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Quantum circuits for the realization of equivalent forms of one-dimensional
discrete-time quantum walks on near-term quantum hardware
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Quantum walks are a promising framework for developing quantum algorithms and quantum simulations.
They represent an important test case for the application of quantum computers. Here we present different
forms of discrete-time quantum walks (DTQWs) and show their equivalence for physical realizations. Using
an appropriate digital mapping of the position space on which a walker evolves to the multiqubit states of a
quantum processor, we present different configurations of quantum circuits for the implementation of DTQWs
in one-dimensional position space. We provide example circuits for a five-qubit processor and address scalability
to higher dimensions as well as larger quantum processors.
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I. INTRODUCTION

There is great interest in developing quantum algorithms
for potential speedups over conventional computers, and
progress is being made in mapping such algorithms to current
technology [1,2]. Device architecture, qubit connectivity, gate
fidelity, and qubit coherence time are metrics that define the
trade-off in designing device-specific circuits. Quantum walks
[3,4], exploiting quantum superposition of multiple paths,
have played an important role in the development of a wide va-
riety of quantum algorithms. Examples include algorithms for
quantum search [5–9], graph isomorphism problems [10–12],
ranking nodes in a network [13–16], and quantum simulation
at low- and high-energy scales [17–26].

There are two main variants of quantum walks, the
discrete-time quantum walk (DTQW) [27,28] and the
continuous-time quantum walk (CTQW) [29,30]. The DTQW
is defined on a Hilbert space comprising internal states of the
single particle called coin space and position space, with the
evolution being driven by a position shift operator controlled
by a quantum coin operator. The CTQW is defined directly
on the position Hilbert space, with the evolution being driven
by the Hamiltonian of the system and adjacency matrix of the
position space. In both variants, the probability distribution
of the particle spreads quadratically faster in position space
compared to the classical random walk [5,31–34].

Due to the Hilbert space configuration of DTQWs one
can define many different forms of quantum coin operators

and position shift operators that control the dynamics lead-
ing to variants such as the standard DTQW, directed DTQW
[35–37], split-step DTQW [38–40], and the Szegedy walk
[41]. These models have been successfully used to mimic
different quantum phenomena such as Dirac cellular automata
[40,42,43], strong and weak localizations [44,45], topological
phases [46,47], and many more.

Experimental implementations of quantum walks have
been reported in cold atoms [48,49], NMR systems [50,51],
and photonic systems [52–56]. DTQW implementations are
ideally suited for lattice-based quantum systems in which
the lattice site represents the position space. The DTQW is
realized on an ion-trap system by mapping the position space
to the motional phase space [57,58]. However, implementa-
tion of quantum walks on the quantum circuit is crucial to
explore the practical realm of their algorithmic applications.
The quantum-circuit-based implementation of DTQWs was
first performed on a multiqubit NMR system [51]. On any
hardware, limitations in the qubit number and coherence time
restrict the number of steps that can be implemented. For
implementation of a DTQW on a quantum circuit, one needs
to map the position state to the multiqubit state. Protocols
using one such mapping on an (N + 1)-qutrit superconducting
system to implement N steps of a DTQW was reported [59].
Recently, an optimal form of the quantum circuit for the real-
ization of a DTQW on a five-qubit ion-trap quantum processor
was presented and used for digital simulation of Dirac cellular
automata [60]. Here we present a complete theory beyond
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the optimal form of quantum circuits that was used for the
realization of Dirac cellular automata.

In this paper, we review different forms of DTQWs and
show their equivalence concerning physical implementation
on a quantum circuit. We also present various forms of
quantum circuits that can be realized on a five-qubit quan-
tum processor for the implementation of one-dimensional
DTQWs. The circuits provided are for two variants of the
DTQW, a standard QW and a directed QW, that can be used to
realize other forms of the DTQW and Dirac cellular automata.
They can be further scaled up and generalized to implement
multiparticle DTQWs and DTQW-based algorithms.

II. VARIANTS OF DTQWs AND THEIR EQUIVALENCE

A. Different forms of DTQWs

A DTQW is defined by the combination of particle
(coin) and position Hilbert space H = Hc ⊗ Hp. The coin
Hilbert space is defined by the particles’ internal states Hc =
span{|↑〉 , |↓〉}, and the one-dimensional position Hilbert
space is spanned by Hp = span{|x〉}, where x ∈ Z represents
the labels on the position states. The generic initial state of the
particle |ψ〉c can be written as

|ψ (δ, η)〉c = cos(δ) |↑〉 + e−iη sin(δ) |↓〉 . (1)

Each step of the walk evolves using a quantum coin operator
acting on the particle space followed by a conditioned position
shift operator acting on the entire Hilbert space. By modifying
the coin and shift operators, different forms of DTQWs are
achieved. The variants can have the same coin operation but
have different shift operations. The coin operator with a single
parameter is given by a rotation operator,

Ĉ(θ ) =
[

cos(θ ) −i sin(θ )
−i sin(θ ) cos(θ )

]
⊗ Il . (2)

Here Il is the identity operator in the position space of
length l .

Standard DTQW (SQW). Each step of a SQW is realized by
applying the operator Ŵ = ŜĈ(θ ), where the coin operation
for the SQW is given by Eq. (2) and the conditioned position
shift operator Ŝ is given by

Ŝ =
∑
x∈Z

(|↑〉 〈↑| ⊗ |x − 1〉 〈x| + |↓〉 〈↓| ⊗ |x + 1〉 〈x|). (3)

The state of the particle in extended position space after t steps
of a SQW is given by

|�(t )〉 = Ŵ t [|ψ〉c ⊗ |x = 0〉] =
t∑

x=−t

[
ψ

↑
x,t

ψ
↓
x,t

]
. (4)

The probability of finding the particle at position and time
(x, t ) is

P(x, t ) = ‖ψ↑
x,t‖2 + ‖ψ↓

x,t‖2. (5)

Figure 1 shows the probability distribution of a SQW for
different initial states for θ = π/4. The symmetry of the prob-
ability distribution naturally depends on the particular choice
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FIG. 1. Probability distribution after 100 time steps of a standard
DTQW (SQW) for different initial states with the coin parameter
θ = π/4. Initial states are |�in〉 = |↑〉 ⊗ |x = 0〉 for (a), |�in〉 =
|↓〉 ⊗ |x = 0〉 for (b), and |�in〉 = 1√

2
(|↑〉 + |↓〉) ⊗ |x = 0〉 for (c).

Alternate sites will have zero probability in a SQW irrespective of
the initial state.

of the initial state of the walker. The symmetry and variance
of the final distribution can also be affected by adding phases
and thus taking advantage of the entire Bloch sphere for the
coin operation in Eq. (2) [61].

Directed DTQW (DQW). In one-dimensional position
space each step of the DQW is evolved by applying the coin
operation as given by Eq. (2) in coin space followed by a
position shift operator Ŝd of the form

Ŝd =
∑
x∈Z

(|↑〉〈↑| ⊗ |x〉〈x| + |↓〉〈↓| ⊗ |x + 1〉〈x|). (6)

The shift operator at time t retains the particle at the existing
position state or translates to the right conditioned on the
internal state of the particle. Each step of the walk is realized
by applying the operator Ŵd = ŜdĈ(θ ). When the particle is
in the superposition of the internal state, during each step of
the walk, some amplitude of the particle will simultaneously
remain at the existing position state and translate to the right
position state. In DQWs, the probability amplitude is spread
over half the size of the position space compared to the spread
of SQW.

Split-step DTQW (SSQW). In this variant, each step of the
walk is a composition of two half-step evolutions,

Ŵss = Ŝ+Ĉ(θ )Ŝ−Ĉ(θ ). (7)

The single-parameter coin operator is again given by Eq. (2),
and the two shift operators have the forms

Ŝ− =
∑
x∈Z

(|↑〉〈↑| ⊗ |x − 1〉〈x| + |↓〉〈↓| ⊗ |x〉〈x|), (8a)

Ŝ+ =
∑
x∈Z

(|↑〉〈↑| ⊗ |x〉〈x| + |↓〉〈↓| ⊗ |x + 1〉〈x|). (8b)

During each step of the SSQW, the particle remains in the
same position and also moves to the left and right positions
conditioned on the internal state of the particle. This leads to
a probability distribution that is different from the SQW. In
addition to that, a different value of θ can be used for each
half step, giving additional control over the dynamics and
probability distribution.

In Fig. 2 we show the probability distribution over position
space after 100 steps of a SQW, DQW, and SSQW. The
position space explored in the DQW is half the size of the
SQW. The probability of finding the particle in each position
space is nonzero for the DQW when compared to the SQW, in
which the probability of finding the particle at every alternate
position is zero. Although the size of the position space is

062401-2



QUANTUM CIRCUITS FOR THE REALIZATION OF … PHYSICAL REVIEW A 104, 062401 (2021)

−100 −50 0 50 100
0

0.02

0.04

0.06

0.08

Position

P
ro

ba
bi

lit
y

SQW

DQW

SSQW

FIG. 2. Probability distribution for standard DTQW (SQW), di-
rected DTQW (DQW), and a split-step quantum walk (SSQW) with
the coin parameter θ = π/4 after 100 steps. In the plot, the zero-
probability values at alternate positions are discarded from the SQW.
The spread in position space for the SQW and SSQW are identical,
but the peak values of the distribution are different. The spread is
different for SQW and DQW, but their peak values are identical. The
initial state is |�in〉 = 1√

2
(|↑〉 + |↓〉) ⊗ |x = 0〉 for all cases.

the same for both SSQW and SQW, a nonzero probability
of finding the particle at all positions is seen in the SSQW
compared to the SQW, resulting in correspondingly lower
peak values.

B. Equivalence of variants of discrete-time quantum walk

Among the three forms of the walk presented above,
the SSQW comprises both features, extended position states
and nonzero probability at all positions. Therefore, one can
consider SSQWs to be the most general form of a DTQW
evolution. The state at any position x and time (t + 1) after
the operation of Ŵss at time t will be �x,t+1 = ψ

↑
x,t+1 + ψ

↓
x,t+1,

where

ψ
↑
x,t+1 = cos(θ )[cos(θ )ψ↑

x+1,t − i sin(θ )ψ↓
x+1,t ]

− i sin(θ )[−i sin(θ )ψ↑
x,t + cos(θ )ψ↓

x,t ], (9a)

ψ
↓
x,t+1 = −i sin(θ )[cos(θ )ψ↑

x,t − i sin(θ )ψ↓
x,t ]

+ cos(θ )[−i sin(θ )ψ↑
x−1,t + cos(θ )ψ↓

x−1,t ]. (9b)

In the description below, we show that the amplitudes of the
walker positions in the different quantum walk variants are
identical after relabeling of the position state, which estab-
lishes that they are all equivalent.

Equivalence of the SQW and SSQW. If we evolve two steps
of the SQW we will arrive at a state that is identical to Eq. (9)
with only a replacement of |x ± 1〉 with |x ± 2〉. Without loss
of generality we can show that

Ŵss ≡ Ŵ 2,

Ŝ+Ĉ(θ )Ŝ−Ĉ(θ ) ≡ [ŜĈ(θ )]2, (10)

where

Ŵss = Ŝ+Ĉ(θ )Ŝ−Ĉ(θ )

= [
(cos2 θ |↑〉〈↑| − i sin θ cos θ |↑〉〈↓|) ⊗

∑
|x − 1〉〈x| + (−i sin θ cos θ |↓〉〈↑| − sin2 θ |↓〉〈↓|) ⊗

∑
|x〉〈x|

+ (− sin2 θ |↑〉〈↑| − i sin θ cos θ |↑〉〈↓|) ⊗
∑

|x〉〈x| + (−i sin θ cos θ |↑〉〈↓| + cos2 θ |↓〉〈↓|) ⊗
∑

|x + 1〉〈x|] (11)

and

Ŵ 2 = ŜĈ(θ )ŜĈ(θ )

= [
(cos2 θ |↑〉〈↑| − i sin θ cos θ |↑〉〈↓|) ⊗

∑
|x − 2〉〈x| + (−i sin θ cos θ |↓〉〈↑| − sin2 θ |↓〉〈↓|) ⊗

∑
|x〉〈x|

+ (− sin2 θ |↑〉〈↑| − i sin θ cos θ |↑〉〈↓|) ⊗
∑

|x〉〈x| + (−i sin θ cos θ |↑〉〈↓| + cos2 θ |↓〉〈↓|) ⊗
∑

|x + 2〉〈x|]. (12)

The equivalence shown in Eq. (10) can be established by
mapping position space |x ± 2〉 to |x ± 1〉. The equivalence
of Eqs. (11) and (12) can also be obtained by using a modified
version of the shift operators S′

− and S′
+ in which |x ± 1〉 in

S− and S+ [Eq. (8)] is replaced with |x ± 2〉. That is,

Ŵ ′
ss = Ŝ′

+Ĉ(θ )Ŝ′
−Ĉ(θ ) = [ŜĈ(θ ) ]2. (13)

Since the operator Ŵss ≡ Ŵ ′
ss = [ŜĈ(θ )]

2
, the equivalence

shown in Eq. (10) can be established, and all three operators
will execute an identical transformation when applied to any
initial state.

Equivalence of the SQW and DQW. Two SQW steps are
equivalent to two DQW steps followed by a translation opera-
tor which executes a global shift on the position space. For the
choice of shift operator that we have used, along with directed

translation we can show that

Ŵ 2 ≡ T̂−Ŵd
2
,

[ŜĈ(θ )]2 ≡ T−[ŜdĈ(θ )]2, (14)

where the forms of Ĉ(θ ), Ŝ, and Ŝd are given in Eqs. (2), (3),
and (6), respectively, and T̂− = (Ic ⊗ ∑ |x − 1〉〈x|). This can
be explicitly shown by expanding the operators; Ŵ 2 is given
in Eq. (12), and

ŴT D = T̂−Ŵd
2

= T̂−[ŜdĈ(θ )ŜdĈ(θ )]

= [
(cos2 θ |↑〉〈↑| − i sin θ cos θ |↑〉〈↓|) ⊗

∑
|x − 1〉〈x|

+ (−i sin θ cos θ |↓〉〈↑| − sin2 θ |↓〉〈↓|) ⊗
∑

|x〉〈x|
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FIG. 3. Systematic presentation of the equivalence of the three
forms of DTQWs.

+ (− sin2 θ |↑〉〈↑| − i sin θ cos θ |↑〉〈↓|) ⊗
∑

|x〉〈x|
+ (−i sin θ cos θ |↑〉〈↓| + cos2 θ |↓〉〈↓|)
⊗

∑
|x + 1〉〈x|]. (15)

By replacing x ± 2 with x ± 1 in Eq. (12) we can show that
ŴT D ≡ Ŵ 2. Therefore, for all physical realizations mapping
the position space of the walker onto multiqubit states of
a quantum processor, one can ignore the alternate positions
with zero probability in the SQW. A resulting probability
distribution is equivalent to the translated DQW.

Equivalence of the SSQW and DQW. A SSQW as described
by the operator Ŵss is equal to two DQW steps described
by Ŵd followed by a global translation operator of the form
T̂− = (Ic ⊗ ∑ |x − 1〉〈x|). The probability distribution of 2t
time steps of the directed walk is the same as the probability
distribution of t steps of the split-step walk, i.e.,

Ŵss = T̂−Ŵ 2
d , (16)

where Ŵss and Ŵd are given in Eqs. (7) and (6), respectively.
T̂−Ŵ 2

d is given in Eq. (15). Therefore, from Eqs. (10), (14),
and (16) we get

Ŵss = T̂−Ŵ 2
d ≡ Ŵ 2. (17)

This implies that ψ
↑(↓)
x±1 = 0, i.e., the position with zero proba-

bility in the SQW. Thus, by discarding the positions with zero
probability and relabeling values of position x ± 2 as values
of x ± 1, the two-step SQW is equivalent to the SSQW [62].

A schematic representation of the equivalence of all three
forms of DTQWs is shown in Fig. 3, while Fig. 4 shows
the probability distribution comparison for all three forms of
DTQWs. The probability distribution of the SSQW is equiva-
lent to half of the time evolution of the SQW and DQW. The
probability values are the same for all three forms. Transla-
tion of the DQW in position space recovers the SSQW, and
discarding of position space with zero probability in the SQW
reduces its spread in position space and recovers the SSQW.

Therefore, a quantum circuit which can implement one
form of the DTQW is sufficient to recover the exact proba-
bility distribution of the others by relabeling the position state
associated with the multiqubit state on the processor.
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FIG. 4. Equivalence of the probability distribution for different
forms of DTQWs, i.e., the SQW and DQW for 100 steps and the
SSQW for 50 steps, with the coin parameter θ = π/4. Alternate sites
of the SQW have zero probability, and thus 100 steps of SQW are
equivalent to 50 time steps of the SSQW. The initial state is |�in〉 =

1√
2
(|↑〉 + |↓〉) ⊗ |x = 0〉.

III. QUANTUM CIRCUIT FOR IMPLEMENTING
THE DTQW

To implement the DTQW on a quantum circuit in a one-
dimensional position Hilbert space of size 2N , (N + 1) qubits
are needed. Among (N + 1) qubits, one qubit acts as the
coin, and the states of the remaining qubits are mapped to
the position states in the DTQW. The basis for each qubit is
characterized by its internal states, |0〉 and |1〉. In principle, in
2N position space, (2N−1 − 1) steps of the SQW and (2N − 1)
steps of the DQW can be implemented.

Each step of the SQW is evolved using a coin operation Cθ

followed by the shift operation S as given in Eq. (3). Since
S acts on the position state and the mapping of the position
to the qubit state is not unique, the composition of gates for
the design of S is also not unique. The coin operation Cθ

can be carried out by using a single-qubit gate operation on
the coin qubit, while the position shift operation S can be
subsequently applied with the help of multiqubit gates where
the coin qubit acts as the control. For instance, Fig. 5 presents
a naive quantum circuit for a single step of the SQW on a
five-qubit quantum processor [63]. The general form of this
circuit depends on the mapping of the position state to the
qubit states (see Table I).

Cθ σx • • • • σx • • • •

• •

• • • •

• • • • • •

FIG. 5. Generic quantum circuit to implement one step of the
SQW on a five-qubit system for the mapping given in Table I. Repeti-
tion of this circuit will give us the SQW on the position Hilbert space
with 16 sites. The shift operation S is performed using the increment
and decrement circuit.
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Cθ σx • • • σx Cθ • • •

• •

• • • •

σx σx

(a) (b)

FIG. 6. Generic quantum circuit for two steps of the SQW on a
five-qubit system for the mapping given in Table II. It can be used to
implement up to seven steps of the SQW by alternating the circuits
in (a) and (b). If the initial position state is even, the circuit in (a) is
applied first, and if the initial position state is odd, the circuit in (b) is
applied first.

We note that the mapping of the position to the qubit
state is not unique and the quantum circuit can be simplified
using different mapping. Here the odd (even) position state
is identified with the configuration of the last qubit being
|1〉 (|0〉). Repeating the circuit in Fig. 5 will give seven
steps of the SQW, but it can be scaled to N qubits using
an increment and decrement circuit. However, for this map-
ping the gate size and gate counting per step of the SQW
increase with the number of qubits. At this point, we have
claimed that the quantum circuit complexity of the DTQW
depends on the position space mapping. Therefore, we will
now show that a mapping that takes the architecture of the
quantum processor into account reduces the gate size and
gate count. Additional reductions can be achieved by fixing
the initial state of the walk. Here we present a quantum
circuit on a five-qubit system for the SQW and DQW that
can be easily realized on present-day quantum processors,
e.g., the five-qubit programmable trapped-ion quantum com-
puter [60] or IBM Quantum’s five-qubit quantum computer
[64,65].

Figure 6 shows a quantum circuit for two steps of the SQW
for the mapping presented in Table II. Similar to the previous
case, the state of the last qubit defines the even and odd
positions. This allows us to keep the rest of the mapped qubits
identical for each pair of even and odd positions. For a generic
initial position state |x〉 of the particle on a five-qubit system,
the alternation of the circuits in Figs. 6(a) and 6(b) implements

TABLE I. Mapping of the position state to the multiqubit state
for the quantum circuit presented in Fig. 5. This multiqubit configu-
ration identifies the even and odd position states in the system with
the help of |0〉 and |1〉 as the state of the last qubit, respectively.

|x = 0〉 ≡ |0000〉
|x = 1〉 ≡ |0001〉 |x = −1〉 ≡ |1111〉
|x = 2〉 ≡ |0010〉 |x = −2〉 ≡ |1110〉
|x = 3〉 ≡ |0011〉 |x = −3〉 ≡ |1101〉
|x = 4〉 ≡ |0100〉 |x = −4〉 ≡ |1100〉
|x = 5〉 ≡ |0101〉 |x = −5〉 ≡ |1011〉
|x = 6〉 ≡ |0110〉 |x = −6〉 ≡ |1010〉
|x = 7〉 ≡ |0111〉 |x = −7〉 ≡ |1001〉

TABLE II. Mapping of the position state to the multiqubit state
for quantum circuits presented in Figs. 6, 7, 8, and 9. Here also
the multiqubit configuration identifies even- and odd-numbered po-
sitions in the system with respect to the |0〉 and |1〉 states of the last
qubit, respectively.

|x = 0〉 ≡ |0000〉
|x = 1〉 ≡ |0001〉 |x = −1〉 ≡ |0011〉
|x = 2〉 ≡ |0110〉 |x = −2〉 ≡ |0010〉
|x = 3〉 ≡ |0111〉 |x = −3〉 ≡ |0101〉
|x = 4〉 ≡ |1100〉 |x = −4〉 ≡ |0100〉
|x = 5〉 ≡ |1101〉 |x = −5〉 ≡ |1111〉
|x = 6〉 ≡ |1010〉 |x = −6〉 ≡ |1110〉
|x = 7〉 ≡ |1011〉 |x = −7〉 ≡ |1001〉

the seven steps of the SQW. If the initial position |x〉 is even
(odd), the circuit in Fig. 6(a) [Fig. 6(b)] is applied first. When
we compare the result to the quantum circuit in Fig. 5 for a
naive mapping, we see a significant decrease in the gate count
and gate size for each step. The gate count reduces to almost
half for each step. Similarly, Fig. 7 shows the quantum circuit
for each step of the DQW for mapping presented in Table II
for any arbitrary initial position state |x〉, and with repeated
application of this circuit, one can implement 15 steps of the
DQW, in principle.

In a comparison of the two quantum circuits for the SQW,
one step of the naive mapping shown in Fig. 5 has two of each
Toffoli-3 gate, Toffoli-2 gate, Toffoli gate, and controlled NOT

(CNOT) gate along with three single-qubit gates, while each
step of the generic circuit shown in Fig. 6 for mapping in
Table II has only one Toffoli-2 gate, one Toffoli gate, and
one CNOT gate along with a few single-qubit gates. Hence,
this shows that for a smart position-state mapping, the gate
count drops significantly, and hence, the circuit complexity
decreases.

Fixing the initial state of the walker helps to reduce the
gate count in the quantum circuit and also reduces the cir-
cuit complexity. For example, for an initial state fixed to
|0〉 ⊗ |0000〉 ≡ |↑〉 ⊗ |x = 0〉, the quantum circuits for the
first seven steps of the SQW and DQW are shown in Figs. 8
and 9, respectively. But for the implementation of the SSQW,

Cθ • • • •

• •

• • •

FIG. 7. Generic quantum circuit for a DQW on a five-qubit sys-
tem for the mapping given in Table II. Concatenation of this circuit
will give the probability distribution of the DQW for up to 15 steps.
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|0〉 Cθ σx • σx Cθ • • Cθ σx • • σx Cθ • • • Cθ σx • • • σx Cθ • • • Cθ σx • • • σx

|0〉
|0〉 • • • •
|0〉 • • • • • • • • • •
|0〉 σx σx σx σx σx σx σx

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

FIG. 8. Quantum circuit for the first seven steps of the SQW on a five-qubit system with the fixed initial state |↑〉 ⊗ |x = 0〉 ≡ |0〉 ⊗ |0000〉
for the mapping given in Table II. This circuit has a reduced gate count compared to the generic circuit shown in Fig. 6. We note that the
sequence of σx in the last qubit can be replaced by classically tracking the number of steps.

|0〉 Cθ • Cθ • • • Cθ • • • Cθ • • • • Cθ • • • • Cθ • • • • Cθ • • • •
|0〉
|0〉
|0〉 • • • • • • • • • •
|0〉 • • • • • • • • • • • • • • • •

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

FIG. 9. Quantum circuit for the first seven steps of the DQW on a five-qubit system with the fixed initial state |↑〉 ⊗ |x = 0〉 ≡ |0〉 ⊗ |0000〉
for the mapping given in Table II. It has a reduced gate count compared to the generic circuit shown in Fig. 7.

|0〉 Cθ σx • • σx Cθ • • Cθ σx • • σx Cθ • • • Cθ σx • • • σx Cθ • • • Cθ σx • • • σx

|0〉
|0〉 • • • •
|0〉 • • • • • • • • • •
|0〉 σx σx σx σx σx σx σx

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

FIG. 10. Quantum circuit for the SQW for the first seven steps on a five-qubit system for the fixed initial state |↑〉 ⊗ |x = 0〉 ≡ |0〉 ⊗ |0000〉
for the mapping given in Table III. Here also the sequence of σx in the last qubit can be completely replaced by classically tracking the step
number.

|0〉 Cθ • Cθ • • Cθ • • Cθ • • • • Cθ • • • • Cθ • • • • Cθ • • • •
|0〉
|0〉
|0〉 • • • • • • • •
|0〉 • • • • • • • • • • • • • •

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

FIG. 11. Quantum circuit for the first seven steps of the DQW on a five-qubit system with the fixed initial state |↑〉 ⊗ |x = 0〉 ≡ |0〉 ⊗
|0000〉 for the mapping given in Table III.
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TABLE III. Mapping of the position state to the multiqubit state
for quantum circuits presented in Figs. 10 and 11.

|x = 0〉 ≡ |0000〉
|x = 1〉 ≡ |0001〉 |x = −1〉 ≡ |0111〉
|x = 2〉 ≡ |0010〉 |x = −2〉 ≡ |0110〉
|x = 3〉 ≡ |0011〉 |x = −3〉 ≡ |0101〉
|x = 4〉 ≡ |1100〉 |x = −4〉 ≡ |0100〉
|x = 5〉 ≡ |1101〉 |x = −5〉 ≡ |1011〉
|x = 6〉 ≡ |1110〉 |x = −6〉 ≡ |1010〉
|x = 7〉 ≡ |1111〉 |x = −7〉 ≡ |1001〉

two different shift operators are needed. The same results can
be reconstructed from the equivalence relation between the
SSQW and SQW, which will need two steps of the SQW to
reproduce the results of the SSQW. Therefore, using the SQW
and reconstructing the results of the corresponding SSQW
from it are more efficient than the direct implementation of
the SSQW.

We have also considered a different configuration of the
position space mapping onto multiqubit states. As in Table II
the last qubit states, |0〉 and |1〉, are set to identify the even
and odd position of the position state here too. The mapping
given in Table III and Figs. 10 and 11 shows the quantum
circuits for the SQW and DQW for the mapping choices,
respectively, which implements seven steps for the initial state
|0〉 ⊗ |x = 0〉. At alternate sites of the SQW we have zero
probability, and our mapping allows the value of the last qubit
to identify odd or even positions. Alternatively, the step num-
ber can be classically tracked in the quantum circuits shown
in Figs. 6, 8, and 10 to reduce the number of σx operations on
the last qubit to zero or one.

Among the quantum circuits presented, the one given in
Fig. 8 is optimal for implementing the SQW. Table IV gives
a comparison of the number of gates in the optimized circuits
in Fig. 8, 9, 10, and 11.

IV. DISCUSSION

By digitally encoding the walker’s position space onto
the qubit state in various ways, we have shown different
equivalent quantum walk circuits. The examples illustrate how
the encoding methods and initial-state-dependent circuits can

TABLE IV. Gate count for mapping in Tables II and III and for
corresponding SQW and DQW circuits with the fixed initial state
|0〉 ⊗ |0000〉 and after seven steps on a five-qubit quantum processor.

SQW DQW

Table II 22 single-qubit 7 single-qubit
7 two-qubit 7 two-qubit

6 three-qubit 6 three-qubit
4 four-qubit 10 four-qubit

Table III 22 single-qubit 7 single-qubit
8 two-qubit 6 two-qubit

6 three-qubit 6 three-qubit
4 four-qubit 8 four-qubit

reduce the required gate depth (gate count) for implementing
quantum walks.

The circuits can be scaled to implement more steps on a
larger system using higher-order Toffoli gates. The implemen-
tation of n steps of a SQW will need at least [log2(n + 1) + 2]
qubits. Similarly, to implement n steps of a DQW, at least
[log2(n + 1) + 1] qubits are required.

Recently, two different ways of expanding the increasing
and decreasing parts of the generic quantum circuit shown
in Fig. 5 were explored in detail [66]. In one of the ways,
the circuit complexity is reduced by using the generalized
controlled inversions method and in the other, the rotation
operations around the basis states was used. If the circuits are
implemented on a device with a large number of qubits, then
generalized controlled inversions would be a good option as
they have less circuit depth due to the use of ancilla qubits or
else the approach with rotation around basis state would be
better. In our work the focus has been on reducing the circuit
complexity by a careful choice of mapping of the qubit state
to the position space and optimizing the circuit after choosing
the initial state. Combining both these approaches may results
in a further reduction of the circuit complexity, and that needs
to be carefully explored in future works.

DTQWs in two-dimensional position space [67,68] can
also be implemented by scaling the scheme presented in this
work with an appropriate mapping of qubit states with the
nearest-neighbor position space in both dimensions. This can
be achieved on a device with access to a larger number of
qubits by assigning an equal number of qubits to both di-
mensions in the two-dimensional position space and then by
optimally mapping the qubit state to the position state. All the
circuits presented can be extended to implement two or more
particle DTQWs by introducing two or more coin qubits into
the system. In such cases, the control over the target or posi-
tion qubit increases with the number of coin qubits. Another
way of scaling the scheme for the SQW on an N-qubit system
is to fix one qubit for the coin as usual and another one to
represent the ± sign for the positive and negative directions of
the initial state |x〉, and the states of the rest of the (N − 2)
qubits can be mapped to the position state. Now using the
quantum adder circuit [69], the scheme can be extended to
N qubits, and a generalized quantum circuit for the quantum
walk can be worked out.

One can also use ancilla qubits to reduce the circuit com-
plexity. In the Appendix, we show a hybrid circuit with the
help ancilla qubits for the DQW. The DQW can be imple-
mented with the help of a CNOT gate, and interference in the
walk can be included with the help of a controlled-SWAP gate
and an ancilla qubit just before the measurement. Figures 14
and 15 show the hybrid circuit for four steps and three steps
of the DQW. Details are given in the Appendix.

TABLE V. Mapping of the position state onto multiqubit states
for the DQW circuit presented in Fig. 12.

|x = 0〉 ≡ |0000〉
|x = 1〉 ≡ |1000〉 |x = 4〉 ≡ |1111〉
|x = 2〉 ≡ |1100〉 |x = 5〉 ≡ |0111〉
|x = 3〉 ≡ |1110〉 |x = 6〉 ≡ |1011〉
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TABLE VI. Position state mapping used to construct the quan-
tum circuit presented in Fig. 13. This mapping requires ancilla qubits
to induce interference by merging equivalent multiqubit states.

|x = 0〉 ≡ |0000〉
|x = 1〉 ≡ {|1000〉, |0100〉, |0010〉, |0001〉}
|x = 2〉 ≡ {|1100〉, |1010〉, |1001〉,

|0110〉, |0101〉, |0011〉}
|x = 3〉 ≡ {|1110〉, |1101〉, |1011〉, |0111〉}
|x = 4〉 ≡ |1111〉

Therefore, with an appropriate choice of the quantum coin
operation and the equivalence of variants of DTQW, any quan-
tum algorithm based on the DTQW can be experimentally
realized on a quantum computer. Dirac cellular automata can
be recovered using the SSQW, which reproduces the dynam-
ics of the Dirac equation in the continuum limit [40]. One
such example of simulating Dirac cellular automata on an
ion-trap processor using one of the various configurations of
the circuits presented was demonstrated recently [70]. With
the appropriate use of a position-dependent coin operation
and additional higher-order Toffoli gates in our circuits, other
DTQW-based algorithms, such as spatial search, can also be
implemented.
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APPENDIX

1. DQW circuit with naive mapping

A naive mapping can result in an inefficient quantum cir-
cuit. One example of this is given in Table V and Fig. 12.

The simplest quantum circuit for the mapping given above
with fixed initial state |0〉 ⊗ |0000〉 is shown in Fig. 12. This
circuit implements five steps of the DQW. In the same system
one can implement up to 15 steps since the available position

|0〉 Cθ • Cθ • Cθ • Cθ •

|0〉

|0〉

|0〉

|0〉

Step 1 Step 2 Step 3 Step 4

FIG. 13. Quantum circuit for the DQW for the first four steps
without interference. Each step of this quantum circuit is given by a
CNOT gate because of the mapping chosen (see Table VI). To include
interference in the circuit, ancilla operations are needed before the
measurement (see Fig. 14).

states are 24 = 16. This circuit looks straightforward to con-
struct and scale, but an actual implementation would require
higher-order Toffoli gates even for a small number of steps
and a fixed initial position, making it inefficient for near-term
quantum processors.

2. Simplified quantum circuit with an ancilla

There has been a significant increase in the number of
qubits available on platforms like trapped-ion and supercon-
ducting qubits [71–74]. However, limited coherence time is
still a hindrance to increasing the number of gates that can be
implemented. To make explicit use of the all available qubits,
one has to develop low-depth quantum circuits. Here we will
present quantum circuits with a reduced number of gates to
implement DQWs at the cost of requiring additional ancilla
qubits. But the given circuit is still inefficient as it will include
only outputs with ancilla qubit state |0〉. In a system with
access to more qubits, one can implement more steps of the
DQW at the same circuit depth, but the efficiency decreases
as the number of output states that can be included decreases
when all the ancilla qubit states are |0〉 .

For a five-qubit system, we again use the first qubit to rep-
resent the coin and the other four qubits to represent position
space. The mapping is given in Table VI. This is a classical

|0〉 Cθ • Cθ • • Cθ • • • Cθ • • • • Cθ • • • • •

|0〉 • • • • • • • • •

|0〉 • • • • • •

|0〉 • • •

|0〉 •
5petS4petS3petS2petS1petS

FIG. 12. Quantum circuit for the DQW for the first five steps with the fixed initial state |�in〉 = |↑〉 ⊗ |x = 0〉 ≡ |0〉 ⊗ |0000〉 for the naive
mapping shown in Table V. This circuit has a simple structure, but it consists of many additional higher-order Toffoli gates compared to the
circuits shown in Sec. III and the Appendix.
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TABLE VII. Output after each step of the DQW and output of the quantum circuit shown in Fig. 13 without the interference step provided
by the ancilla circuit. Here c1, c2, . . . represent the contributions of the cos(θ ) term from the coin operation in the first and second time
evolutions and so on, and similarly, s1, s2, . . . represent the contributions of the sin(θ ) term from the coin operation in the first and second time
evolutions and so on, respectively, in the circuit.

Step Directed quantum walk output Circuit output without ancilla

0 |0〉 ⊗ |x = 0〉 |0〉 ⊗ |0000〉
1 c1|0〉 ⊗ |x = 0〉 + s1|1〉 ⊗

|x = 1〉
c1|0〉 ⊗ |0000〉 + s1|1〉 ⊗ |1000〉

2 c2c1|0〉 ⊗ |x = 0〉 + s2c1|1〉 ⊗
|x = 1〉 + s2s1|0〉 ⊗ |x = 1〉 −

c2s1|1〉 ⊗ |x = 2〉

c2c1|0〉 ⊗ |0000〉 + s2c1|1〉 ⊗
|0100〉 + s2s1|0〉 ⊗ |1000〉 −

c2s1|1〉 ⊗ |1100〉
3 c3c2c1|0〉 ⊗ |x = 0〉 +

s3c2c1|1〉 ⊗ |x = 1〉 +
s3s2c1|0〉 ⊗ |x = 1〉 −
c3s2c1|1〉 ⊗ |x = 2〉 +
c3s2s1|0〉 ⊗ |x = 1〉 +
s3s2s1|1〉 ⊗ |x = 2〉 −
s3c2s1|0〉 ⊗ |x = 2〉 +
c3c2s1|1〉 ⊗ |x = 3〉

c3c2c1|0〉 ⊗ |0000〉 +
s3c2c1|1〉 ⊗ |0010〉 + s3s2c1|0〉 ⊗
|0100〉 − c3s2c1|1〉 ⊗ |0110〉 +

c3s2s1|0〉 ⊗ |1000〉 + s3s2s1|1〉 ⊗
|1010〉 − s3c2s1|0〉 ⊗ |1100〉 +

c3c2s1|1〉 ⊗ |1110〉

4 c4c3c2c1|0〉 ⊗ |x = 0〉 +
s4c3c2c1|1〉 ⊗ |x = 1〉 +
s4s3c2c1|0〉 ⊗ |x = 1〉 −
c4s3c2c1|1〉 ⊗ |x = 2〉 +
c4s3s2c1|0〉 ⊗ |x = 1〉 +
s4s3s2c1|1〉 ⊗ |x = 2〉 −
s4c3s2c1|0〉 ⊗ |x = 2〉 +
c4c3s2c1|1〉 ⊗ |x = 3〉 +
c4c3s2s1|0〉 ⊗ |x = 1〉 +
s4c3s2s1|1〉 ⊗ |x = 2〉 +
s4s3s2s1|0〉 ⊗ |x = 2〉 −
c4s3s2s1|1〉 ⊗ |x = 3〉 −
c4s3c2s1|0〉 ⊗ |x = 2〉 −
s4s3c2s1|1〉 ⊗ |x = 3〉 +
s4c3c2s1|0〉 ⊗ |x = 3〉 −
c4c3c2s1|1〉 ⊗ |x = 4〉

c4c3c2c1|0〉 ⊗ |0000〉 +
s4c3c2c1|1〉 ⊗ |0001〉 +
s4s3c2c1|0〉 ⊗ |0010〉 −
c4s3c2c1|1〉 ⊗ |0011〉 +
c4s3s2c1|0〉 ⊗ |0100〉 +
s4s3s2c1|1〉 ⊗ |0101〉 −
s4c3s2c1|0〉 ⊗ |0110〉 +
c4c3s2c1|1〉 ⊗ |0111〉 +
c4c3s2s1|0〉 ⊗ |1000〉 +
s4c3s2s1|1〉 ⊗ |1001〉 +
s4s3s2s1|0〉 ⊗ |1010〉 −
c4s3s2s1|1〉 ⊗ |1011〉 −
c4s3c2s1|0〉 ⊗ |1100〉 −
s4s3c2s1|1〉 ⊗ |1101〉 +
s4c3c2s1|0〉 ⊗ |1110〉 −
c4c3c2s1|1〉 ⊗ |1111〉

circuit as it does not include the superposition or interference
in the system directly. The output of the DQW and that of
the quantum circuit in Fig. 13 are compared in Table VII for
each step. To keep track of the contribution from each time
evolution, we have introduced subscripts to indicate different
time steps. To turn this circuit into a DQW implementation,

CNOT and Fredkin (controlled-SWAP) gates and a Hadamard
gate involving additional ancilla qubits are applied before the
measurement, as shown in Fig. 14. After the measurement,
only selective outputs with ancilla qubit state |0〉 are included.

After the first three steps, a single ancilla qubit introduces
the equivalence of the states with two qubits in state |1〉 to

TABLE VIII. Output after the three steps of a DQW using the quantum circuit shown in Fig. 13 and the output of the quantum circuit with
an ancilla, as shown in Fig. 14 after the interference step. Here c1, c2, . . . represent the contributions of the cos(θ ) term from the coin operation
in the first and second time evolutions and so on, and similarly, s1, s2, . . . represent the contributions of the sin(θ ) term from the coin operation
in the first and second time evolutions and so on, respectively, in the circuit.

Step Circuit output without ancilla Circuit output with ancilla

3 (c3c2c1|0〉 ⊗ |0000〉 +
s3c2c1|1〉 ⊗ |0010〉 + s3s2c1|0〉 ⊗
|0100〉 − c3s2c1|1〉 ⊗ |0110〉 +

c3s2s1|0〉 ⊗ |1000〉 + s3s2s1|1〉 ⊗
|1010〉 − s3c2s1|0〉 ⊗ |1100〉 +

c3c2s1|1〉 ⊗ |1110〉) ⊗ |0〉

(c3c2c1|0〉 ⊗ |0000〉 ⊗ |0〉 +
s3c2c1|1〉 ⊗ |0010〉 ⊗ |0〉 +
s3s2c1|0〉 ⊗ |0100〉 ⊗ |0〉 +
c3s2s1|0〉 ⊗ |0100〉 ⊗ |1〉 +
s3s2s1|1〉 ⊗ |0110〉 ⊗ |1〉 −
c3s2c1|1〉 ⊗ |0110〉 ⊗ |0〉 −
s3c2s1|0〉 ⊗ |1100〉 ⊗ |1〉 +
c3c2s1|1〉 ⊗ |1110〉 ⊗ |1〉)
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TABLE IX. Output after the four steps of a DQW using the quantum circuit shown in Fig. 13 and the output of the quantum circuit with an
ancilla, as shown in Fig. 15 after the interference step. Here c1, c2, . . . represent the contributions of the cos(θ ) term from the coin operation in
the first and second time evolutions and so on, and similarly, s1, s2, . . . represent the contributions of the sin(θ ) term from the coin operation
in the first and second time evolutions and so on, respectively, in the circuit.

Step Circuit output without ancilla Circuit Output with ancilla

4 (c4c3c2c1|0〉 ⊗ |0000〉 +
s4c3c2c1|1〉 ⊗ |0001〉 +
s4s3c2c1|0〉 ⊗ |0010〉 −
c4s3c2c1|1〉 ⊗ |0011〉 +
c4s3s2c1|0〉 ⊗ |0100〉 +
s4s3s2c1|1〉 ⊗ |0101〉 −
s4c3s2c1|0〉 ⊗ |0110〉 +
c4c3s2c1|1〉 ⊗ |0111〉 +
c4c3s2s1|0〉 ⊗ |1000〉 +
s4c3s2s1|1〉 ⊗ |1001〉 +
s4s3s2s1|0〉 ⊗ |1010〉 −
c4s3s2s1|1〉 ⊗ |1011〉 −
c4s3c2s1|0〉 ⊗ |1100〉 −
s4s3c2s1|1〉 ⊗ |1101〉 +
s4c3c2s1|0〉 ⊗ |1110〉 −

c4c3c2s1|1〉 ⊗ |1111〉) ⊗ |000〉

c4c3c2c1|0〉 ⊗ |0000〉 ⊗ |000〉 +
s4c3c2c1|1〉 ⊗ |0001〉 ⊗ |000〉 +
s4s3c2c1|0〉 ⊗ |0100〉 ⊗ |001〉 +
c4s3s2c1|0〉 ⊗ |0100〉 ⊗ |000〉 +
c4c3s2s1|0〉 ⊗ |0100〉 ⊗ |100〉 +
s4c3s2s1|1〉 ⊗ |0101〉 ⊗ |100〉 −
c4s3c2c1|1〉 ⊗ |0101〉 ⊗ |001〉 +
s4s3s2c1|1〉 ⊗ |0101〉 ⊗ |000〉 +
s4s3s2s1|0〉 ⊗ |0110〉 ⊗ |101〉 −
s4c3s2c1|0〉 ⊗ |0110〉 ⊗ |001〉 −
c4s3c2s1|0〉 ⊗ |0110〉 ⊗ |010〉 +
c4c3s2c1|1〉 ⊗ |0111〉 ⊗ |001〉 −
c4s3s2s1|1〉 ⊗ |0111〉 ⊗ |101〉 −
s4s3c2s1|1〉 ⊗ |0111〉 ⊗ |110〉 +
s4c3c2s1|0〉 ⊗ |1110〉 ⊗ |111〉 −
c4c3c2s1|1〉 ⊗ |1111〉 ⊗ |111〉

position space at |x = 2〉, as shown in Fig. 14. After the
operation on the ancilla qubit, the DQW distribution after
three steps is recovered. Table VIII shows the equivalence
of the output of the third step of the DQW to the circuit
output after the first three steps with an ancilla qubit operation
before the Hadamard operation is performed on an ancilla
qubit.

Similarly, to include interference after four steps, we need
three ancilla qubits, as shown in Fig. 15, and the output
equivalence is shown in Table IX before the Hadamard gate
is performed on the ancilla qubit. The Hadamard operation
helps in unentangling the ancilla qubit with the real qubits in
the circuit.

The number of ancilla qubits as well as Fredkin (CSWAP)
gates for the circuit in Fig. 13 increases as n−1C2, where n is
the step number after which the measurement is done. The
ancilla operation is needed only before the measurement.

From Fig. 15, it can be seen that for the first four steps
of the DQW, the number of CNOT gates required is seven,
along with three Fredkin gates. Each Fredkin gate can be

|0〉 C1 • C2 • C3 •
|0〉 • ×
|0〉 ×
|0〉
ancilla |0〉 • H

FIG. 14. Quantum circuit for the DQW with the ancilla operation
to include interference after the first three steps. The ancilla qubit is
left unobserved in the circuit. Here C1 = C2 = C3 = Cθ .

decomposed into five two-qubit gates [75]. Therefore, the total
number of two-qubit gates required for the first four steps
of the DQW using ancilla qubits is 22. Compared to this, if
we look at the DQW circuit without ancilla qubits, for the
first four steps the number of CNOT gates required is four, the
number of Toffoli gate is three, and the number of controlled-
Toffoli (CCCNOT) gates is two, as can be seen in Figs. 9 and 11.
Each Toffoli gate can be decomposed into six CNOT gates, and
each CCCNOT gate can be further decomposed into a two-qubit
gate and Toffoli gates [76]. The number of two-qubit gates
required for the first four steps of the DQW without the use
of ancilla qubits will be far greater than 22. Therefore, a
processor with access to a large number of qubits with the
possibility to leave the ancilla qubit unobserved [77,78] could
be effective in reducing the gate counts to implement the
DTQW.

|0〉 C1 • C2 • C3 • C4 •
|0〉 • × • ×
|0〉 × ×
|0〉 × • ×
|0〉

|0〉 • H

|0〉 • H

|0〉 • H

FIG. 15. Quantum circuit for the DQW with the ancilla operation
to include interference after the first four steps. The ancilla qubits
are left unobserved in the circuit. With a larger number of steps, the
number of ancilla qubits also increases. Here C1=C2=C3=C4=Cθ .
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