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Quantum memory effects can be induced even when the (time-dependent) dynamical degrees of freedom
associated to the environment are not affected at all by the open system during their joint coupled evolution. In
this paper, based on a completely positive bipartite representation of the system-environment dynamics, we found
the more general interactions that lead to this class of quantum non-Markovian “casual bystander” environments.
General properties of the resulting dynamics are studied with a focus on the system-environment correlations, a
collisional measurement-based representation, and the quantum regression hypothesis. Memory effects are also
characterized through an operational approach, which in turn allows one to detect when the studied properties
apply. Single and multipartite qubits dynamics support and exemplify the developed results.
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I. INTRODUCTION

Both in classical and quantum realms, memory effects
emerge whenever a set of dynamical degrees of freedom is
not considered as part of the system of interest [1–4]. In clas-
sical systems (or incoherent ones), the presence of memory
effects can be related to departures from a Markov property
defined in a probabilistic frame. In contrast, the definition of
memory effects and non-Markovianity is much more subtle in
a quantum regime.

Given that any quantum system is affected by a measure-
ment process, a reasonable approach to defining quantum
non-Markovianity is to study the properties of the (unper-
turbed) system density-matrix propagator. In fact, the theory
of quantum semigroups [5] is usually taken as a landmark of
quantum Markovianity. Thus, any departure of the propagator
properties with respect to that of a Lindblad evolution can be
proposed as a signature of quantum non-Markovianity [6,7].
This approach has shown to be a very fruitful tool to study
memory effects in quantum systems, leading to the formu-
lation of many, in general inequivalent, memory witnesses
(see, for example, Refs. [8–14] ). Independently of the chosen
memory witness, one interesting perspective that these studies
provide is the understanding of memory effects through an
“environment-to-system backflow of information” [8–11]. In-
formation stored in the environment degrees of freedom may
influence the system at later times, giving a solid and clear
understanding of memory effects.

In spite of the simplicity and efficacy of the previous the-
oretical perspective, it has been shown that memory effects
may emerge even when the degrees of freedom associated
to the environment are not affected at all during the sys-
tem evolution, which implies the absence of any “physical”
environment-to-system backflow of information. A clear sit-
uation where this occurs is in quantum systems coupled to
incoherent degrees of freedom that have a fixed classical

stochastic dynamics [15,16], that is, their underlying stochas-
tic evolution is completely independent of the system degrees
of freedom.

While the previous drawback in the definition of in-
formation flows remains under debate [15–22], alternative
operational approaches to quantum memory effects [23–32]
furnish a possible solution. For example, by subjecting a
system to three successive measurements, a conditional past-
future (CPF) correlation [27] provides a memory witness that
is consistent with the usual approach to non-Markovianity in
terms of conditional probabilities [1]. This object is defined by
the correlation between the first and last outcomes conditioned
to a given intermediate value. It vanishes in a Markovian
regime (defined in terms of conditional probabilities). In
addition, by randomizing the intermediate postmeasurement
system state, even in presence of memory effects, the condi-
tional past-future correlation vanishes when the environment
is not affected by the system evolution [32]. Thus, it detects
the presence or absence of “bidirectional system-environment
information flows.” This last property provides a solution to
the previous drawback. In fact, a solid experimental proce-
dure for distinguishing between memory effects induced by
environments that are affected or not by their interaction with
the system is established.

The previous advancements left open an interesting is-
sue the formulation of which is independent of any memory
witness definition. Besides environments consisting of inco-
herent degrees of freedom with a fixed classical stochastic
dynamics, in which other situations may it occur that the
environment is not affected at all by its interaction with the
system? More specifically, we ask about the most general
system-environment interactions that guarantee this property.
The resolution of this problem is relevant for achieving a clear
understanding of intrinsically different memory effects, that
is, those where the environment is or is not altered by its
interaction with the system.
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The main goal of this paper is to answer the previous ques-
tion. We characterize the most general system-environment
interactions that, even when the system develops memory
effects, guarantee that the environment self-dynamics and
state remain independent of the system degrees of free-
dom. For these “casual bystander” environments (CBEs),
special interest is paid to the resulting system dynamics, the
system-environment correlations, a collisional measurement-
based representation [33–40], and the validity of the quantum
regression hypothesis when analyzing system operator corre-
lations [41–44]. General expressions for the CPF correlation
[27,32] are also provided. The main results are exemplified by
studying these properties and indicators for a class of qubit
dynamics with single and multipartite dephasing channels.

The paper is outlined as follows. In Sec. II we derive
the most general interaction consistent with a CBE. General
properties of the resulting system dynamics are analyzed in
Sec. III. In Sec. IV we study single and multipartite examples.
The conclusions are provided in Sec. V. Calculus details are
presented in the Appendix.

II. QUANTUM CASUAL BYSTANDER ENVIRONMENTS

We consider a system (s) interacting with uncontrollable
quantum degrees of freedom that constitute the environment
(e). Correspondingly, in the total Hilbert space Hs ⊗ He, the
bipartite density matrix is denoted as ρse

t . Its evolution is
written as

d

dt
ρse

t = (Ls + Le + Lse)
[
ρse

t

]
, (1)

where Ls and Le define the system and environment isolated
dynamics, respectively, while Lse introduces their mutual in-
teraction. As usual, the marginal system and environment
states follow by tracing out the complementary degrees of
freedom:

ρs
t = Tre

[
ρse

t

]
, ρe

t = Trs
[
ρse

t

]
, (2)

where Tr[· · · ] is the trace operation. By definition, a CBE
is characterized by a density matrix ρe

t that is completely
independent of the system state and dynamics. Consequently,
its time evolution (dρe

t /dt ) must also fulfill the same prop-
erty. From Eq. (1) we get (dρe

t /dt ) = Le[ρe
t ] + Trs(Lse[ρse

t ]),
leading to the condition

Trs
(
Lse

[
ρse

t

]) = A
[
ρe

t

]
. (3)

Here, A is an arbitrary superoperator (acting on ρe
t ) that does

not depend on any degree of freedom (or operator) associated
to the system Hilbert space. Furthermore, this equality must
be valid at all times. The criterion (3) allows us to find which
kind of system-environment couplings fulfill the proposed
definition.

A. Unitary coupling

A unitary coupling is set by a bipartite Hamiltonian Hse

such that

Lse[•] = −i[Hse, •]. (4)

In order to check condition (3), we introduce a complete
orthogonal basis {|s〉} of the system Hilbert space such that

∑
s |s〉〈s| = Is, where Is is the system identity matrix. We get

Trs(Lse
[
ρse

t

]
) = −i

∑
s,s′

[〈s|Hse|s′〉, 〈s′|ρse
t |s〉]. (5)

Thus, independence of the environment state of the system
degrees of freedom requires 〈s|Hse|s′〉 = δs,s′Qe, which in turn
implies Hse = Is ⊗ Qe, where Qe = Q†

e is an arbitrary oper-
ator acting on He. Nevertheless, this solution implies that
system and environment do not interact. Consequently, it is
impossible to obtain a non-Markovian CBE if it interacts
unitarily with the system of interest.

The previous result is not valid when a Born-Markov ap-
proximation applies [2], where it is possible to approximate
ρse

t � ρs
t ⊗ ρe

0. Thus, when this approximation is valid, the
environment can be considered as a casual bystander one,
being characterized by a stationary state, ρe

t = Trs[ρse
t ] � ρe

0.

Nevertheless, in this situation memory effects do not develop.
In fact, the evolution of ρs

t can be well approximated by a
Lindblad equation.

B. Dissipative coupling

After discarding the unitary property, now we consider
dissipative system-environment couplings. Thus, the environ-
ment is defined by a set of quantum degrees of freedom the
interaction of which with the system is approximated by an
arbitrary (nondiagonal) Lindblad superoperator:

Lse[•] =
∑
i, j

γi, j

(
Ti • T †

j − 1

2
{T †

j Ti, •}+
)

, (6)

where {a, b}+ ≡ ab + ba. We notice that the extra degrees of
freedom (“superenvironment”) necessary to induce this cou-
pling are irrelevant here because their influence can always be
related to an underlying Born-Markov approximation.

In Eq. (6) the complex parameters {γi, j} define the (di-
agonal and nondiagonal) rate coefficients of the dissipative
channels corresponding to the bipartite operators {Ti}. Thus,
assuming that the evolution induced by Lse is completely
positive, they constitute an Hermitian positive definite matrix
[2,5].

In order to check condition (3), we introduce the re-
placements Ti → Vk ⊗ Bα, Tj → Vl ⊗ Bβ , and γi, j → γkα,lβ,

where {Vk} and {Bα} are arbitrary operators acting on Hs and
He, respectively. Hence, Lse can be rewritten as

Lse[•]=
∑
kα,lβ

γkα,lβ

(
VkBα • B†

βV †
l − 1

2
{V †

l VkB†
βBα, •}+

)
.

(7)
Here, the indices run in the intervals k, l =
1, · · · , (dim Hs)2 − 1 and α, β = 1, · · · , (dim He)2 − 1.

By taking the trace to the interaction superoperator
Lse[ρse

t ], we get

Trs(Lse
[
ρse

t

]
)=

∑
α,β,s

(
Bα〈s|Dα,βρse

t |s〉B†
β − 1

2
B†

βBα

×〈s|Dα,βρse
t |s〉 − 1

2
〈s|ρse

t Dα,β |s〉B†
βBα

)
,
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where as before {|s〉} is a complete base in Hs. Furthermore,
we introduced the system operators {Dα,β}:

Dα,β ≡
∑
k,l

γkα,lβV †
l Vk, D†

α,β = Dβ,α. (8)

The symmetry property D†
α,β = Dβ,α is inherited from con-

dition ρse
t = (ρse

t )† in Eq. (1). It is simple to realize that the
constraint (3) is fulfilled if

〈s|Dα,β = �α,β〈s|, Dα,β |s〉 = �α,β |s〉, (9)

where �α,β are, in general, complex coefficients. Applying∑
s′ |s′〉 and

∑
s′ 〈s′| to the left and right equalities, using that

D†
α,β = Dβ,α, we get the equivalent conditions

Dα,β = �α,βIs, �∗
α,β = �β,α. (10)

Introducing the final constraints (10) into Eq. (7) and by
using that Lse must have the properties of a Lindblad equa-
tion [2,5] (Hermiticity, trace preservation, and completely
positivity) we can write the bipartite interaction generator as

Lse[•] =
∑
α,β

�α,β

(
BαSα,β [•]B†

β − 1

2
{B†

βBα, •}+
)

. (11)

Here, the coefficients {�α,β} define an (arbitrary) Hermi-
tian positive definite matrix. Furthermore, {Sα,β} is a set
of (arbitrary) system superoperators that fulfill the symme-
try S†

α,β = Sβ,α and are trace preserving, Trs(Sα,β [ρs]) =
Trs[ρs]. Hence, they can be written in a Kraus-like represen-
tation [2] as

Sα,β [•] =
∑

k

W αβ

k • W †βα

k ,
∑

k

W †βα

k W αβ

k = Is, (12)

where {W αβ

k } are (arbitrary) system operators that for each
pair of indices (α, β ) guarantee trace preservation. In Eq. (11),
it is always possible to choose a new base of environment
operators, unitarily related to {Bα}, where the matrix of rate
coefficients becomes diagonal [2,5], �α,β → δα,β�α. This
property implies that the system superoperators {Sα,β} can
always be related, via the same unitary transformation, to
a set of (arbitrary but standard) completely positive system
transformations (superoperators).

From Eqs. (1) and (11), the bipartite system-environment
evolution can finally be written as

d

dt
ρse

t = (Ls + Le)
[
ρse

t

] +
∑
α,β

�α,β BαSα,β

[
ρse

t

]
B†

β

−1

2

∑
α,β

�α,β

{
B†

βBα, ρse
t

}
+, (13)

where Ls and Le are arbitrary. This equation is the main
result of this section. It defines the most general dissipative
system-environment coupling that is consistent with a quan-
tum non-Markovian CBE. In fact, after applying the (system)
trace operation to Eq. (13), and using the property (12), the
density matrix ρe

t of the environment [Eq. (2)] evolves as

d

dt
ρe

t = Le
[
ρe

t

] +
∑
α,β

�α,β

(
Bαρe

t B†
β − 1

2

{
B†

βBα, ρe
t

}
+

)
.

(14)

As expected, this Lindblad equation does not depend on the
system degrees of freedom. In contrast, the time evolution of
the system state, ρs

t = Tre[ρse
t ], assuming uncorrelated initial

conditions ρse
0 = ρs

0 ⊗ ρe
0, from Eq. (13) can formally be writ-

ten as a time-convoluted equation,

d

dt
ρs

t = Ls
[
ρs

t

] +
∫ t

0
dt ′Ks(t − t ′)

[
ρs

t ′
]
, (15)

which anticipates the presence of system memory effects.
From standard calculation steps, the superoperator Ks(t ) can
be defined in a Laplace domain [ f (z) = ∫ ∞

0 dte−zt f (t )] from
the relation Tre[Gse

z (Le + Lse)ρe
0][•] = Tre[Gse

z ρe
0]Ks(z)[•],

where Gse
z = [z − (Ls + Le + Lse)]−1 is the bipartite system-

environment propagator.
Both Eqs. (13) and (14) can always be reduced to a stan-

dard diagonal form [2,5], which can be read by taking �α,β =
δα,β�α, where {�α} are positive rate coefficients. Furthermore,
Eq. (15) can always be transformed into a convolutionless
form [45].

III. GENERAL PROPERTIES

On the basis of Eq. (13), it is possible to establish general
properties that characterize the system-environment dynam-
ics.

A. System-environment correlations

Even for uncorrelated initial conditions, the evolution (13)
induces correlations between the system and the degrees of
freedom associated to the environment. These correlations can
be characterized from the bipartite state ρse

t . We show that, for
uncorrelated initial conditions, ρse

0 = ρs
0 ⊗ ρe

0, there always
exists an environment basis where ρse

t can be written with the
structure

ρse
t =

∑
c

ρc(t ) ⊗ |ct 〉〈ct |. (16)

Here, {ρc(t )} are un-normalized states (matrices) in Hs and
{|ct 〉〈ct |} are orthogonal time-dependent projectors in He, that
is, 〈ct |c′

t 〉 = δcc′ . Consistently, the system and environment
states read

ρs
t =

∑
c

ρc(t ), ρe
t =

∑
c

pc(t )|ct 〉〈ct |, (17)

where pc(t ) ≡ Trs[ρc(t )]. From these expressions, it follows
that {|ct 〉} is the basis in which ρe

t becomes diagonal at time
t . Furthermore, ρc(t ) is the conditional state of the system
given that the environment is in the state |ct 〉〈ct |, while its
trace define the probabilities pc(t ).

The formal solution (16) implies that ρse
t is a separa-

ble state [46] with a null system-environment discord [47].
Hence, no quantum entanglement (between the system and
the environment) is produced during the evolution.

The validity of Eq. (16) can be established from the bi-
partite evolution (13). From these equations, for the system
conditional states {ρc(t )}, using that Tre(Le[•]) = 0, we get
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the evolution

D

Dt
ρc(t ) = Ls[ρc(t )] +

∑
c̃

c̃ �=c

φcc̃(t )ρc̃(t ) −
∑

c̃
c̃ �=c

φc̃c(t )ρc(t )

+
∑

c̃

γcc̃(t )Scc̃(t )[ρc̃(t )] −
∑

c̃

γc̃c(t )ρc(t ). (18)

Here, a “total-time-derivative” was introduced:

D

Dt
ρc(t ) ≡ d

dt
ρc(t ) +

∑
c̃

〈ct | d

dt
[	c̃

t ]|ct 〉ρc̃(t ), (19)

where 	c
t ≡ |ct 〉〈ct |. Furthermore, the time-dependent rates

are

φcc̃(t ) = 〈ct |Le[	c̃
t ]|ct 〉 � 0, (20)

and similarly

γc̃c(t ) =
∑
α,β

�α,β 〈c̃t |Bα|ct 〉〈ct |B†
β |c̃t 〉 � 0, (21)

where the inequalities follow straightforwardly from the diag-
onal rate representation �α,β → δα,β�α. Finally, in Eq. (18)
the system superoperators Scc̃(t )[•] read

Scc̃(t )[•] =
∑

α,β �α,β 〈ct |Bα|c̃t 〉〈c̃t |B†
β |ct 〉Sα,β [•]∑

α,β �α,β 〈ct |Bα|c̃t 〉〈c̃t |B†
β |ct 〉

, (22)

where {Sα,β} are defined by Eq. (12). For each pair of
indices (c, c̃) these superoperators are trace preserving,
Trs(Scc̃(t )[ρ]) = Trs[ρ], and completely positive. This last
property follows straightforwardly from the diagonal rate
representation. On the other hand, the evolution of the en-
vironment probabilities {pc(t )} [Eq. (17)] follows by taking
the trace of Eq. (18), which by using that {Scc̃(t )} are trace
preserving yields

D

Dt
pc(t ) = +

∑
c̃

c̃ �=c

φcc̃(t )pc̃(t ) −
∑

c̃
c̃ �=c

φc̃c(t )pc(t )

+
∑

c̃
c̃ �=c

γcc̃(t )pc̃(t ) −
∑

c̃
c̃ �=c

γc̃c(t )pc(t ). (23)

Here, (D/Dt )pc(t ) follows from Eq. (19) under the replace-
ment ρc(t ) → pc(t ).

Consistently with the definition of a CBE, the evolution
of the probabilities {pc(t )} [Eq. (23)] does not depend on the
system degrees of freedom. On the other hand, at a given time,
it has the structure of a classical master equation [1], where
the gain and loss terms have a clear stochastic interpretation
in term of transitions between the bath states. We notice that
the evolution of the system states {ρc(t )} [Eq. (18)] involves
the same incoherent coupling with rates φcc̃(t ), while the
coupling with rates γcc̃(t ) is endowed by the application of the
superoperators Scc̃(t ) in each environment transition c ← c̃.
This (unidirectional) dependence of the system evolution on
the underlying (stochastic) environment dynamics explains
the correlation structure defined by Eq. (16). The physical
meaning of this association is also supported by analyzing an
incoherent environment case.

B. Incoherent environment

If the degrees of freedom of the environment do not de-
velop any (quantum) coherence, at any time its density matrix
ρe

t is diagonal in a fixed base {|c〉}. Thus, the previous results
must be read under the replacement

|ct 〉〈ct | → |c〉〈c|. (24)

In consequence, the total time derivative [Eq. (19)] becomes
an usual time derivative, (D/Dt ) → (d/dt ), and the rates
φcc̃(t ) and γc̃c(t ), as well as the superoperators Scc̃(t ), do
not depend on time. In this situation, the probabilities {pc(t )}
obey a standard time-independent classical master equation
[of the form of Eq. (23)], a property that is shared by the states
{ρc(t )} [Eq. (18)]. Consistently, under these changes these
equations recover the description corresponding to a system
driven by incoherent degrees of freedom that follow their own
stochastic dynamics [see Eq. (27) in Ref. [16] and examples
in Ref. [15]].

The interpretation of Eqs. (18) and (23) remains the same
as in the previous coherent general case. Nevertheless, in that
case the eigenbase {|ct 〉〈ct |}, where the underlying stochastic
environment dynamics develops, is time dependent due to
the intrinsic quantum nature of the environmental degrees of
freedom. This effect is taken into account through the total
time derivative D/Dt [Eq. (19)].

C. Measurement based stochastic representation

A clear understanding of the system-environment coupling
can also be achieved by representing their dynamics with a
measurement-based bipartite state ρse

st (t ) the time evolution of
which, in contrast to Lindblad equations, is a stochastic one.
As is well known, this last feature (denoted with the subscript
“st ”) allows one to relate ρse

st (t ) with a continuous-in-time
measurement process [48,49]. Averaging over (measurement)
realizations (denoted with an overbar symbol) it follows that

ρse
t = ρse

st (t ). (25)

In principle, the state ρse
st (t ) can be formulated from the in-

coherentlike representation (18). A deeper understanding is
achieved by assuming that (solely) the degrees of freedom
of the environment are subjected to a measurement process
that resolves the transitions induced by the (bath) operators
{Bα}. Thus, ρse

st (t ) follows from the standard quantum jump
approach [48,49] [for simplicity we consider in Eqs. (13) and
(14) the diagonal case �α,β = δα,β�α, denoting Sα,α ↔ Sα].
The environment state is recovered as ρe

t = ρe
st (t ), where

ρe
st (t ) = Trs[ρse

st (t )]. For a CBE, the evolution of ρe
st (t ) is

independent of the system dynamics, being defined by the
transitions associated to {Bα}. Similarly, from the evolution
(13) it follows that the bipartite state (assuming uncorrelated
initial conditions) must take the form

ρse
st (t ) = ρs

st (t ) ⊗ ρe
st (t ). (26)

It is simple to realize that the dynamics of the system
state ρs

st (t ) must include the action of the superoperator Sα

whenever the environment suffers a transition (jump) cor-
responding to the operator Bα. In this way, the bipartite
system-environment correlations [Eq. (16)] are built up in
average. On the other hand, between environment transitions,
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the state ρs
st (t ) evolves under the action of Ls. Thus, the sys-

tem dynamics can be seen as a collisional one [33,34], where
the occurrence of the sudden (collisional) changes ρs

st →
Sα[ρs

st] is dictated by the environment transitions associated
to the operator Bα. We notice that this representation recovers
the results of Ref. [34], which can be read as a particular case
of the general dynamics (13).

D. Quantum regression hypothesis

The underlying system-environment dynamics is Marko-
vian [Eq. (13)]. Thus, the quantum regression theorem (QRT)
[48] is valid in the bipartite space Hs ⊗ He. Introduc-
ing a vector of system operators A ↔ A ⊗ Ie, where A =
(A1, A2, · · · , Adim(Hs )2 ), their expectation value at a time τ

(for simplicity, also denoted with an overbar symbol) can be
written as

A(τ ) = Trse
(
Gse

τ,0

[
ρse

0

]
A

)
. (27)

The bipartite propagator is Gse
τ,τ0

≡ exp[(τ − τ0)LT ], with
LT ≡ (Ls + Le + Lse), where Lse follows from Eq. (13).
Given an extra system operator O ↔ O ⊗ Ie, the correlations
O(t )A(t + τ ) follow from the QRT, which implies [48]

O(t )A(t + τ ) = Trse
(
AGse

t+τ,t

[
ρse

t O
])

. (28)

Now, we search conditions under which the QRT is valid
on Hs. Thus, we explore if the previous (system) opera-
tor correlations can be written only in terms of the system
propagator. Assuming uncorrelated initial conditions, ρse

0 =
ρs

0 ⊗ ρe
0, the system propagator Gs

τ,0 can be written as

Gs
τ,0[•] ≡ Tre

(
Gse

τ,0[•] ⊗ ρe
0

)
. (29)

Thus, from Eq. (27), the operator expectation values can be
rewritten as

A(τ ) = Trs(Gs
τ,0

[
ρs

0

]
A). (30)

On the other hand, it is simple to realize that the correlations
(28) cannot be written only in terms of the system propagator
Gs

t+τ,t , which implies that the QRT is not valid in general on
Hs. Nevertheless, assuming that the environment begins in its
stationary state (ρe

∞), and that the stationary bipartite state
(limt→∞ ρse

t ) does not involve system-environment correla-
tions,

ρse
0 = ρs

0 ⊗ ρe
∞, limt→∞ ρse

t = ρs
∞ ⊗ ρe

∞, (31)

in the long time limit the operator correlations become

limt→∞ O(t )A(t + τ ) = Trs(AGs
τ,0

[
ρs

∞O
]
). (32)

In deriving this equality the (stationary) time-translation
symmetry limt→∞ Gse

t+τ,t = Gse
τ,0 was used. Consequently, if

the conditions (31) are fulfilled the QRT is valid in the
stationary regime even when the system dynamics is non-
Markovian. The explicit meaning of the restricted validity
of the QRT becomes clear by writing A(τ ) = T̂ (τ )A(0),
and the stationary correlations as limt→∞ O(t )A(t + τ ) =
T̂ (τ ) limt→∞ O(t )A(t ), where T̂ (τ ) is a matrix in the space
corresponding to the vector of operators A(0) [48].

Interestingly, the same condition for the validity of the
stationary QRT [Eq. (31)] arises in quantum systems coupled
to arbitrary incoherent degrees of freedom [42]. In fact, given

that no condition on Gse
τ,0 [related to the constraint (3)] was

demanded in the previous derivation, this result is valid in gen-
eral whenever the bipartite (system-environment) dynamics is
a Markovian (Lindblad) one.

E. Operational memory witness

It is not possible in general to infer if the environment is
(or is not) a casual bystander one from the time-convoluted
system master equation [Eq. (15)], or from its convolutionless
form, or from the validity (or not) of the QRT [Eqs. (31) and
(32)]. This is one of the limitations of nonoperational memory
witnesses, which is surpassed by operational measurement
based approaches.

We consider a CPF correlation [27]. It is defined by a set of
three successive measurements performed over the system of
interest. Here, they are taken as projective ones, correspond-
ing to Hermitian operators Om, denoted in successive order
with m = x, y, z. Their eigenvectors and eigenvalues read
Om|m〉 = m|m〉, where correspondingly {m} = {x}, {y}, {z}.
The measurements are performed at the initial time t = 0
(past), at time t (present), and t + τ (future), respectively.
After the intermediate measurement at time t, the system
postmeasurement state is externally modified [32] as ρy =
|y〉〈y| → ρy̆ = |y̆〉〈y̆|. A deterministic scheme (d) is defined
by the condition y̆ = y. Thus, no change is introduced. A
random scheme (r) is defined by a random election of y̆ (over
the set {y}) with an arbitrary conditional probability ℘(y̆|x),
which may (or not) depend on the outcomes {x} of the first
measurement performed at time t = 0. The CPF correlation
depends on the chosen scheme. In both cases, it reads

Cp f (t, τ )|y̆ d/r=
∑
z,x

zx[P(z, x|y̆) − P(z|y̆)P(x|y̆)], (33)

where {z} and {x} are the eigenvalues of Oz and Ox, respec-
tively. With P(a|b) we denote the conditional probability of a
given b.

In the deterministic scheme, the CPF correlation vanishes
in a Markovian regime, where past and future outcomes
are conditionally independent: P(z, x|y̆) = P(z|y̆)P(x|y̆) [27].

Thus, Cp f (t, τ )|y̆
d
�= 0 detects memory effects independently

of their underling mechanism. This last property can be un-
derstood from the change of the bipartite state ρse after the
intermediate (projective) measurement:

ρse → |y〉〈y| ⊗ 〈y|ρse|y〉
Trse[|y〉〈y|ρse]

. (34)

In this expression, everything except for the postmeasurement
system state |y〉〈y| depends in general on the initial measure-
ment outcome x. In fact, the dependence of the environment
postmeasurement state 〈y|ρse|y〉/Trse[|y〉〈y|ρse] on the previ-
ous system history allows one to detect memory effects [take,
for example, ρse from Eq. (16)].

In the random scheme, the CPF correlation also detects
non-Markovian effects but in addition it allows one to classify
the corresponding memory effects. In fact, if the environment
is not affected during the system evolution it vanishes identi-
cally [32]. Consequently, the presence of a (non-Markovian)
CBE implies that Cp f (t, τ )|y̆ r= 0. Alternatively, in the random
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scheme, the condition Cp f (t, τ )|y̆
r
�= 0 indicates departures

with respect to a (non-Markovian) CBE, here defined by the
condition Eq. (3).

The previous features of the random scheme can be un-
derstood from Eq. (34) by introducing the (random) system
transformation |y〉〈y| → |y̆〉〈y̆| and averaging (marginalizing)
the environment postmeasurement states (associated to the
outcomes {y}) with their probabilities {Trse[|y〉〈y|ρse]}. This
last ingredient is introduced because the CPF correlation is
defined with the renewed conditional outcome y̆. Hence, after
the intermediate measurement the bipartite state transforms as

ρse → |y̆〉〈y̆| ⊗
∑

y

〈y|ρse|y〉 = |y̆〉〈y̆| ⊗ Trs[ρse]. (35)

In contrast to Eq. (34), here the final postmeasurement bath
state is Trs[ρse]. As the transformation (35) is valid indepen-
dently of the environment nature, in general this state depends
on the previous system history (x outcomes). Consequently,
in this scheme the CPF correlation also detects memory ef-
fects. Nevertheless (by definition), for a CBE the (bath) state
Trs[ρse] is independent of the present or past system states
[take ρse from Eq. (16); see also Eq. (3)], which implies that
a Markovian property characterizes the conditional outcome
statistics. Consequently, the CPF correlation vanishes identi-
cally for CBEs.

The conditional probabilities appearing in Eq. (33) can
explicitly be calculated from the joint outcome probability
P(z, y̌, x) ↔ P(z, t + τ ; y̌, t ; x, 0). As shown in Refs. [27,32],
this object can be calculated after knowing the system-
environment propagator. In order to maintain a description as
simple as possible, we consider Eq. (13) in the diagonal case
�α,β = δα,β�α (denoting Sα,α ↔ Sα) and assuming that the
composition of two arbitrary superoperators can be written
as a superoperator included in the master equation, that is,
SαSα′ = Sα′′ . Under these two conditions, the bipartite propa-
gator, ρse

t = Gse
t,0[ρs

0 ⊗ ρe
0], can be written in a general way as

ρse
t = ρs

0 ⊗ F0(t )
[
ρe

0

] +
∑

α
α �=0

Sα

[
ρs

0

] ⊗ Fα (t )
[
ρe

0

]
. (36)

Here, the environment superoperators {Fα (t )}, which act on
the initial environment state ρe

0, depend on each specific prob-
lem. With this expression at hand, below it is shown how the
CPF correlation can be explicitly calculated from the expres-
sions for P(z, y̌, x) found in Ref. [32].

1. Deterministic scheme

In the deterministic scheme, the joint outcome probability
can be written as [32]

P(z, y̆, x)

P(x)
d= Trse(EzGse

t+τ,t {ρy̆ ⊗ Trs(Ey̆Gse
t,0[ρse

x ])}). (37)

Here, Em ≡ |m〉〈m| and ρm ≡ |m〉〈m| [m = z, y̆, x] represent
the (positive) effect measurement operators and postmeasure-
ment states, respectively [27]. They coincide because here
the measurements are defined by one-dimensional projectors.
Furthermore, ρse

x ≡ ρx ⊗ ρe
0 and P(x) = 〈x|ρs

0|x〉. From the
previous expression, using the bipartite propagator (36), we

get

P(z, y̌, x)

P(x)
d=

∑
α,β

〈z|Sα[ρy̌]|z〉〈y̌|Sβ[ρx]|y̌〉

× Tre
[
Fα (τ )Fβ (t )ρe

0

]
. (38)

Using that P(z, x|y̆) = P(z, y̆, x)/P(y̆), where P(y̆) =∑
z,x P(z, y̆, x), the CPF correlation (33) reads

Cp f (t, τ )|y̆ d= 1

P(y̆)2

∑
α,β,μ

�αβμ|y̆αβμ(t, τ ). (39)

The time-independent coefficients �αβμ|y only depend on the
chosen observables:

�αβμ|y̆ = 〈y̆|S#
α[Oz]|y̆〉〈y̆|Sβ[Oxρx]|y̆〉〈y̆|Sμ[ρx]|y̆〉, (40)

where the dual superoperator S#
α is defined from

Trs(OSα[ρ]) = Trs(ρS#
α[O]). Furthermore, we defined

the state ρx ≡ ∑
x P(x)|x〉〈x| = ∑

x〈x|ρs
0|x〉|x〉〈x|. The time

dependence in Eq. (39) follows from

αβμ(t, τ ) = +Tre
[
Fα (τ )Fβ (t )ρe

0

]
Tre

[
Fμ(t )ρe

0

]
−Tre

[
Fα (τ )Fμ(t )ρe

0

]
Tre

[
Fβ (t )ρe

0

]
, (41)

which only depends on the initial environment state ρe
0 and

environment superoperators {Fα (t )}. The probability P(y̆) is

P(y̆) =
∑

α

〈y̆|Sα[ρx]|y̆〉Tre
[
Fα (t )ρe

0

]
. (42)

The previous formula gives an exact analytical expression for
the CPF correlation that is valid for a broad class of problems
(see Sec. IV below).

2. Random scheme

In the random scheme, P(z, y̆, x) reads [32]

P(z, y̆, x)

P(x)
r= Trse

(
EzGse

t+τ,t

{
ρy̆ ⊗ Trs

(
Gse

t,0

[
ρse

x

])})
℘(y̆|x),

(43)
where as before Em ≡ |m〉〈m|, ρm ≡ |m〉〈m| [m = z, y̆, x],
and ρse

x ≡ ρx ⊗ ρe
0, while P(x) = 〈x|ρs

0|x〉. Furthermore, the
conditional probability ℘(y̆|x) can be freely chosen. Using the
propagator expression (36), it follows that

P(z, y̌, x)

P(x)
r=

∑
α

〈z|Sα[ρy̌]|z〉Tre
[
Fα (τ )ρe

t

]
℘(y̌|x). (44)

Consequently, independently of the chosen measurement ob-
servables, it is confirmed that the CPF correlation [Eq. (33)]
vanishes identically in this scheme:

Cp f (t, τ )|y̆ r= 0. (45)

In fact, in contrast to Eq. (38), the sum term [
∑

α · · · ]
in Eq. (44) can be read as P(z|y̌), leading to the Marko-
vian structure P(z, y̌, x) = P(z|y̌)℘(y̌|x)P(x) → P(z, x|y̌) =
P(z|y̌)P(x|y̌).

IV. EXAMPLES

In order to exemplify the developed results, we consider
different single and multipartite system dynamics interacting
with a quantum non-Markovian CBE.
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A. Single qubit system

The system is a qubit, while the quantum degrees of free-
dom of the environment correspond to a two-level fluorescent
system with decay rate γ and Rabi frequency � [48]. Their
mutual evolution [Eq. (13)] is written as

d

dt
ρse

t = −i
�

2

[
σx, ρ

se
t

] + γ
(
σS

[
ρse

t

]
σ † − 1

2

{
σ †σ, ρse

t

}
+
)
.

(46)
The operators σx, σ †, and σ are, respectively, the x-Pauli
matrix and the raising and lowering operators in the two-
dimensional environment Hilbert space He. The unique
system contribution is the superoperator [see Eq. (12)]

S[•] = σz[•]σz, (47)

where σz is the z-Pauli matrix in the system Hilbert space Hs.

Thus, the system is subjected to a dephasing process driven by
the transitions of the fluorescent system.

1. System-environment propagator

Considering (bipartite) uncorrelated initial conditions,
ρse

0 = ρs
0 ⊗ ρe

0, the propagator of Eq. (46) can be written with
the structure (36):

ρse
t = ρs

0 ⊗ F+(t )
[
ρe

0

] + S
[
ρs

0

] ⊗ F−(t )
[
ρe

0

]
. (48)

At any time, this bipartite state is a separable one [Eq. (16)].
Consistently, a positive partial transpose criterion [46] is ful-
filled. On the other hand, the environment superoperators F±
can be written as

F±(t )[•] = 1
2 (G+

t,0[•] ± G−
t,0[•]), (49)

where the auxiliary superoperators G±
t [•] are defined by the

evolutions,

d

dt
G±

t,t0=−i
�

2
[σx,G±

t,t0 ] + γ
(

± σG±
t,t0σ

† − 1

2
{σ †σ,G±

t,t0}+
)
,

(50)
with the initial conditions G±

t0,t0 = Ie. These equations can be
solved in an analytical way.

Both superoperators G±
t,t0 define the system and environ-

ment dynamics:

ρe
t = G+

t,0

[
ρe

0

]
, f (τ |t ) ≡ Tre

(
G−

t+τ,t

[
ρe

t

])
. (51)

In fact, from Eqs. (46) and (50) it is simple to realize that
G+

t,t0 is the propagator of the environment degrees of freedom.
Furthermore, from Eq. (48) it is simple to show that the
function f (τ |t ) sets the system coherence decay:

ρs
t =

(
pup f (t |0)cup

f (t |0)cdn pdn

)
, (52)

where pup and pdn are the initial upper and lower system
populations while the nondiagonal contributions cup and cdn

are the initial system coherences. Furthermore,

f (τ |t ) = e−γ τ at + e−γ τ/4

[
bt cosh(�τ ) + ct

sinh(�τ )

�

]
,

(53)
where for shortening the expression we introduced the co-
efficient � ≡

√
(γ /4)2 − �2. Explicit expressions for the

time-dependent coefficients at , bt , and ct can be found in the
Appendix.

2. Operator correlations

From Eq. (48), using that limt→∞ G+
t,t0 [ρe

0] = ρe
∞ and

limt→∞ G−
t,t0 [ρe

0] = 0, it follows that

limt→∞ ρse
t = ρs

∞ ⊗ ρe
∞, ρs

∞ = 1
2

(
ρs

0 + S
[
ρs

0

])
, (54)

where ρe
∞ is the stationary state of a two-level fluorescent

system (see the Appendix). Thus, when the environment at
the initial time begins in its stationary state, the conditions
(31) are fulfilled, indicating the validity of the QRT in the
stationary regime. This conclusion is corroborated by the
following explicit calculation of operator expectation values
and correlations. Nevertheless, we also found that for some
operator correlations the QRT is valid at all times.

Introducing the vector of system operators σ ≡
{σx, σy, σz}, their expectation values, from Eq. (27), read

σ (τ ) = T̂ (τ |0) σ (0), (55)

where σ (0) = Trs[σ (0)ρs
0]. Similarly, for the Pauli operators

there are nine possible correlations σi(t )σ j (t + τ ). For six of
them, from Eq. (28) we get

σx(t )σ (t + τ ) = T̂ (τ |t ) σx(t )σ (t ), (56a)

σy(t )σ (t + τ ) = T̂ (τ |t ) σy(t )σ (t ). (56b)

In these expressions, the matrix T̂ (τ |t ) reads

T̂ (τ |t ) = diag{ f (τ |t ), f (τ |t ), 1}. (57)

When the environment begins in its stationary state
ρe

0 = ρe
∞ = limt→ ρe

t , it follows that f (τ |t ) = f (τ |0) [see
Eq. (51)], and consequently T̂ (τ |t ) = T̂ (τ |0). Thus, the six
correlations (56) at any time (t and τ ) evolve as the
expectation values [Eq. (55)] indicating the absence of
any departure with respect to the QRT.

The unique correlations [Eq. (28)] that depart (at any finite
time) from the predictions of the QRT are

σz(t )σ (t + τ ) = T̃ (τ, t )σz(t )σ (t ), (58)

where the matrix T̃ (τ, t ) is

T̃ (τ, t ) = diag

{
f (t + τ |0)

f (t |0)
,

f (t + τ |0)

f (t |0)
, 1

}
. (59)

If the semigroup property f (t + τ |0) = f (τ |t ) f (t |0) be-
comes valid, the QRT is recovered. This happens when the
system coherence can be approximated by an exponential
decay behavior. On the other hand, using that σz(t )σ (t ) =
diag{ f (t |0), f (t |0), 1}σz(0)σ (0) we get limt→∞ σz(t )σ (t ) =
{0, 0, 1}. Thus, consistently with Eq. (31), in the long-time
limit the correlations (58) obey the same evolution as the op-
erator expectation values [Eq. (55)], limt→∞ σz(t )σ (t + τ ) =
T̂ (τ |0){0, 0, 1}, indicating the validity of the QRT in the sta-
tionary regime.

3. Memory witnesses

A deeper understanding of the memory effects developed
in the studied model can be achieved by comparing opera-
tional and nonoperational memory witnesses.
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FIG. 1. Time dependence of the decoherence rate Eq. (60) corre-
sponding to the underlying dynamics (46). The environment begins
in its stationary state. In each plot, the parameters are (a) �/γ =
1/10, (b) �/γ = 1/4, (c) �/γ = 1, and (d) �/γ = 10.

For nonoperational approaches, the central ingredient to
analyze is the system density-matrix evolution. From Eq. (52),
straightforwardly we get

d

dt
ρs

t = 1

2
γt

(
S
[
ρs

t

] − ρs
t

)
, γt = − d

dt
ln[ f (t |0)], (60)

where f (t |0) follows from Eq. (53).
The negativity of γt can be used as an indicator of

memory effects [14]. Under this criterion the dynamics is
non-Markovian if at some time interval γt < 0 and Markovian
if γt � 0 at all times. We assume that the environment begins
in its stationary state, ρe

0 = ρe
∞. Thus, f (τ |t ) = f (τ |0) [see

Eq. (51)]. In Fig. 1 we plot γt for different values of the quo-
tient �/γ . For �/γ � 1/4 the rate is always positive, while
for �/γ > 1/4 it develops periodical divergences. Thus, the
dynamics (under the negative rate criteria) is non-Markovian
in this last regime. The same conclusion follows from the trace
distance between two initial states [8]. On the other hand, for
�/γ � 1/4, the rate γt approaches a constant value (initial
stage), implying that a Markovian regime is (asymptotically)
reached again.

The previous rate behaviors can be understood from
the underlying environment dynamics. For �/γ � 1/4, the
probability distribution of the elapsed time between envi-
ronment (fluorescent) transitions approaches an exponential
function with average time [2�2/γ ]−1 [48]. Consequently,
the coherence decay function (induced by the application
of the superoperator S) can be approximated as f (τ |0) ≈
exp[−t (2�2/γ )], which implies γt ≈ 2�2/γ [Fig. 1(a)]. This
regime changes drastically when �/γ = 1/4 [Fig. 1(b)],
where the environment starts to develop Rabi oscillations.
Around �/γ ≈ 1, the system coherence f (t |0) decays and
vanishes in an oscillatory way. Consequently, γt [Eq. (60)]
develops periodic divergences [Fig. 1(c)]. For �/γ � 1, the
effect of the (fast) environment Rabi oscillations over the
system cancels out on average, leading to the approximate
coherence decay f (τ |0) ≈ exp(−tγ ). Thus, γt ≈ γ , indicat-

FIG. 2. CPF correlation [Eq. (62)] with equal time intervals τ =
t corresponding to the system-environment model (46). The parame-
ters �/γ are the same as in Fig. 1. Similarly, the environment begins
in its stationary state. In all cases, the system initial condition is such
that 〈x〉 = 0.

ing that a Markovian regime is approached. This tendency
is clearly seen in Fig. 1(d) at the initial stage (γ t � 2). The
posterior (γ t > 5) divergent oscillations of γt emerge because
f (τ |0) oscillates around zero. Nevertheless, in this regime
| f (τ |0)| � 1. Thus, when �/γ � 1 the divergent oscilla-
tions do not contradict that a Markovian regime is being
approached.

The previous dynamical regimes can alternatively be ana-
lyzed from the operational approach. For the dynamics (46),
using the explicit propagator Eq. (48), all statistical objects
that define the CPF correlation can be explicitly evaluated.
We consider that the three consecutive measurements are per-
formed in the x̂ direction of the system Bloch sphere. Thus, in
all cases, the possible measurement outcomes (eigenvalues)
are m = ±1 (m = x, y, z), while the corresponding eigenvec-
tors are |m〉 = (1/

√
2)(|up〉 + m|dn〉), where |up〉 and |dn〉

are, respectively, the upper and lower states of the system [see
Eq. (52)].

In the deterministic scheme, the joint outcome probability
Eq. (38) becomes

P(z, y̆, x)
d= 1

4 [1+zy̆ f (τ |t )+zx f (t + τ |0) + y̆x f (t |0)]P(x).
(61)

The CPF correlation Eq. (39) reads

Cp f (t, τ )|y̆ d= 1 − 〈x〉2

4[P(y̆)]2
[ f (t + τ |0) − f (τ |t ) f (t |0)], (62)

with P(y̆) = [1 + y̆〈x〉 f (t |0)]/2, jointly with 〈x〉 =∑
x=±1 xP(x) and P(x) = 〈x|ρs

0|x〉 where {|x〉} are the
eigenvectors of the x̂-Pauli matrix.

In Fig. 2, for the same parameter regimes shown in Fig. 1,
we plot the CPF correlation at equal time intervals, τ = t . The
environment also begins in its stationary state, ρe

0 = ρe
∞.

As is well known, operational and nonoperational memory
witnesses do not coincide in general [27]. In fact, here the
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CPF correlation indicates the presence of memory effects for
all parameter regimes, even when the rate γt is positive at
all times. Consistently, for �/γ � 1/4, the maximal absolute
value of the CPF correlation diminishes [Fig. 2(a)], indicat-
ing the proximity of a Markovian regime. When �/γ = 1/4
[Fig. 2(b)], the CPF is negative at all times and does not
develop oscillations. For �/γ ≈ 1, it develops oscillations
and its absolute value is maximal [Fig. 2(c)], indicating strong
memory effects. Consistently, when �/γ � 1, the CPF cor-
relation oscillates but with a smaller amplitude [Fig. 2(d)],
indicating again the approaching of a Markov regime.

In contrast to memory witnesses based only on the un-
perturbed system dynamics, the CPF correlation indicates
a Markovian regime only in the limits �/γ → 0 and ∞.

In addition, the operational approach gives a much deeper
characterization when considering the random scheme. From
Eq. (44), for the joint probabilities we get

P(z, y̆, x)
r= 1

2
[1 + zy̆ f (τ |t )]℘(y̆|x)P(x). (63)

As expected, a Markovian property is fulfilled, leading con-
sistently to Cp f (t, τ )|y̆ r= 0 [Eq. (45)] for arbitrary initial
environment states. This result indicates the presence of a
CBE, a property that cannot be resolved with nonoperational
approaches.

B. Multipartite qubit systems

The developed formalism also allows one to study the
coupling of multipartite systems with a CBE. In contrast to
Eq. (46), here we consider a set of N qubits. For simplicity,
we assume the system-environment evolution

d

dt
ρse

t =−i
�

2

[
σx, ρ

se
t

] + γ

(
σSa

[
ρse

t

]
σ † − 1

2

{
σ †σ, ρse

t

}
+

)

+ϕ

(
σ †Sb

[
ρse

t

]
σ − 1

2

{
σσ †, ρse

t

}
+

)
. (64)

As before, σx, σ †, and σ are, respectively, the x-Pauli matrix
and the raising and lowering operators in the two-dimensional
environment Hilbert space He. Thus, the environment cor-
responds to a two-level fluorescentlike system with Rabi
frequency � and decay rate γ , while the rate ϕ scales the
presence of thermally induced excitations [2].

Each of the system superoperators Sα[•] ≡ σα • σα (α =
a, b) are defined by an arbitrary (multipartite) Pauli string
σα = σα1 ⊗ · · · ⊗ σαN , which consists in the external product
of N arbitrary Pauli operators acting on each qubit. These
superoperators are applied over the system whenever the en-
vironment suffers a transition between its (two) states. From
Eq. (64), it follows that Sa is applied when an environmental
transition between the upper and lower states occurs, while Sb
is applied for the inverse (thermally induced) transition.

The bipartite propagator associated to Eq. (64) can be writ-
ten with the structure Eq. (36). The label of the superoperators
{Fα (t )} runs over the values α = 0, a, b, c, where Sc = SbSa.

The calculations that lead to explicit solutions for the environ-
ment superoperators {Fα (t )} are presented in the Appendix.

From these expressions and Eq. (36), it follows that

limt→∞ ρse
t = ρs

∞ ⊗ ρe
∞, ρs

∞ = 1

4

(
ρs

0 +
∑

α

Sα

[
ρs

0

])
,

(65)
where ρs

∞ is the multipartite system stationary state while the
(two-level) state ρe

∞ follows by tracing out the system degrees
of freedom in Eq. (64). In consequence, as in the previous
example, the QRT is valid for stationary correlations of the
system.

From Eq. (36) the system state at any time, ρs
t = Tre(ρse

t ),
can straightforwardly be written as a statistical superposition
of Kraus maps:

ρs
t = p0

t ρ0 +
∑

α=a,b,c,

pα
t Sα[ρ0], (66)

where the weights are pα
t ≡ Tre(Fα (t )[ρe

0]). Similarly, the
density-matrix evolution can be written as

dρs
t

dt
=

∑
α=a,b,c,

γ α
t

(
Sα

[
ρs

t

] − ρs
t

)
. (67)

Simple expressions for the probabilities {pα
t } and rates {γ α

t }
are obtained when ϕ = γ in Eq. (64). We get

p0
t = 1

2
e−γ t

[
cosh(γ t ) + γ 2

χ2
cos(χt ) + �2

χ2

]
, (68a)

pa
t = pb

t = 1

4
[1 − e−2γ t ], (68b)

pc
t = 1

2
e−γ t

[
cosh(γ t ) − γ 2

χ2
cos(χt ) − �2

χ2

]
, (68c)

where χ ≡
√

γ 2 + �2. From these expressions, the rates in
Eq. (67) are

γ
a

t = γ
b

t = 1

2
γ , γ

c
t = 1

2

χ sin(χt )

(�/γ )2 + cos(χt )
. (69)

Notice that γ
c

t presents an oscillatory behavior at any time,
which develops divergences only when (�/γ )2 < 1. When
� = 0, it reduces to γ

c
t = (1/2)γ tan(γ t ), recovering the

rates of the “trigonometric eternal non-Markovian” dynamics
introduced in Ref. [50], where the environment dynamics is an
incoherent one. Thus, we can read Eq. (64) as a quantum (co-
herent) generalization (� �= 0) of the incoherent environment
studied in Ref. [50].

The CPF correlation can also be obtained in the present
case. Assuming that the three measurements correspond to the
observable σα (α = a or b), from Eq. (39) we get (with ϕ =
γ )

Cp f (t, τ )|y̆ d= − (1 − 〈x〉2)

[2N P(y̆)]2
e−(t+τ )γ /2

[
γ 2

χ2
sin(tχ ) sin(τχ )

− 4γ 2�2

χ4
sin2(tχ/2) sin2(τχ/2)

]
, (70)

where as before χ =
√

γ 2 + �2 and P(y̆) = 2−N {1 +
y̆〈x〉e−γ t [�2 + γ 2 cos(tχ )]/χ2}. Furthermore, 〈x〉 =∑

x x〈x|ρs
0|x〉, where {x} and {|x〉} are, respectively,

the eigenvalues and eigenvectors associated to the first
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measurement observable. When the three measurements
correspond to the observable σc, we get Cp f (t, τ )|y d= 0. This
property does not imply Markovianity because it is only valid
for these particular measurement observables. In contrast, in
the random scheme Eq. (45) guarantees that Cp f (t, τ )|y r= 0
for any system observables and initial environment states, a
property consistent with a CBE.

V. SUMMARY AND CONCLUSIONS

Quantum memory effects can be induced by environments
the state and dynamical behavior of which are not affected at
all by their interaction with the system of interest. Based on
a bipartite completely positive representation of the system-
environment dynamics, in this paper we have explored the
most general interaction structures that are consistent with this
class of non-Markovian CBEs.

While unitary interactions must be discarded, we have
found the most general dissipative coupling structures
[Eq. (13)] that are consistent with the demanded con-
straint [Eq. (3)]. The degrees of freedom associated to the
environment are governed by a Lindblad evolution. The cor-
responding system dynamic turns out to be defined by a set
of arbitrary completely positive transformations the action of
which is conditioned to the environment dynamics.

The bipartite system-environment state can always be writ-
ten as a separable one [Eq. (16)], indicating the absence
of quantum entanglement between both parts. Nevertheless,
in contrast to a purely incoherent case, the environment
may develop quantum coherent behaviors. Consistently, by
subjecting the degrees of freedom of the environment to
a continuous-in-time measurement process, a product state
characterizes the bipartite stochastic dynamics [Eq. (26)],
where a collisional dynamics defines the stochastic system
evolution.

Similarly to incoherent environments, here the QRT is
not valid in general. Nevertheless, stationary (system) op-
erator correlations evolve in the same way as expectation
values when the bipartite system-environment stationary state
is an uncorrelated one [Eq. (31)]. Consequently, outside
the stationary regime operator correlations can be used as
a witness of memory effects. Nevertheless, given that the
absence of stationary system-environment correlations may
emerge in different models, a deeper characterization of
non-Markovianity can be achieved through an operational
approach.

The CPF correlation is an operational memory witness
that relies on performing three consecutive measurement pro-
cesses over the system of interest. This object was explicitly
calculated in terms of a bipartite propagator [Eq. (36)] as-
sociated to the studied system-environment coupling. In a
deterministic scheme, where the system state is not modi-
fied after the intermediate measurement, the CPF correlation
[Eq. (39)] detects departures with respect to a Markovian
regime (defined in terms of conditional probabilities). In a ran-
dom scheme, where the intermediate postmeasurement state
is selected in a random way, the CPF correlation vanishes
when the environment is a casual bystander one [Eq. (45)].
This feature provides an explicit experimental procedure for
detecting when the studied properties apply.

All previous conclusions were supported by the explicit
study of single and multipartite qubits dynamics. The de-
veloped approach furnishes a solid basis for constructing
alternative underlying mechanisms that lead to quantum
memory effects. On the other hand, added to incoherent
environments with a classical self-fluctuating dynamics, the
studied dynamics define the most general situation where
quantum memory effects are not endowed with a physi-
cal environment-to-system backflow of information. While
unitary system-environment interactions were discarded, the
present results motivate us to ask about different dynamical
regimes where an effective non-Markovian casual bystander
environmental action could be recovered.
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APPENDIX: AUXILIARY EXPRESSIONS
AND CALCULUS DETAILS

Auxiliary expressions and calculation details are provided.

1. Coefficients of the coherence decay function

The coherence decay function f (τ |t ) ≡ Tre(G−
t+τ,t [ρ

e
t ]),

where G−
t+τ,t is defined by the evolution (50), can be written

as in Eq. (53), where the time-dependent coefficients are

at =
[

1 − 2γ�σy(t ) − σz(t )γ 2

γ 2 + 2�2

]
, (A1a)

bt = 2γ�σy(t ) − σz(t )γ 2

γ 2 + 2�2
, (A1b)

ct = −6γ�σy(t ) + σz(t )(γ 2 + 8�2)

4(γ 2 + 2�2)
. (A1c)

The overbar symbol denotes the expectation values σi(t ) =
Tre[ρe

t σi], where σi are Pauli operators in He. The environ-
ment state follows from ρe

t = G+
t,0[ρe

0], where G+
t,0 is also

defined by the evolution (50). The stationary environment
state ρe

∞ = limt→∞ ρe
t reads

ρe
∞ = 1

γ 2 + 2�2

(
�2 −iγ�

+iγ� γ 2 + �2

)
. (A2)

Assuming that the environment begins in this state, the pre-
vious expectations value σi(∞) = limt→∞ σi(t ) = Tre[ρe

∞σi]
follows straightforwardly:

σy(∞) = 2γ�

γ 2 + 2�2
, σz(∞) = − γ 2

γ 2 + 2�2
. (A3)

2. Multipartite system-environment propagator

The bipartite propagator corresponding to the model (64)
can be written as in Eq. (36). The solution for the set of envi-
ronment superoperators {Fα (t )} can be obtained by defining
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the vector

F ≡ {F0(t ),Fa(t ),Fb(t ),Fc(t )}. (A4)

It is written as F = (1/4)H · G, where H
is a four-dimensional Hadamard matrix, H =
{{1, 1, 1, 1}, {1, 1,−1,−1}, {1,−1, 1,−1}, {1,−1−, 1, 1}}.
The components of the vector G are denoted as

G ≡ {G++
t,0 ,G+−

t,0 ,G−+
t,0 ,G−−

t,0 }, (A5)

which in turn can be written as G = H · F . With these
definitions, the underlying model (64) implies the time

evolutions

dGuv

dt
=−i

�

2
[σx,Guv]− γ

2
{σ †σ,Guv}+− ϕ

2
{σσ †,Guv}+

+ u(γ σGuvσ †) + v(ϕσ †Guvσ ), (A6)

with initial conditions Guv
t0,t0 = Ie. For shortening the expres-

sions, we denoted Guv
t,t0 ↔ Guv. The supra-indices are u = ±

and v = ±. The explicit analytical expressions for the four
superoperators Guv can be obtained by solving their evolution
via Laplace transform techniques.
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