points
in the context of the experimentally implementable central
spin model led us to the question of non-Markovian behavior
in such models. With the aim of comparing the degree of non-
Markovianity across different instances of the central spin
model, we introduced the typical timescale for information
inflow as a quantity that captures a different aspect of non-
Markovian behavior compared to the standard approaches to
quantifying such behavior. The average rate of information
inflow introduced by combining this quantity with a well-
established non-Markovianity measure helped us compare
central spin models with different numbers of environment
spins with regard to the degree of non-Markovianity in the
evolution of the central spin. We also explored the limiting
case of Markovian behavior that emerges when the number of
environment spins become very large. We then showed that
the notion of an average rate of information inflow can be
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extended to generic non-Markovian open evolution as well
and its applicability need not be limited to examples with
singular behavior. We discussed these extensions for various
types of non-Markovian dynamics possible for a single qubit.
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divisibility for qubit evolution, Phys. Rev. A 99, 042105 (2019).
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