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We study a model consisting of a central PT -symmetric trimer with non-Hermitian strength parameter γ

coupled to two semi-infinite Su-Schrieffer-Heeger (SSH) leads. We show the existence of two zero-energy
modes, one of which is localized while the other is antilocalized. For the remaining eigenvalues, we demonstrate
two qualitatively distinct types of PT -symmetry breaking. Within a subset of the parameter space corresponding
to the topologically nontrivial phase of the SSH chains, a gap opens within the broken-PT -symmetry regime
of the discrete eigenvalue spectrum. For smaller values of γ , the eigenvalues are embedded in the two SSH
bands and hence become destabilized primarily due to the resonance interaction with the continuum. We refer to
this as reservoir-assisted PT -symmetry breaking. As the value of γ is increased, the eigenvalues exit the SSH
bands and the discrete eigenstates become more strongly localized in the central trimer region. This approximate
decoupling results in the discrete spectrum behaving more like the independent trimer, including both a region in
which the PT symmetry is restored (the gap) and a second region in which it is broken again. At the exceptional
point (EP) marking the boundary between the gap and the second PT -symmetry-broken region, two of the
eigenstates coalesce with the localized zero-energy mode, resulting in a third-order exceptional point. At the
other boundaries of the parameter space at which the gap vanishes, similar higher-order EPs can form as pairs
of the discrete eigenstates coalesce with either of the two zero-energy states. The EPs of order N formed of the
localized zero-energy state give rise to characteristic dynamics ∼t2N−2 in the evolution of an initial state, which
we propose to measure in a photonic lattice experiment.

DOI: 10.1103/PhysRevA.104.062215

I. INTRODUCTION

While the traditional formulation of quantum mechanics
requires that the Hamiltonian operator describing a given
system must be Hermitian in order to yield real eigenvalues,
almost from the beginning of quantum mechanics researchers
have found it useful to consider non-Hermitian extensions or
interpretations of the theory. Under one common approach,
a non-Hermitian formulation is often useful to describe the
interaction between a quantum system and its surrounding
environment. In this picture, the appearance of a resonance
with complex eigenvalue is often associated with exponential
decay [1–11].

The observation by Bender and Boettcher that non-
Hermitian systems obeying parity-time (PT ) symmetry can
still yield real eigenvalues [12] has lead some researchers to
consider PT -symmetric or pseudo-Hermitian reformulations
of quantum mechanics [13–17]. These efforts have in turn
inspired studies of PT symmetry in a wide range of phys-
ical contexts, particularly optics [18–26], but also electronic
circuits [27], random walks [28,29], and descriptions of open
quantum systems [30,31].

A key issue that underlies many interesting properties in
such systems is spontaneous PT -symmetry breaking, under
which at least two solutions of the PT -symmetric Hamilto-
nian no longer conform to the PT -symmetry individually but

only do so as a pair. The threshold of the PT -symmetry-
breaking transition occurs at an exceptional point (EP), at
which two or more eigenstates coalesce and the usual diago-
nalization scheme breaks down [32–37]. Owing to the broken
PT symmetry, the physics on either side of the EP can be
quite different. As a simple example (which will be useful for
our later development), consider a 3×3 matrix Hamiltonian of
the form

HPT =
⎛
⎝iγ g 0

g 0 g
0 g −iγ

⎞
⎠. (1)

This satisfies the PT -symmetric relation HPT = PT HPTPT ,
in which the parity operator is defined as

P =
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠, (2)

while T is the antilinear complex conjugation operator acting
as T iT = −i [16]. Physically, we can interpret the non-
Hermitian entries ±iγ of HPT as representing energy source
and drain terms, respectively [18]. The eigenvalues of HPT are
given by z0 = 0 and

z± = ±
√

2g2 − γ 2, (3)
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the latter two of which demonstrate the PT -symmetric prop-
erties of the system. The PT -symmetric phase of HPT is
given by γ <

√
2g, during which the effective coupling

√
2g

between the energy gain and loss terms is strong enough to
balance their individual non-Hermitian character, resulting
in real eigenvalues z±. Meanwhile, in the case γ >

√
2g,

the non-Hermiticity overwhelms the coupling such that the
eigenvalues z± become a complex conjugate pair; this is the
broken-PT -symmetry regime. Of course, it is the EP at γ =
γ̄PT ≡ √

2g that separates the two regions.
The above gives a relatively simple picture of PT -

symmetry breaking in a finite, purely discrete system.
However, the physics becomes significantly more complex
when we combine PT symmetry in the form of gain and
loss with traditional open quantum systems that incorporate
both discrete and continuous spectra [30]. The continuum in
such systems arises from microscopic degrees of freedom
that describe the environment as it influences the quantized
part of the system [5,6,30,38–47]. We note that in cavity
quantum electrodynamics, a model incorporating such a con-
tinuum is sometimes referred to as a structured reservoir
[38,39,45,47,48].

The interaction between the reservoir (continuum) and the
gain and loss profile in the combined system can result in
a wide variety of phenomena that cannot be accommodated
in purely discrete PT models [18,20,30,49–51]. As we show
in this work, different physics particularly emerges when the
energies of these two subsystems are roughly balanced. In
particular, when the energy scales of a PT -symmetric defect
and the continuum are similar, we find that the PT -symmetry-
breaking threshold occurs for significantly reduced values
of the strength of the complex potential. We further show
that the eigenstates associated with the broken PT symme-
try in this scenario take on properties of both the reservoir
and the PT -symmetric subsystem. Hence, we refer to this
as reservoir-assisted PT -symmetry breaking. A special case
occurs in the reservoir-assisted PT -broken regime when one
of the complex modes associated with the explicitly non-
Hermitian sector of the model becomes embedded directly in
the continuum. This is known in the literature as a resonance-
in-continuum (RIC) [30,31] or spectral singularity [52–57].
Physically, this can be understood as a coherent, nonequilib-
rium steady state in which particle flux from the gain and
loss sector is reprocessed through the reservoir to form a
standing wave extending into the surrounding environment.
In PT -symmetric models these standing waves constitute
simultaneous laser-absorber modes [49,51].

In Sec. II we present our model, consisting of a PT -
symmetric central potential that is equivalent to the Hamil-
tonian from Eq. (1), which is then coupled to the reservoir
in the form of two semi-infinite Su-Schrieffer-Heeger (SSH)
chains [58–61]. This model is a two-channel extension of
the PT -symmetric open quantum system from our previous
paper [30], which is useful for distinguishing between the
qualitatively different types of PT -symmetry breaking.

Recently, non-Hermitian extensions of the SSH model
have been actively investigated by many authors who mainly
focused on the topological properties of the systems [62–74].
In our model, the semi-infinite SSH chains form the reservoir.
We mainly focus on the parameter region corresponding to the

FIG. 1. (a) Geometry of PT -symmetric open SSH model. The
boundaries of the semi-infinite SSH chains are shown in (b) the topo-
logically trivial phase with t1 < t2 and (c) the topologically nontrivial
phase with t1 > t2.

topologically nontrivial phase of the bare SSH chains [59], in
which edge states can form that are topologically protected.
In our model, these can result in states that approximately
decouple from the chains and are hence localized around the
central PT -symmetric impurity region.

In Sec. III A we study our model under the boundary
condition of outgoing waves to obtain the discrete energy
spectra and eigenstates. This includes four discrete eigenval-
ues that are given as the solution to a quartic polynomial
and, as shown in Sec. III B, two states with energy eigenvalue
zero that always reside exactly between the two SSH bands.
In Sec. III C we show the properties of the system in the
reservoir-assisted broken-PT -symmetry regime by focusing
on a parameter region in which a gap appears between this
regime and the ordinary PT -symmetry breaking. This gap
can be considered an example of the so-called reentrant PT -
symmetric phase that has appeared in the literature [75]. We
then analyze the situation where this gap closes in Sec. IV
and show that it is associated with the intersection of several
exceptional point surfaces. Along the intersections, pairs of
eigenvalues coalesce with one or the other zero-energy state.
In Sec. V we present simulations for the dynamics of an
initially prepared state and propose two experiments: one to
verify the reservoir-assisted symmetry breaking and the other
to confirm the coalesced zero-energy states. We summarize
this work and make concluding remarks in Sec. VI.

II. OPEN-SYSTEM HAMILTONIAN
AND CONTINUUM DISPERSION

The Hamiltonian of our PT -symmetric open SSH model
shown in Fig. 1(a) is given by

Ĥ = ĤSSH + ĤPT, (4)

in which

ĤPT = g(|0〉〈1, a| + |1, a〉〈0| + |0〉〈−1, a| + | − 1, a〉〈0|)
+ iγ (| − 1, a〉〈−1, a| − |1, a〉〈1, a|) (5)

is the PT -symmetric matrix Hamiltonian from Eq. (1), writ-
ten in abstract form, and

ĤSSH =
∞∑

n=1

[t1(|n, b〉〈n + 1, a| + |n + 1, a〉〈n, b|)

+ t2(|n, a〉〈n, b| + |n, b〉〈n, a|)]
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+
−1∑

n=−∞
[t1(|n, b〉〈n − 1, a| + |n − 1, a〉〈n, b|)

+ t2(|n, a〉〈n, b| + |n, b〉〈n, a|)] (6)

is our reservoir Hamiltonian, consisting of two semi-infinite
SSH chains. In these equations, |n, a〉 and |n, b〉 represent sites
within any part of the system appearing at unit cell n with
sublattice labels a and b, respectively. Within ĤSSH, t1 is the
intercell hopping and t2 is the intracell hopping. Note that the
sub-Hamiltonian ĤSSH contains the direct coupling between
the SSH chains and the two PT -symmetric sites.

It is well known that the SSH model can exhibit either
a topologically trivial phase for t1 < t2 or a nontrivial phase
for t1 > t2 [59], which can be understood for our semi-infinite
chains as follows. In the trivial phase t1 < t2, the eigenstates
are delocalized, becoming exact dimers in the case t1 = 0, as
illustrated in Fig. 1(b). Meanwhile, a localized state appears
at the end of the chain for t1 > t2 that completely decouples
for the case t2 = 0, as shown in Fig. 1(c). This is the well-
known edge state for the SSH model with energy E = 0 that is
interpreted as a topological invariant [59]. In this work we will
primarily focus our interest on the topologically nontrivial
phase t1 > t2, as this is the case in which the reservoir-assisted
PT -symmetry-breaking effect can be most clearly distin-
guished. We note that the authors of Ref. [70] recently studied
the influence of a PT -symmetric potential on the topological
state in a model with a geometry somewhat similar to ours,
but for which the SSH chains remain finite. Reference [60]
meanwhile gives one of the few examples of a study in which
the SSH chains are treated as open reservoirs, but for a Hermi-
tian system in that work. Finally, we note the photonic lattice
experiment in Ref. [76] shares some qualitative features with
our geometry above (we comment on this experiment further
throughout this work).

Solving the Schrödinger equation Ĥ |ψ〉 = z|ψ〉 with
eigenvalue z and eigenstate |ψ〉 for Eq. (4) yields a series of
coupled equations for the site amplitudes in our model. For
convenience, we write the site amplitudes as

φ0 ≡ 〈0|ψ〉, (7)

ψn,x ≡ 〈n, x|ψ〉, (8)

with x = a or b. We then multiply Ĥ |ψ〉 = z|ψ〉 on the left by
〈0| or 〈n, x|, to obtain the coupled equations

gψ1,a + gψ−1,a = zφ0, (9)

gφ0 + t2ψ1,b − iγψ1,a = zψ1,a, (10)

gφ0 + t2ψ−1,b + iγψ−1,a = zψ−1,a (11)

for the amplitudes in the central PT -symmetric portion of the
model, as well as

t2ψn,a + t1ψn+1,a = zψn,b for n � 1, (12)

t2ψn,b + t1ψn−1,b = zψn,a for n � 2, (13)

t2ψn,a + t1ψn−1,a = zψn,b for n � −1, (14)

t2ψn,b + t1ψn+1,b = zψn,a for n � −2 (15)

for the site amplitudes within the SSH reservoirs.

The solutions to Eqs. (12)–(15) yield the two continuum
eigenvalue dispersions

z = ±
√

t2
1 + t2

2 + 2t1t2 cos k

= ±
√

t2 + t1eik
√

t2 + t1e−ik . (16)

These two continua or bands define the SSH reservoirs in
our present model. For the case t1 > t2, the energies for these
two bands extend over the ranges from t1 − t2 to t1 + t2 and
from −(t1 + t2) to −(t1 − t2), as k varies along the domain
k ∈ [0, π ]. Note that an energy band gap occurs between the
two bands in the range from t1 − t2 to −(t1 − t2), but this is
entirely distinct from the gap in which the discrete eigenvalues
transition from complex to real, which will be introduced later
in this paper.

III. COMPLEX EIGENVALUE SPECTRUM

A. Discrete eigenvalues under outgoing-wave
boundary condition

To obtain the discrete eigenvalues for the Hamiltonian Ĥ
given in Eq. (4), we apply the Siegert boundary condition with
outgoing waves [1,2,6,30,42] from the central PT -symmetric
impurity region in the form(

ψn,a

ψn,b

)
= eikn

(
Ca

Cb

)
for n > 0 (17)

and (
ψn,a

ψn,b

)
= e−ikn

(
Ba

Bb

)
for n < 0, (18)

where the wave number k is in general a complex number.
For Imk > 0 the wave function is localized around the central
impurity region; for Imk < 0 the wave function diverges into
the leads for increasing |n|. When the corresponding energy
eigenvalue z becomes complex, this indicates that the PT
symmetry of the system is broken. Applying the boundary
conditions (17) and (18) to the coupled equations previously
derived in Sec. II, we obtain equations for the amplitudes Ca,
Cb, Ba, Bb, and φ0 in the impurity region as

geik (Ca + Ba) = zφ0, (19)

gφ0e−ik + t2Cb = (z + iγ )Ca, (20)

gφ0e−ik + t2Bb = (z − iγ )Ba (21)

and within the SSH leads as

(t2 + t1eik )Ca = zCb, (22)

(t2 + t1e−ik )Cb = zCa, (23)

(t2 + t1eik )Ba = zBb, (24)

(t2 + t1e−ik )Bb = zBa. (25)

Equations (22)–(25) yield the SSH continuum eigen-
values previously reported in Eq. (16). Meanwhile,
we can eliminate Cb and Bb from Eqs. (19)–(21) to
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obtain

⎛
⎜⎜⎜⎜⎝

±t2

√
t2+t1eik√

t2+t1e−ik
− iγ − z ge−ik 0

geik −z geik

0 ge−ik ±t2

√
t2+t1eik√

t2+t1e−ik
+ iγ − z

⎞
⎟⎟⎟⎟⎠

⎛
⎝Ca

φ0

Ba

⎞
⎠ = 0. (26)

The determinant of the matrix on the left-hand side is given by

Ds(λ) ≡ ∓
√

t2 + t1λ√
t2 + t1/λ

{
t2
1 (t2 + t1λ)/λ2 + γ 2(t2 + t1/λ) − 2g2t1/λ

}
, (27)

in which we have defined

λ = eik . (28)

The solution of the equation Ds(λ j ) = 0 can be obtained as

λ± = 1

2γ 2t2

{−t1
(
t2
1 + γ 2 − 2g2

) ±
√

t2
1

(
t2
1 + γ 2 − 2g2

)2 − 4t2
1 t2

2 γ 2
}
, (29)

which then yields the wave number k of the discrete eigenval-
ues as

k = −i ln λ± (30)

after inverting Eq. (28). Using Eq. (16), the energies of the
discrete eigenvalues can be obtained in terms of λ± as

z = ±
√

t2 + t1λ±
√

t2 + t1/λ±. (31)

Squaring this equation twice and applying Eq. (29), we can
obtain the polynomial equation for the energy eigenvalues z j

directly in terms of the system parameters as

Ps(z j ) = 0, (32)

where Ps(z) is the biquadratic polynomial

Ps(z) ≡ γ 2z4 + {
γ 4 − 2γ 2

(
t2
2 + g2

) + t4
1 − 2g2t2

1

}
z2

+ (
t2
1 − t2

2 − 2g2
){

γ 2
(
t2
1 − t2

2

) − 2g2t2
1

}
. (33)

We emphasize that the solutions of Ps(z j ) = 0 are equivalent
to the previous equation Ds(λ j ) = 0. Further, these four so-
lutions always appear as two pairs for which the members of
each pair satisfy z j = −zl , which is inherited from the chiral
symmetry properties of the underlying SSH model.

B. Zero-energy modes

It can be shown that there are two further discrete solutions
not yet accounted for in the previous analysis, both of which
have eigenvalue z = 0 (residing directly in between the two
SSH bands). Setting z = 0 in Eqs. (22)–(25), we find there are
two nontrivial cases. For one of the solutions the condition

λ = eika = − t2
t1

(34)

must be satisfied, which gives ka = π + i log(t1/t2) and fur-
ther requires

Ca = −Ba 
= 0, Cb = Bb = 0, (35)

as well as

φ0 = −i
γ t2
gt1

Ca (36)

for the central site |0〉. Since this solution is nonzero on the a
sites, we refer to it as

|ψ za〉 (37)

with eigenvalue za = 0. The condition for the other solution is

λ = eikb = − t1
t2

, (38)

yielding kb = π + i log(t2/t1) and

Ca = Ba = 0, Cb = Bb 
= 0, (39)

as well as

φ0 = t1
g

Ca. (40)

We refer to this solution as

|ψ zb〉 (41)

with eigenvalue zb = 0. In the case t1 > t2, which is the
primary focus of this paper, the mode |ψ za〉 represents a
localized state with odd wave function in the SSH leads of
the form ψ

za±n,a = 〈±n, a|ψ za〉 = ±(−t2/t1)|n|Ca (with ψ
za
n,b =

〈n, b|ψ za〉 = 0 for all n), as shown in Fig. 2(a). Meanwhile,
zb is instead an antilocalized state with even wave function in
the leads of the form ψ

zb
±n,b = (−t1/t2)|n|Cb (with ψ zb

n,a = 0 for
all n), as shown in Fig. 2(b). For t2 > t1, the two states switch
roles in terms of localization properties.

The form of these two wave functions appearing in terms
of powers of −t1/t2 with alternating vanishing amplitudes
recalls the same properties of the edge states in the finite SSH
model [59,73]. Further, the localized solution |ψ za〉 seems to
be roughly comparable to the PT -symmetric topological in-
terface state observed in the experiment in Ref. [76]. However,
to be careful, we refer to |ψ za〉 and |ψ zb〉 as zero-energy states
for the remainder of this work.
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FIG. 2. Wave-function amplitudes of the zero-energy eigenstates
for the case t1 > t2: (a) localized state |ψ za 〉 with t1 = 2 and Ca = −1
and (b) antilocalized state |ψ zb〉 with t1 = 1.5 and Cb = 1. The other
parameters are t2 = 1, g = 1.1, and γ = 0.85 in both panels. The
alternating b sites are emphasized with dashed vertical lines. Note
that the lone nonzero imaginary part of the wave function for φza

0 is
indicated with an orange square in (a), corresponding to Eq. (36).

For now we turn to the evaluation of the remaining four
discrete eigenstates coming from the solutions of the polyno-
mial equation Ps(z) = 0. However, we note that there are some
special circumstances in which pairs of solutions from these
four eigenstates can also become zero-energy eigenstates, in
which case those pairs will coalesce with one or the other of
the preexisting zero-energy states. For this reason, we never
explicitly plot the above two zero-energy eigenvalues in the
figures that follow (because that would unfortunately obscure
the special cases in which the other solutions also become
zero-energy states). We further insert a slight note of caution
on this point that, technically, the boundary conditions in
Eqs. (35) and (39) are different than the boundary conditions
originally used to derive the four polynomial solutions starting
from Eqs. (17) and (18). However, given the self-consistency
of all the results obtained in this work, it seems safe to treat
the coalesced zero-energy states as a limiting case of the other
solutions. We further present a quick self-consistency check
on the physical results later in Sec. V.

C. Reservoir-assisted PT -symmetry breaking

We now turn to the four remaining discrete eigenvalues
from the quartic polynomial equation Ps(z) = 0. To illustrate

the most interesting cases, we plot these eigenvalues for g =
2.2 [Figs. 3(a)–3(c)], g = 3.0 [Figs. 3(d)–3(f)], and g = 3.8
[Figs. 3(g)–3(i)]. We present the real part of the discrete en-
ergy eigenvalues z j in the top row and the imaginary part of
z j in the middle row of this figure (solid lines). The imaginary
parts of the associated wave number k j are also shown in the
bottom row of Fig. 3. The first observation we make is that,
for each of these cases in Figs. 3(b), 3(e), and 3(h), as the
strength of the complex potential γ increases, the imaginary
part of the energy eigenvalue first appears at a nonzero value
of γ , then vanishes again as we further increase γ , and then
once again reappears. We divide the parameter range in which
complex eigenvalues exist into two regions: The lower region
with relatively smaller values of γ is region I, while the
second, appearing for larger values of γ , is region II. Notice
that region I occupies a finite range of the γ parameter space
with both a lower and an upper boundary, while region II is
semi-infinite, having only a lower boundary. An EP marks
each of these three boundaries. Note that later we will further
subdivide region I into regions IA and IB according to the
respective eigenstate properties.

An immediate and nontrivial observation from Fig. 3 is
that the PT symmetry, once broken at the lower threshold
of region I, is recovered again at the upper threshold of
region I as the strength of the non-Hermitian parameter γ

is increased. This counterintuitive result contrasts with the
usual picture in isolated PT -symmetric systems for which,
once broken, the PT symmetry is usually never restored.
We make this comparison explicit by plotting the eigenvalues
z± = ±

√
2g2 − γ 2 from the isolated PT -symmetric Hamil-

tonian HPT [Eq. (1)] as the dashed lines in the top and middle
rows of Fig. 3. For the case g = 2.2 illustrated in Fig. 3(b)
we see that the entire domain of region I falls well below
the PT -symmetry-breaking threshold for the isolated system
HPT, which occurs at γ̄PT = √

2g ≈ 3.111. Meanwhile, the
exceptional point threshold for the complex eigenvalues in
region II is shifted a bit above that of the isolated system HPT.
Hence, compared to the isolated PT system, the presence of
the reservoir in this case provides both a destabilizing effect
(due to the appearance of region I) and a stabilizing effect (by
shifting upward the threshold for region II).

We also emphasize that the gap between regions I and II in
which the reality of the eigenvalues is restored [see Fig. 3(b)]
is entirely different from the band gap between the two SSH
energy bands [see Fig. 3(a)]. To distinguish these, we will
refer to the former as a PT gap or simply a gap throughout the
paper, while we will always refer to the latter as a band gap.

We next make the comparison between region II and the
isolated PT -symmetric system more explicit in the following
two points. First, we can find the exact value of the ex-
ceptional point marking the lower boundary of region II by
seeking values of the parameter γ that yield a double root
of the polynomial equation (33). This can be obtained from
the solutions of the discriminant equation DP = 0 in which
the discriminant of Eq. (33) is given by (ignoring an uninter-
esting overall factor)

DP = (
t2
1 − γ 2

)4[
2g2t2

1 + (
t2
2 − t2

1

)
γ 2

]
× [(

t2
1 − 2g2

)2 − 2
(
2g2 − t2

1 + 2t2
2

)
γ 2 + γ 4

]2
. (42)
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FIG. 3. Discrete eigenvalue spectrum of the PT -symmetric open SSH model for t1 = 3.0 in the unit of t2 = 1 (solid lines): (a) real and
(b) imaginary parts of the energy and (c) imaginary part of the wave number for g = 2.2, (e) real and (f) imaginary parts of the energy and (g)
imaginary part of the wave number for g = 3.0, and (h) real and (i) imaginary parts of the energy and (j) imaginary part of the wave number
for g = 3.8. In (a), (d), and (g) the shaded regions are the energy continua of the SSH model. For comparison, the two complex eigenvalues
from the decoupled Hamiltonian HPT are also shown by dashed lines in the top and middle rows. The resonance in the continuum appears at
γ = 3.0 (where ImE = 0 and Imk = 0) in the g = 3.0 case. Note that we evaluate the wave number in the unit where the lattice constant is
unity.

The second factor in this expression yields the relevant excep-
tional point that marks the boundary for region II at γ = γ̄II,
in which

γ̄II = γ̄PT
t1√

t2
1 − t2

2

, (43)

written in terms of the original EP from the isolated PT
system γ̄PT = √

2g. Second, we comment on the eigenstates
in region II. In the bottom row of Fig. 3, we see that at
least two of the region II eigenstates always have a positive
imaginary part of the k value, which means these states are
localized in the region of the central PT -symmetric impurity.
More specifically, as γ becomes quite large γ � γ̄II, the wave
function for these two eigenstates increasingly becomes lo-
calized on either of the | ∓ 1, a〉 sites, while their eigenvalues
become approximately ±iγ , respectively. Hence, for large γ ,
these two states increasingly act like the bare non-Hermitian
impurities from the isolated HPT Hamiltonian.

Before turning to the properties of the eigenstates in region
I, we briefly comment in more detail on the characteristics
of the EP at γ = γ̄II. In the immediate vicinity of the EP,
we can expand the eigenvalues in the characteristic Puiseux
expansion [32,35,77] that can be obtained as

zII,± = ± 1

t1

√√√√ (
t2
1 − t2

2

)3

2g2t2
2 − t2

1

(
t2
1 − t2

2

)(
γ 2 − γ̄ 2

II

)1/2

+ O
(
γ 2 − γ̄ 2

II

)
. (44)

We note that this form is typical of a second-order exceptional
point (EP2), involving two coalescing eigenstates. However,
notice that exactly at the EP, these two eigenvalues coincide
at z = 0. We further find that the value of k exactly at the
EP is determined by the condition λ = eik = −t2/t1, which
coincides with the condition (34) that yielded the localized
zero-energy mode za = 0 with the wave function coefficients
determined from Eq. (35). This suggests that the two eigen-
states with eigenvalues zII,± are actually coalescing with this
preexisting zero-energy state at γ = γ̄II, giving rise to an
EP3. We note that the possibility of just such an apparent
mismatch between the order of the EP and its Puiseux ex-
pansion is discussed in detail in Ref. [35] (further, see the
chiral symmetry-protected EP3 in Ref. [78], which is also a
zero-energy mode that behaves similarly). We further note that
the time-evolution simulation discussed in Sec. V strongly
suggests that the order of the EP is indeed 3.

In contrast to region II, the behavior of the complex eigen-
values in region I is more subtle. Notice from the top row
of Fig. 3 that the real parts of the discrete energy eigen-
values in region I overlap with the two energy continua of
the reservoir. This is similar to the resonance condition in
traditional Hermitian open quantum systems, in which the
eigenvalue becomes complex when the energy of a quantum
level resides within (or resonates with) the energy contin-
uum (for examples of this in Hermitian tight-binding systems,
see Refs. [6,11,40,43,79]). For the present model, when
the resonance condition is satisfied the coupling with the
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reservoir is enhanced, which results in broken PT symmetry
with complex eigenvalues in region I. Hence, we refer to
the symmetry breaking in region I as reservoir-assisted PT -
symmetry breaking. However, the eigenstate properties are
more complex in region I than the traditional Hermitian case.
In Hermitian open systems, the resonant state with complex
energy eigenvalue is always associated with an eigenfunction
that is spatially divergent and hence cannot be normalized
in the usual manner [5,6,9]. By contrast, in non-Hermitian
systems eigenstates with complex eigenvalues can have either
diverging or localized wave functions [30]. For the case g =
2.2, the eigenfunction in region I diverges because Imk < 0,
as shown in Fig. 3(c). For the case g = 3.8, the eigenfunction
in region I is instead localized because Imk > 0, as shown in
Fig. 3(i). To distinguish these behaviors, we refer to the region
I parameter domain in which the eigenstates are divergent
as region IA, while referring to that in which these eigen-
states are localized as region IB. The most interesting case
is illustrated in Fig. 3(e) for g = 3.0 in which both regions
IA and IB are present. As seen in Figs. 3(d) and 3(e), at
the crossing point between IA and IB the eigenvalue width
(imaginary part of the eigenvalue) vanishes while the real part
of the eigenvalue remains within the continuum. Hence the
eigenvalue at this crossing point becomes embedded within
the continuum itself. Further, in Fig. 3(f) we see that the
imaginary part of the wave vector k also vanishes at this point
so that k becomes purely real valued. We refer to this state as
resonance in continuum [30,31], as it behaves precisely like a
resonance that has become stuck inside the continuum. This is
an example of what is also known in the literature as a spectral
singularity [52–57], in which the eigenstate corresponding to
each of these eigenvalues is a steady state delocalized over
the surrounding reservoir (we will show this more explicitly
momentarily).

The exact location of the RIC can be obtained from the
first factor of the discriminant reported in Eq. (42) and is
given simply by γRIC = t1, which is indeed consistent with
Figs. 3(e) and 3(f). However, we emphasize that the RIC only
exists in the case that both regions IA and IB are present in
the spectrum. Starting from this observation, we can more
precisely state the condition for the existence of the RIC as
follows. We reiterate that in Fig. 3(f) the RIC occurs when the
imaginary part of the resonance wave vector k vanishes as k
crosses the real axis. Such a crossing can occur only if the EP
marking the lower edge of region I has an imaginary part of k
with sign opposite to that of the EP marking the upper edge of
region I [compare Figs. 3(c) and 3(i), in which the RIC does
not appear, with Fig. 3(f) in which the RIC is present]. The
exact locations of these EPs can be easily obtained from the
third factor of the discriminant in Eq. (42), which gives

γ̄I∓ = ∓t2 +
√

2g2 + t2
2 − t2

1 . (45)

Here γ̄I− (γ̄I+) marks the lower (upper) edge of region I.
Hence, when the RIC exists, it must reside in the parameter
range γ̄I− < γRIC < γ̄I+, between the two EPs. Further, the
condition γ̄I− = γRIC = t1 (γ̄I+ = γRIC = t1) denotes the point
at which the RIC appears or vanishes at the lower (upper) edge
of region I. These conditions can be solved to obtain the range
of g values that permit the RIC to be realized in the spectrum

as

√
t1(t1 − t2) < g <

√
t1(t1 + t2). (46)

Next we turn to the gap between regions I and II in which
the PT symmetry is restored [75]. We note this effect can only
occur in the case t1 > t2 corresponding to the topologically
nontrivial phase of the bare SSH chains (although not even
then for some parameter values, as detailed in Sec. IV). Recall
that in this case (t1 > t2) the bare semi-infinite SSH leads
[Eq. (6)] give rise to edge states that are localized around
| ± 1, a〉. These sites incorporate the PT -symmetric poten-
tials ±iγ in the coupled model (4), and for increasing values
of γ they have a tendency to couple much more strongly
within the central PT system rather than with their respective
SSH chains. Hence, in the parameter regime of the gap, the
model tends to act more like the PT -symmetric phase of
the decoupled PT -symmetric Hamiltonian in Eq. (1). On
the other hand, in the topologically trivial phase t1 < t2 this
restoration of the PT symmetry never occurs, because the
individual impurity sites couple strongly to their respective
SSH chains. Hence, in this parameter region, the system acts
less like a PT -symmetric system coupled with a reservoir and
more like two independent SSH chains, each with an attached
non-Hermitian impurity. In other words, the system acts more
like a generic non-Hermitian model, for which the eigenvalues
are generally complex.

Having established the spectral properties of the model in
the gapped case illustrated in Fig. 3,we now take a closer look
at the corresponding wave-function properties in Fig. 4. Here
we plot the relative probability of the eigenfunctions at each
site for the case g = 3.0 [corresponding to Figs. 3(d)–3(f)],
since every possible region can be represented in this case.
For the panels of Fig. 4 corresponding to the two broken-
PT -symmetry regions, the eigenfunctions corresponding to
complex eigenvalues are spatially asymmetric (although an-
tisymmetric when taken as a pair, as demanded by PT
symmetry). This can be seen for the eigenfunctions in region
I shown in Figs. 4(b)–4(f) and the eigenfunctions in region II
shown in Fig. 4(h). The eigenfunctions diverge in region IA
(with γ < 3.0) as shown in Figs. 4(b) and 4(c), while they
are shallowly localized in region IB (γ > 3.0) as shown in
Figs. 4(e) and 4(f). Meanwhile, the delocalized wave function
for the RIC at γ = 3.0 is uniform along each individual chain,
but asymmetric about the system as a whole, as shown in
Fig. 4(d). This picture illustrates that the RIC is a singular
steady state, for which particles injected through or absorbed
into the two non-Hermitian impurities are exactly balanced
with the drain into or injection from the two leads. Hence
the RIC is an example of a nonequilibrium steady state that
constantly reprocesses particles as they are transported from
the central impurity region to the reservoirs, or vice versa.
Since the eigenfunction of the RIC in Fig. 4(d) is asymmetric,
the PT symmetry of the system is broken at this point, even
though the imaginary parts of the two eigenvalues vanish [30].

Finally, as illustrated in Fig. 4(h), as we go deeper into
region II for increasing γ , the PT -symmetric wave functions
become more strongly localized on the two PT -symmetric
impurity sites | ± 1, a〉. Hence, for γ � γ̄PT these wave
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FIG. 4. Square of the absolute value of eigenfunctions at the nth site |ψn,x|2 when the eigenfunctions are normalized as |φ0|2 = 1 (relative
probabilities) for (a) γ = 1.6, (b) γ = 2.4 (region IA), (c) γ = 2.98 (region IA), (d) γ = 3.0 (RIC), (e) γ = 3.02 (region IB), (f) γ = 4.0
(region IB), (g) γ = 4.2 (gap), and (h) γ = 4.6 (region II) in the system with t1 = 3.0 and g = 3.0 in the unit of t2 = 1 shown in Figs. 3(d)–3(f).
In (b)–(f) and (h), blue solid lines represent asymmetric eigenfunctions associated with complex energy eigenvalues with negative imaginary
parts, while red dashed lines represent asymmetric eigenfunctions associated with complex energy eigenvalues with positive imaginary parts.
In (a) and (g), orange dashed lines and green solid lines represent symmetric eigenfunctions with real energy eigenvalues. We show relative
probabilities for only two out of four eigenfunctions for each γ . In (a)–(f) we plot probabilities only for eigenfunctions with positive real parts
of complex energy eigenvalues because the other eigenfunctions with negative real parts of the energies give the same probabilities. In (h) we
only show relative probabilities for the two localized eigenfunctions, into which the two eigenfunctions corresponding to the green solid line
in (g) are changed as γ is increased, and eliminate diverging eigenfunctions with real energy eigenvalues and negative imaginary parts of the
wave numbers (virtual bound states), into which the two eigenfunctions corresponding to the orange dashed line in (g) are changed as γ is
increased. Note that we evaluate the wave number in the unit where the lattice constant is unity.

functions increasingly mimic the properties of the original
Hamiltonian HPT absent the coupling to the SSH chains.

While we expect that the reservoir-assisted PT -symmetry
breaking (region I) can appear quite generally in PT -
symmetric open quantum systems, in most cases it would
probably be more difficult to cleanly distinguish this from
the ordinary PT -symmetry breaking (region II) [30]. There
are two reasons for this: One is that the two mechanisms for
the appearance of complex eigenvalues are usually mixed; the
other is that there is not a qualitative difference between the
eigenfunctions in regions IB and II. A key advantage of our
open SSH model is that the topological properties of the SSH
chains helped in creating a gap between regions I and II in
much of the parameter space.

We briefly note that the resonance and antiresonance with
complex conjugate eigenvalues and localized wave functions
in regions IB and II are a peculiar feature that is particular to
PT -symmetric open quantum systems. We comment on this
point further in Sec. VI.

IV. GAP CLOSINGS AND COALESCED
ZERO-ENERGY MODES

In the preceding analysis, we stated that the PT gap be-
tween regions I and II only exists in the case corresponding

to the topologically nontrivial phase of the decoupled SSH
chains, and even then only under certain conditions. Here we
make this statement more precise by showing that the gap
closes for either sufficiently large or small values of g in terms
of the other parameters, which gives rise to both an upper
and a lower boundary in the parameter space of the model
(see the red lines in Fig. 5). We further show that these gap
closings occur along the intersection of several exceptional
surfaces and again involve the zero-energy modes. Curi-
ously, the qualitative features of the two boundaries are rather
different.

First, let us take a closer look at the expressions for the
exceptional points γ̄II [Eq. (43)] and γ̄I∓ [Eq. (45)] given in
the preceding section. Notice that each of these equations
expresses a relationship among the four parameters t1, t2, g,
and γ . Since any one of these parameters (say, t2) could be
scaled out of the problem, each of these in fact determines
a two-dimensional surface of exceptional points in the three-
dimensional space defined by the parameters t1, g, and γ .
Further, recall that γ̄I+ determines the upper edge of region
I, while γ̄II gives the lower edge of region II. Reviewing the
middle row of Fig. 3, it is easy to infer that for increasing
values of g, the upper edge of region I gradually approaches
the lower edge of region II. Hence, to find the exact closing
point of the PT gap we simply set γ̄I+ = γ̄II, which yields
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FIG. 5. Phase diagram for the gap closing between regions I and
II in the t1/t2 − g/t2 plane. The two dark red solid lines represent
the phase boundaries between the gapped and the ungapped regions
obtained from Eq. (52). The blue dashed line represents the line
g = t1/

√
2 along which γ̄I− vanishes. For g > t1/

√
2, the condi-

tion γ̄I− = −t2 + √
2g2 + t2

2 − t2
1 gives the lower boundary of region

I. For g < t1/
√

2, we instead have γ̄I− = | − t2 + √
2g2 + t2

2 − t2
1 |,

which represents an EP2 for which the PT symmetry is broken on
either side of the exceptional point (in other words, below the blue
dashed line, the PT symmetry is broken for an infinitesimally small
value of γ ).

g = ggap,1 with

ggap,1 =
t1

√
t2
1 − t2

2√
2t2

. (47)

Plugging this expression back into Eq. (43) yields the γ value
at which the gap closes as γ = t2

1 /t2. Notice that whereas
there were two free parameters in Eqs. (43) and (45), there
is only one in Eq. (47) (after scaling out t2). As illustrated
in Fig. 6, this demonstrates that Eq. (47) combined with γ =
t2
1 /t2 defines a curve (purple line) in the (t1, g, γ ) parameter

space, which resides precisely at the intersection of the two
surfaces γ = γ̄I+ (red surface) and γ = γ̄II (blue surface) [80].
The projection of this curve onto the (g, t1) parameter space
is also shown as the upper red curve in the phase diagram
in Fig. 5. Notice that for t1 � t2 we find from Eq. (47) that
the ggap,1 value vanishes entirely so that regions I and II are
always directly connected in the topologically trivial phase for
t1 < t2.

Our analysis below reveals that the exceptional point at the
exact gap closing point again involves a coalescence with the
localized zero-energy state |ψ za〉. However, in this case, all
four of the eigenvalues from the polynomial equation Ps(z j ) =
0 are involved. As a result, the Puiseux expansion for these
four eigenvalues involves a quartic root (usually typical of an
EP4), while the actual order of the exceptional point appears
to be five (EP5). To illustrate the convergence of the four
eigenvalues coming from the polynomial equation, we plot
these for the case of t1 = √

3, t2 = 1, and g = ggap,1 = √
3

in Fig. 7, which clearly demonstrates the anticipated quar-
tic root behavior in the neighborhood of the gap closing at
γ = t2

1 /t2 = 3.
In order for each of the four polynomial eigenvalues to

coalesce at a single point, all nontrivial derivatives of Eq. (33)

FIG. 6. The EP2 surfaces γ = γ̄I+ (red) and γ = γ̄II (blue) are
shown in the (t1/t2, g/t2, γ /t2) parametric space of the model. The
EP5 line along g = ggap,1 and γ = γ̄gap,+ = t2

1 /t2 is shown as the
purple curve occurring along the intersection of the two EP2 surfaces
[80]. The eigenvalue za = 0 of the fifth coalescing eigenstate |ψ za 〉
exists at all parameter values and is not explicitly shown.

must vanish. The derivatives of the polynomial are given by

P′
s (z) = 4γ 2z3 + 2

{
γ 4 − 2γ 2

(
t2
2 + g2

) + t4
1 − 2g2t2

1

}
z,

(48)

P′′
s (z) = 12γ 2z2 + 2

{
γ 4 − 2γ 2

(
t2
2 + g2

) + t4
1 − 2g2t2

1

}
,

(49)

P′′′
s (z) = 24γ 2z. (50)

The condition P′′′
s (z) = 0 from Eq. (50) is indeed consistent

with z = za = 0 at the EP as well as the picture in Fig. 7,
which reveals that γ̄gap 
= 0. Next, evaluating P′′

s (z = 0) = 0
yields

γ̄ 2
gap,± = t2

2 + g2 ±
√(

t2
2 + g2

)2 + t2
1

(
2g2 − t2

1

)
. (51)

In the next step, since we already know z = 0 at the EP,
P′

s (z = 0) = 0 yields no new information. So instead, we fi-
nally return to the original polynomial itself Ps(z = 0) = 0
and apply Eq. (51) to find the condition(

2g2 − t2
1 + t2

2

)[
2g2t2

2 − t2
1

(
t2
1 − t2

2

)] = 0. (52)

Setting the second factor of this expression to zero yields the
same value for ggap,1 that we previously determined in Eq. (47)
and confirms the convergence of all four of the polynomial
eigenvalues. Further, the closing point of the gap can be
shown to occur precisely at γ = γ̄gap,+ = t2

1 /t2 [the second
sign choice in Eq. (51) is spurious in this case, but will turn out
to be relevant for the second boundary]. Finally, we can obtain
the condition on the wave vector at the EP as λ = −t2/t1,
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FIG. 7. (a) Real part and (b) imaginary part of the eigenvalue spectrum for t1 = √
3 and g = ggap,1 = √

3 in the unit of t2 = 1. The blue
solid lines in (a) and the red solid lines in (b) give the exact solutions of eigenvalues. To give a sense of the increasing accuracy of incorporating
additional terms in the Puiseux expansion, the orange dotted line shows only the lowest-order O((γ 2 − γ̄ 2

gap,+)1/4) term from Eq. (53), while
the green dotted line includes the O((γ 2 − γ̄ 2

gap,+)3/4) term. We show here only the positive values of the expansion solutions for comparison.

which, comparing with Eq. (34), suggests coalescence with
the localized zero-energy state.

To illustrate the behavior of the four polynomial eigenval-
ues near the EP, we obtain the following Puiseux expansion

in the vicinity of the gap closing for the case from Fig. 7, in
which t1 = √

3, t2 = 1, g = ggap,1 = √
3, and hence γ̄gap,+ =

3. Applying these parameters in the dispersion polynomial
(33) and expanding in powers of (γ 2 − γ̄ 2

gap,+), we find

z1,{1,2} = ±
[(

8

9

)1/4(
γ 2 − γ̄ 2

gap,+
)1/4 − 5

18

(
9

8

)1/4(
γ 2 − γ̄ 2

gap,+
)3/4

]
+ O

((
γ 2 − γ̄ 2

gap,+
)5/4)

(53)

and

z1,{3,4} = ±i

[(
8

9

)1/4(
γ 2 − γ̄ 2

gap,+
)1/4 + 5

18

(
9

8

)1/4(
γ 2 − γ̄ 2

gap,+
)3/4

]
+ O

((
γ 2 − γ̄ 2

gap,+
)5/4)

, (54)

which are illustrated as the orange dotted line (lowest-order
term only) and green dotted line (both terms) in Fig. 7.

In the above discussion, we have determined that the sec-
ond factor in Eq. (52) is associated with both the gap closing
and a coalescence involving one of the zero-energy states.
Hence it is natural to speculate that the first factor in Eq. (52)
might have a similar association. This turns out to hold true,
although the picture is a bit more complicated in this case.
However, before analyzing this issue in detail, it is most
natural to first clarify a secondary point. Recall that we first
noticed the gap closing at g = ggap,1 by intuiting that the EP2s
at the upper edge of region I and lower edge of region II should
connect for sufficiently large g. Similarly, notice that the EP2
γ̄I− from Eq. (45) marking the lower boundary of region I
should eventually vanish as we decrease the value of g (or
increase t1). Indeed, setting γ̄I− = −t2 +

√
2g2 + t2

2 − t2
1 = 0

reveals that this occurs for g = t1/
√

2, which is shown by
the blue dashed line in Fig. 5. This means that the lower
PT -symmetric region we encountered in Fig. 3 vanishes for
g � t1/

√
2. Hence, below the blue dashed line, for any arbi-

trarily small value of γ , the discrete spectrum immediately
becomes complex (although within the narrow sliver of pa-
rameter space that is shaded red but also falls below the blue
line in Fig. 5, the PT gap can still eventually be reached). We
emphasize that below the blue dashed line, the EP2 γ = γ̄I−
still exists, but now the PT symmetry is broken on either side
of this exceptional point and γ̄I− should instead be taken as
γ̄I− = | − t2 +

√
2g2 + t2

2 − t2
1 |.

Now we turn to the first factor from Eq. (52). Solving this
condition 2g2 − t2

1 + t2
2 = 0 for g, we find g = ggap,2, with

ggap,2 =
√

t2
1 − t2

2

2
. (55)

This is indicated by the lower red curve in Fig. 5, which falls
completely below the blue dashed line. Applying this condi-
tion in the dispersion polynomial (33), we find that the form
of all four polynomial solutions is dramatically simplified,
even for values of γ at which only two (not all four) of the
solutions coalesce. Specifically, for g = ggap,2 we find that
two eigenvalues become zero and apparently coalesce with
the antilocalized zero-energy state |ψ zb〉 for all values of γ ,
taking the wave vector determined by λ = eikb = −t1/t2 [in
agreement with the condition in Eq. (38)]. Then the other two
solutions are given by

z2,± = ±i

√(
t2
1 − γ 2

)(
t2
2 − γ 2

)
γ

. (56)

As one should immediately suspect, these latter two so-
lutions also coalesce with the zero-energy states for the
specific values γ = γ̄gap,− = t2 and γ = γ̄gap,+ = t1. In the
case γ = γ̄gap,− = t2 [corresponding to the minus sign choice
in Eq. (51)] both of z2,± seem to coalesce with the other three
preexisting antilocalized states |ψ zb〉 with eigenvalue zb = 0,
forming an EP5. Meanwhile, for the case γ = γ̄gap,+ = t1,
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FIG. 8. Discrete eigenvalue spectrum as a function of γ for t1 = 3.0 around g = ggap,2 = 2.0 in the unit of t2 = 1: (a) real and (b) imaginary
parts of the energy and (c) imaginary part of the wave number for g = 2.04, (e) real and (f) imaginary parts of the energy and (g) imaginary
part of the wave number for g = 2.0, (h) real and (i) imaginary parts of the energy and (j) imaginary part of the wave number for g = 1.96.
Note that we evaluate the wave number in the unit where the lattice constant is unity.

these two instead appear to coalesce with the lone localized
zero-energy state |ψ za〉. In this last case these appear as two
coinciding EP3s with a shared eigenvalue za = zb = 0.

Let us emphasize a peculiar feature of the g = ggap,2 case
that is rather different from the previous case g = ggap,1. To
illustrate the point, in Fig. 8 we plot the eigenvalues as we
decrease the value of g in the vicinity of ggap,2 = 2.0 for
t1 = 3.0 and t2 = 1.0. In Figs. 8(a)–8(c) the eigenvalues are
shown slightly above ggap,2 at g = 2.04, in Figs. 8(d)–8(f) they
are shown exactly at g = ggap,2 = 2.0, and in Figs. 8(g)–8(i)
they are shown slightly below at g = 1.96. The key point
is that in Figs. 8(d) and 8(e) there is still an extended gap
with pure real eigenvalues that stretches between the two
points γ = γ̄gap,− = 1.0 to γ = γ̄gap,+ = 3.0 at which the so-
lutions z2,± form EPs. Further, as previously noted, the two
eigenvalues with energy z = 0 in this case coincide with the
antilocalized zero-energy state. Hence, the entire gap in this
case is actually a line of exceptional points and for any value
of g that is infinitesimally smaller than ggap,2, the entire gap
simultaneously gives rise to complex eigenvalues. This pic-
ture is rather different than the scenario we encountered for
g = ggap,1, in which two EP2s directly connected along with
a single zero-energy solution to form the higher-order EP that
marked the discrete point at which the gap closed (see Fig. 7).
We further illustrate this difference in Fig. 9, in which we have
plotted the imaginary part of the energy eigenvalues instead
as a function of g for four different values of γ that fall below
(γ = 0.8), at the edge (γ = 1.0), and within the gap (γ = 1.4
and 2.0). In each case, an exceptional point clearly marks the
expected transition value at g = ggap,2 = 2.0.

Hence, the PT -breaking transition in the g = ggap,2 oc-
curs spontaneously, simultaneously over an extended range

of values of the PT parameter γ as one varies any of the
other system parameters. We have not previously encoun-
tered any such PT transition reported in the literature. We
also observe from Fig. 8(e) that the EP5 at γ = γ̄gap,− =
t2 lies at the exact intersection of three exceptional sur-
faces, as shown in the three-dimensional parameter plot in
Fig. 10(a). These three surfaces are defined by γ = γ̄I− =
| − t2 +

√
2g2 + t2

2 − t2
1 | (EP2 surface, shown in light green),

γ = γ̄I+ = t2 +
√

2g2 + t2
2 − t2

1 (EP2 surface, red), and g =
ggap,2 (EP3 surface, yellow), while the γ = γ̄gap,− EP5 curve
itself is shown in black. Finally, the γ = γ̄gap,+ EP curve
(dark green) is shown at the intersection of two EP surfaces
γ = γ̄II (blue) and g = ggap,2 (yellow) in Fig. 10(b); however,
we emphasize that in this case, the two EP surfaces are sepa-
rately coalescing with either of the two zero-energy states and
hence their shared eigenvalues along the green curve should
be interpreted as coincidental.

V. DYNAMICS: INITIAL-STATE EVOLUTION

Several of the results presented in this work could be
verified in experiment by observing the evolution dynamics
of an initially prepared state at a given site. We define the
initial-state evolution measure (or initial-state measure for
short) as follows. For the case that the particle is initialized
on the central site |0〉 this quantity is defined by

P0(t ) ≡ |〈0|e−iHt |0〉|2 (57)

in terms of the time-evolution operator e−iHt . Physically, this
corresponds to the likelihood of finding a particle at site |0〉 at
time t , given the assumption that the initial particle is located
at site |0〉 such that P0(0) = 1 while all other sites are empty.
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FIG. 9. Discrete eigenvalue spectrum as a function of g for t1 = 3.0 around g = ggap,2 = 2.0 for (a) γ = 0.8, (b) γ = 1.0, (c) γ = 1.4, and
(d) γ = 2.0 in the unit of t2 = 1. An EP occurs in each case at g = 2.0.

Similarly, the initial-state measure for any arbitrary initialized
site |n, x〉 within the SSH leads is written

Pn,x(t ) ≡ |〈n, x|e−iHt |n, x〉|2. (58)

Note that these quantities might surpass unity for t > 0 be-
cause additional particles can flow into the lattice from the
gain site in our non-Hermitian system; this is in contrast to
Hermitian systems for which the corresponding quantity, the
survival probability, always takes values between 0 and 1
(of course, the initial-state measure reduces to the survival
probability in the Hermitian limit γ → 0). The most obvious
setting in which to observe the initial-state measure in the
present context would be in a photonic lattice array experi-
ment, similar to Refs. [76,81], in which the evolution of an
initially occupied site in our model could be simulated as the
propagation distance along a given waveguide in the array.
Loss can then be introduced on any waveguide in the array
through periodic bending along its length, which enables one
to simulate passive PT symmetry [76,81].

In Fig. 11 we present numerical simulations for six values
of γ corresponding to the g = 3.0 case from Fig. 3, in which

every region of the spectrum can be represented. We show
the simulation for two cases in each figure: We present one
evolution P0(t ) for when the particle is initially located at |0〉
and a second P1,b(t ) for when it is initialized at site |1, b〉. Note
that the initial-state measure for sites | ± 1, a〉 (not shown)
are qualitatively similar to that for |0〉 for these cases, while
| − 1, b〉 (not shown) would be similar to that for |1, b〉. These
simulations capture the essential features of the eigenstates
with respect to PT symmetry in each region, including the
reservoir-assisted symmetry breaking (and the gap separating
it from region II).

First, in the cases γ = 1.6 and γ = 2.5, shown in
Figs. 11(a) and 11(b), the evolution is qualitatively similar
to a traditional Hermitian open quantum system, though not
strictly unitary. The case γ = 1.6 [Fig. 11(a)] corresponds to
the lowest γ region of unbroken PT symmetry in Fig. 3(e).
In this case, the initial-state measure P0(t ) is largely driven by
Rabi oscillations involving the two ordinary bound states that
exist in this case as well as the localized zero-energy state
|ψ za〉, giving rise to a simple beat pattern. Meanwhile, for
P1,b(t ) the Rabi oscillations (appearing after a brief transitory

FIG. 10. Exceptional surfaces in the (t1/t2, g/t2, γ /t2) parametric space of the model in the vicinity of the two exceptional curves occurring
for g = ggap,2. The EP3 surface occurring along g = ggap,2 (with γ ∈ [0, ∞]) is shown in yellow in both figures. In (a) the EP2 surface γ =
γ̄I− = | − t2 + √

2g2 + t2
2 − t2

1 | is illustrated in light green while the EP2 surface γ = γ̄I+ is shown in red and the EP5 curve along g = ggap,2

and γ = γ̄gap,− is shown in black (at the intersection of three surfaces). In (b) the EP2 surface γ = γ̄II is shown in blue while two coinciding
EP3 curves along g = ggap,2 and γ = γ̄gap,+ are shown in dark green (at the intersection of two surfaces). In (b) the sixth coalescing eigenstate
with eigenvalue za = 0 exists at all parameter values and is not explicitly shown.
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FIG. 11. Initial-state evolution simulations P0(t ) at the central site |0〉 (blue solid lines) and P1,b(t ) at site |1, b〉 (red dotted lines) at time t
in the case of t1 = 3.0 and g = 3.0 for (a) γ = 1.6, (b) γ = 2.5, (c) γ = 3.0, (d) γ = 4.0, (e) γ = 4.4, and (f) γ = 4.6 in the unit t2 = 1. The
corresponding energy spectrum is shown in Figs. 3(d) and 3(e).

period) exhibit only one oscillation period because the zero-
energy state is not involved in this case (recall |ψ za〉 has no
support on the b sites).

Next, in Fig. 11(b) we present the case γ = 2.5, rep-
resentative of region IA shown in Fig. 3(e). Here the PT
symmetry is broken while the wave function of all states are
antilocalized, which leads to an evolution somewhat similar to
traditional resonance decay in the P0(t ) simulation, but with
fractional decay due to the presence of the localized zero-
energy state |ψ za〉. Taking into account the presence of two
resonance states with the same imaginary part of the eigen-

value as well as the localized zero-energy state, the evolution
can be approximated as P(t ) ∼ 1 + 4D cos(ERt + θ )e−�t/2 +
4D2 cos2(ERt + θ )e−�t , with ER ∼ 3.5 the real part of the
resonance eigenvalue, � ∼ 0.25 the resonance decay width,
and D ∼ 1 a constant [with the specific approximate values
corresponding to Fig. 11(b) around γ = 2.5]. After about t ∼
30, the evolution settles down to a fractional occupation of the
zero site due to the localized zero-energy state. Meanwhile,
for the P1,b(t ) evolution the dynamics more prominently in-
corporates non-Markovian decay dynamics associated with
the band edges (branch-point effect) [46,82–84], but the most
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important difference is that the decay is nearly complete be-
cause the localized zero-energy state plays no role in this
case.

The dynamics at the RIC is shown in Fig. 11(c) for γ =
3.0, in which case the evolution is a simple, almost exact os-
cillation reflecting the nonequilibrium steady state obtained at
the RIC. Next we turn to the dynamics in region IB at γ = 4.0
in Fig. 11(d). In this case, the PT symmetry is broken but
the eigenstates are now localized around the non-Hermitian
central potential, which leads to the antiresonance dominat-
ing the dynamics and hence qualitatively similar exponential
growth for both |0〉 and |1, b〉 simulations with growth
rate � ∼ 0.4.

A representative case for the dynamics in the PT gap
is shown in Fig. 11(e), in which the P0(t ) simulation again
shows a relatively simple evolution involving Rabi oscilla-
tions with two bound states and the localized zero-energy
state. However, the P1,b(t ) dynamics is a bit more complicated
with the band edges playing a more prominent role both in
the (more complicated) Rabi oscillations and in the gentle,
overlying non-Markovian decay pattern. Finally, for region
II in Fig. 11(f), both components exhibit the expected expo-
nential growth associated with the highly localized, dominant
antiresonance with growth rate about � ∼ 2.

The above outlines an experiment that could be performed
to verify the reservoir-assisted symmetry breaking in a pho-
tonic lattice experiment. Measuring the oscillatory dynamics
in the lowest γ region [Fig. 11(a)] would demonstrate the first
unbroken-PT -symmetric region. Then measuring the decay
dynamics for region IA in Fig. 11(b) or the growth dynamics
for region IB in Fig. 11(d) (or both) illustrates the broken PT
symmetry in region I. The experimentalist could then illustrate
the restoration of PT symmetry in the gap with the oscillatory
dynamics of Fig. 11(e), before finally showing that the PT
symmetry is once again broken with the growth dynamics in
region II [Fig. 11(f)].

While our main focus above was the PT -symmetry break-
ing, we have incidentally also obtained clear evidence of the
localized zero-energy state. First, this appeared in the Rabi
oscillations in the P0(t ) simulation in the two PT -symmetric
regions. However, more importantly, in Fig. 11(b) we ob-
served fractional decay in the P0(t ) simulation that did not
appear in the P1,b(t ) simulation, which gives a more imme-
diately obvious demonstration of the localized zero-energy
state. Indeed, this is roughly comparable to the PT -symmetric
topological interface state that has been observed in Ref. [76]
[see Figs. 6(b) and 6(d) in particular in that work], although
with uniformly distributed non-Hermitian defects along the
arms of the lattice in that case.

However, we present a more dramatic (and dynamic)
method to detect the zero-energy state at (or very near) one
of the higher-order exceptional points as follows. Let us first
focus on the case near the exceptional point γ = γ̄II, which, as
we discussed following Eq. (44), acts as an EP3 at which two
of the polynomial dispersion solutions converge with the lo-
calized zero-energy mode |ψ za〉. In Fig. 12 we plot (in log-log
scale) the initial-state measure for the central defect site |0〉
in three cases: within the PT gap (black dotted line), directly
at the EP γ = γ̄II = 4.5 (green line), and just within region II
(red dot-dashed line) for the case t1 = g = 3.0t2 correspond-
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FIG. 12. Initial-state measure at the central site P0(t ) in the case
of t1 = 3.0 and g = 3.0 in the unit t2 = 1 for γ = 4.4 in the gap
(black dotted line), γ = 4.5 at the threshold between the gap and
region II (green solid line), and γ = 4.6 in region II (red dot-dashed
line). The corresponding energy spectrum is shown in Figs. 3(d)
and 3(e).

ing to Figs. 3(d) and 3(e). We see that the evolution in the gap
is clearly bounded, while inside region II there is exponential
growth, with the EP being at the boundary between these two
behaviors. Further, the long-time evolution at the EP is clearly
rather simple: pure polynomial growth.

The origin of the power-law dynamics can be easily un-
derstood at a qualitative level from the order of the pole that
would appear under a Green’s-function (or similar) analysis at
the EP. It is well established [10,85–89] that at an EP of order
N with eigenvalue z, the N th-order pole gives rise to a term in
the amplitude for the dynamics of the form

〈ψ |e−iHt |ψ〉 ∼ tN−1e−izt (59)

for an arbitrary state |ψ〉 that overlaps with the coalesced
eigenvector. In the present case, with the zero-energy eigen-
value given by za = 0, this results in pure power-law evolution
in the initial-state measure with the dominant term given by

|〈0|e−iHt |0〉|2 ∼ t2N−2 (60)

for the initial state |0〉. Hence, the t4 evolution observed in
Fig. 12 strongly suggests that the coalesced zero-energy state
at γ = γ̄II indeed acts as an EP3.

Next we turn to the dynamics near the zero-energy EP
occurring at the upper boundary of the gapped region for
g = ggap,1 at γ = γ̄gap,+. We argued in Sec. IV that the EP
in this case is order 5, despite having a Puiseux expansion
typical of order 4, as was obtained in Eqs. (53) and (54) for the
case of t1 = √

3, g = ggap,1 = √
3, and t2 = 1. For these same

parameters, we show the evolution for the initially prepared
state |0〉 in Fig. 13, which reveals that the dynamics follows
∼t8, which is consistent with an EP5.

Finally, we consider the dynamics in the case g = ggap,2

in Fig. 14 for three representative values of γ , while using
the same values t1 = 3.0 and t2 = 1 from Fig. 8. For
γ = ggap,2 = 1.0 (black dotted line in Fig. 14) we are exactly
at the higher-order exceptional point at which the spectrum
consists of the lone localized zero-energy state |ψ za〉 and an
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FIG. 13. Initial-state measure at the central site P0(t ) in the case
of t1 = √

3 and g = ggap,1 = √
3 in the unit t2 = 1 for γ = 3.0 (black

solid line). This corresponds to the EP in the spectrum shown in
Fig. 7.

apparent EP5 formed with the antilocalized state |ψ zb〉. In this
case, we observe clearly non-Markovian decay that settles
down to long-time fractional occupation of the localized
zero-energy state. The non-Markovian dynamics in this case
can be understood as resulting from the interplay between
the antilocalized EP5 and the two nearest (although still
rather separated) continuum thresholds, similar to Fig. 4(b)
in Ref. [10]. For the case γ = 2.0 (green dot-dashed line in
Fig. 14) the spectrum consists of two ordinary bound states
with eigenvalue z2,± from Eq. (56), the localized zero-energy
state, and the antilocalized zero-energy EP3. The dynamics in
this case is dominated by Rabi oscillations among the bound
states, similar to the PT gap in Fig. 12. Finally, in the case
γ = ggap,1 = 3.0 (red solid line in Fig. 14), we see that the
dynamics again follows a P0(t ) ∼ t4 evolution, owing to the
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FIG. 14. Initial-state measure at the central site P0(t ) in the case
of t1 = 3.0 and g = 2.0 in the unit t2 = 1 for γ = 1.0 (black dotted
line), γ = 2.0 (green dot-dashed line), and γ = 3.0 (red solid line).
The corresponding energy spectrum is shown in Figs. 8(d) and 8(e).
The simulation for g = 2.002, γ = 3.0, and t1 = 3.0 is also shown
by a purple dashed line.

apparent EP3 formed by the coalesced localized state |ψ za〉.
Unsurprisingly, the influence from the coalesced antilocalized
state |ψ zb〉, which is also an EP3 in this case, is completely
washed out in the dynamics compared to the localized state.

In Sec. III B we previously noted that the zero-energy
modes satisfy technically different boundary conditions than
those satisfied in general by the four polynomial modes. As a
quick consistency check regarding this point, we also include
in Fig. 14 a numerical simulation for the dynamics in the
case of g = 2.002 and γ = 3.0 (purple dashed line), just a
little away from the highly singular point at which the two
zero-energy EP3s occur at exactly g = 2.0 and γ = 3.0 (and
just inside the PT gap). We see that the expected t4 evolution
is still the most prominent feature in the dynamics, although
the evolution is ultimately bounded since the PT symmetry
is unbroken in this case.

While we have shown here that the influence of the excep-
tional point formed by the localized zero-energy state should
be easily discernible by the satisfyingly simple prediction for
the dynamics reported in Eq. (60), the dynamical influence
from the antilocalized zero-energy state |ψ zb〉 is much more
subtle. We discuss this point further in terms of future work
below.

VI. CONCLUSION

In this paper we have studied PT -symmetry breaking in
an open quantum system consisting of two semi-infinite SSH
chains coupled on either side to a PT -symmetric central po-
tential or defect region. We have characterized the occurrence
of two types of PT -symmetry breaking in this system, one
which is primarily induced by the energy continua from the
SSH chains and the other that more directly results from the
presence of the PT -symmetric potential itself. We labeled the
former as reservoir-assisted PT -symmetry breaking, which
occurs for smaller values of the non-Hermitian PT parameter
γ than the latter. Within a significant portion of the parameter
space of the model these two types of symmetry breaking
were separated by an extended PT gap in which the reality of
the eigenvalues was restored, rendering it easier to distinguish
the two types of symmetry breaking. The appearance of this
gap can be understood as resulting from the energy eigenval-
ues falling in between the two SSH channels (so the resonance
condition is no longer fulfilled) combined with the tendency
of the SSH chains to form localized edge states such that the
PT -symmetric defect region approximately decouples from
the SSH chains. We finally proposed in Sec. V an experiment
to observe the reservoir-assisted PT -symmetry breaking via
the initial-state evolution dynamics measured in the different
regions of the spectrum.

We further pointed out the existence of two zero-energy
eigenstates in the spectrum, one which was localized with
respect to the SSH leads and the other which was antilo-
calized. The localized zero-energy state appears to roughly
correspond to the PT -symmetric topological interface state
observed in the photonic lattice experiment in Ref. [76]. We
note that the energy eigenvalue z = 0 of both the localized and
the antilocalized state appears in the energy gap directly in the
middle of the two SSH energy bands. Hence, these could more
naturally be called midgap states; however, we have not used
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that term in this paper only to avoid potential confusion with
the separate concept of the PT gap, which is more strictly a
property of the discrete spectrum.

Several scenarios occurred in which the closing of the
PT gap gave rise to higher-order exceptional points involv-
ing an apparent coalescence of pairs of discrete eigenvalues
with either of the two zero-energy eigenstates. Interestingly,
in this scenario we found that the Puiseux expansion of the
eigenvalues near the EP seems to be one order lower than
the actual EP itself. We compare this with the EP3 with
an ∼k1/2 dispersion in the non-Hermitian model possessing
chiral symmetry studied in Ref. [78] (see also Ref. [35] for
a discussion of this scenario in a more general context). In
our model, for example, the EP marking the closing point
of the gap on the upper boundary of the phase diagram in
Fig. 5 has a Puiseux expansion typical of an EP4 [90–93],
although we found that it behaves like an EP5 [93]. In that
case, the EP is formed with the localized zero-energy state
|ψ za〉. We further discussed that exceptional points involving
the localized zero-energy state should result in characteristic
power-law dynamics of the form P(t ) ∼ t2N−2, in which N
is the order of the EP. This could provide a signature of the
localized zero-energy EP that we suggest might be observed
in a modified version of the experiment in Ref. [76].

We have said less in this work about the potential dynam-
ical influence of the antilocalized zero-energy state. Because
these states are, by definition, localized away from the cen-
tral potential (which is usually of primary physical interest),
their influence is necessarily much more challenging to de-
tect. However, previous work has shown that the influence of
antilocalized states can be more directly felt in the survival
probability dynamics in the case that they appear very close

to one of the band edges in the system [10,46,79,83], although
this requires rather fine-tuning of the system parameters. We
leave a closer investigation of this subtle effect to future work.

We end the paper with a final comment on the reservoir-
assisted symmetry breaking. As we showed in Sec. III C, this
effect in region I can in general be divided into two qualita-
tively different subregions. The resonance state appearing in
region IA has a spatially divergent wave function, which is
qualitatively similar to the resonance appearing in ordinary
Hermitian open quantum systems [5,6,40,79]. This is con-
sistent with the dynamical evolution we obtained for region
IA in Sec. V, although we observed that the dynamics can
exhibit nonunitary effects in the present case. Meanwhile,
in region IB, even the similarity for the resonance with the
Hermitian picture breaks down as the wave function for the
states with complex eigenvalue now becomes localized. How-
ever, since the real part of the eigenvalues for these states
resides within the continuum, they have been interpreted in
Refs. [30,57,94,95] as representing a quasibound state in con-
tinuum. This interpretation is consistent with the experimental
study of defect states in a PT -symmetric optical lattice in
Ref. [96].
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