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Quantum potential in time-dependent supersymmetric quantum mechanics
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If a wave function is written in polar form it becomes possible to write the Schrödinger equation of nonrel-
ativistic quantum mechanics in a form analogous to the classical Hamilton-Jacobi equation with an extra term
known as the quantum potential. Time-dependent supersymmetry is a procedure for finding new solutions of the
Schrödinger equation if one solution is known. In this paper a time-dependent supersymmetry transformation is
applied to a wave function in this polar form and it is shown that the classical potential plus the quantum potential
is a conserved quantity under this transformation under certain circumstances. This leads to a modification of our
view of the role of the quantum potential and also to a deeper appreciation of the function of a supersymmetry
transformation.
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I. INTRODUCTION

In the Madelung-Bohm representation of quantum me-
chanics [1–4] the wave function is written in a particular
polar form and the Schrödinger equation can then be rewritten
as two coupled equations. One describes the conservation
of probability and the other is in a form analogous to
the Hamilton-Jacobi equation of classical mechanics. This
analogy led Bohm to a generalization of the pilot-wave in-
terpretation of quantum theory initially put forward by de
Broglie (see Refs. [5–7] and references in [4]). While this
interpretation is open to debate, the mathematics underly-
ing it is not. This quantum version of the Hamilton-Jacobi
equation contains the standard classical potential we normally
come across in both classical and quantum mechanics plus
a self-generated term which can be viewed as giving the
particle its quantum nature. This new term has been named
the “quantum potential.” In recent times there has been con-
siderable interest in the quantum potential, and it has been
found to have physical significance in a number of different
areas of physics. Of particular interest are the space-time
points where it is zero; these are where the particle being
studied should be behaving at its most classical. Among the
key examples of this are the work of Rogers et al. who have
found applications in nonlinear optics [8]. Espindola-Ramos
et al. [9] have shown that wave functions with fold caus-
tics are the most classical because the zeros of the quantum
potential coincide with the caustic and the evolution of the
caustic is governed by the Hamilton-Jacobi equation. Berry
[10] has shown that, for quantum wave packets, the Bohm
potential vanishes on the boundaries of regions where the
oscillations become superoscillatory. In a connection with rel-
ativistic quantum theory Salesi et al. showed that the quantum
potential arises naturally as the kinetic energy associated with
the internal “trembling” motion of spin-1/2 particles known
as zitterbewegung [11,12]. The quantum potential is defined
in terms of the amplitude of the wave function and recently

Hojman and Asenjo [13] have taken these ideas further and
looked for examples where the particle experiences a classical
potential, but where this is canceled by the quantum potential,
so the particle behaves as if it is free.

The Schrödinger equation forms the foundation of nonrel-
ativistic quantum mechanics. It has only very few physically
meaningful exact solutions. Most of the familiar models
in quantum theory are steady-state solutions which means
that the space and time dependence of the problem can be
separated. These, such as the harmonic oscillator and the one-
electron atom, form the basis of much of our understanding
of the physics of nature. There are a few known solutions that
are not steady state and which have some unusual properties
such as being self-accelerating [14–18].

Nonstationary supersymmetric quantum theory has been
derived [19–21] and extended [22] and provides a strategy
for finding new solutions of the time-dependent Schrödinger
equation if we know one solution. This work is a natural
extension of the time-independent supersymmetric methods
discussed in very readable form by Cooper et al. [23].

In this paper we will look at what happens when we ap-
ply nonstationary supersymmetry theory to wave functions
in polar form. While this theory defines a new potential and
eigenfunctions for the Schrödinger equation we find that, un-
der certain circumstances, the sum of the classical potential
and the quantum potential is conserved by such a super-
symmetry transformation. This paper is laid out as follows.
In Sec. II we describe the origin of the quantum potential.
The mathematical details of nonstationary supersymmetric
quantum theory have been written down several times before
[19–21] so in Sec. III we discuss this procedure only in suffi-
cient mathematical detail for the new work presented here to
be appreciated. Next, in Sec. IV we show that, during a su-
persymmetric transformation the same quantity is subtracted
from the classical potential as is added to the quantum poten-
tial, so the sum of these two quantities is conserved. We then
go on to illustrate this with several examples in Sec. V. Finally
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in Sec. VI we discuss the meaning of the results and what
conclusions can be drawn from them. Throughout this paper
constants are retained in equations, but diagrams are drawn
in units where m = 1/2 and h̄ = 1 and we will work in one
dimension although the theory generalizes straightforwardly
to higher dimensions.

II. THE QUANTUM POTENTIAL

Following Bohm’s original paper [2], we start by writing
the single particle quantum mechanical wave function in the
form

ψ (x, t ) = R(x, t )eiS(x,t )/h̄, (1)

where both S(x, t ) and R(x, t ) are real. Substitution into
the general time-dependent Schrödinger equation shows that
R(x, t ) and S(x, t ) satisfy

∂R(x, t )

∂t
= − 1

2m

(
R(x, t )

∂2S(x, t )

∂x2
+ 2

∂R(x, t )

∂x

∂S(x, t )

∂x

)
,

∂S(x, t )

∂t
= −

[
1

2m

(
∂S(x, t )

∂x

)2

+ V (x, t ) + VB(x, t )

]
. (2)

Care must be taken in the application of these equations be-
cause at a node in the wave function R(x, t ) = 0, but then
S(x, t ) is undefined and may be discontinuous. The first of
Eqs. (2) can easily be shown to be equivalent to the con-
servation of probability provided we make the following
identification for the velocity:

v = dx

dt
= 1

m

∂S(x, t )

∂x
. (3)

So, it is S(x, t ) which determines the dynamics of the particle.
We simply have to define the initial conditions to solve for
x(t ). For consistency with the postulates of quantum mechan-
ics we require that the probability that a particle lies between
the points x and x + dx at time t is P(x, t )dx = R2(x, t )dx
which means R(x, t ) plays the role of a probability amplitude.

In the second of Eqs. (2) we have defined

VB(R(x, t )) = − h̄2

2m

1

R(x, t )

∂2R(x, t )

∂x2
, (4)

which is known as the quantum potential [1,2,24]. If we omit
the quantum potential from the second of Eqs. (2) it is simply
the Hamilton-Jacobi equation of classical mechanics with a
familiar interpretation in terms of massive point particles. The
Hamilton-Jacobi equation is a way of writing the equations
of motion for a system of particles which is an alternative to
Newton’s laws. It is clearly completely classical. The quantum
potential would be zero if the universe were classical (i.e., if
h̄ = 0). However Planck’s constant is very small, but not zero,
and this term can be regarded as an additional self-generated
potential that the classical particle experiences to give it its
quantum nature. Furthermore, a number of authors have ar-
gued that a quantum particle behaves at its most classical in
places where the quantum potential is zero [8–10]. From the
point of view of the current work, the key thing to note from
this formalism can be seen in the second of Eqs. (2). If we
have two wave functions with the same value of S(x, t ) then

the sum V (x, t ) + VB(x, t ) must also be the same for both of
them.

III. NONSTATIONARY SUPERSYMMETRIC
QUANTUM MECHANICS

Nonstationary supersymmetric quantum mechanics es-
sentially involves employing a time-dependent Darboux
transformation to reconstruct the Schrödinger equation. In this
procedure we start with a potential and eigenfunctions that
satisfy the Schrödinger equation and from these we generate a
new potential and eigenfunctions of the Schrödinger equation.
This approach defines a hierarchy of solutions. Once we have
found the new potential and wave function we can use them
as the input to a subsequent transformation. Here we outline
the method, but refer the reader to the original literature for the
calculational details [19–23]. Nonstationary supersymmetry is
a powerful technique but its implementation has been limited
so far. Bagrov et al. performed a number of examples in their
papers [19–21] deriving the method, although these contain
little physical interpretation of the results. Both Zelaya and
Rosas-Ortiz [25] and Contreras-Astorga [26] have found in-
teresting new potentials starting from the harmonic oscillator.
Rasinskaitė and Strange [27] have recently used the technique
to describe surfing on a quantum level. The method has re-
cently been extended to nonlinear equations by Hayward and
Biancalana [28].

Consider two different time-dependent one-dimensional
Schrödinger equations(

ih̄
∂

∂t
− Ĥ0

)
ψ (x, t ) = 0,

(
ih̄

∂

∂t
− Ĥ1

)
φ(x, t ) = 0 (5)

with

Ĥi = − h̄2

2m

∂2

∂x2
+ Vi(x, t ) (6)

with i = 0 or 1. Let us postulate that there exists an operator
Â such that

Â

(
ih̄

∂

∂t
− Ĥ0

)
ψ (x, t ) =

(
ih̄

∂

∂t
− Ĥ1

)
Âψ (x, t ). (7)

From Eq. (5) the left-hand side of this is zero and so the right-
hand side must also be zero, which implies

φ(x, t ) = Âψ (x, t ) (8)

It has been shown that such an operator does exist and it is
written as a function of x and t as

Â = Â0(x, t ) + Â1(t )
∂

∂x
. (9)

Here we find that Â1(t ) has units of distance (although it is
only a function of time, not x), while A0(x, t ) is dimensionless
and is given by

Â0(x, t ) = − 1

u(x, t )

∂u(x, t )

∂x
Â1(t ). (10)

Here u(x, t ) is known as a transfer function and is a distinct
solution of the same Schrödinger equation as ψ (x, t ). So for
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the new wave function we have

φ(x, t ) = Â1(t )

(
∂

∂x
− 1

u(x, t )

∂u(x, t )

∂x

)
ψ (x, t ) (11)

and the new potential is given by

V1(x, t ) = V0(x, t ) + ih̄
1

Â1(t )

∂Â1(t )

∂t
− h̄2

m

∂2

∂x2
(ln u). (12)

Â1(t ) is essentially arbitrary, but can be chosen to find the
representation in which V1(x, t ) is real if such a representation
exists. Then

V1(x, t ) = V0(x, t ) − h̄2

2m

∂2

∂x2
[ln |u(x, t )|2] (13)

This clearly contains only real terms. We now have all we
need to calculate new solutions of the Schrödinger equation
from known solutions. The procedure is as follows. We choose
two known solutions of the upper of equations (5) as ψ (x, t )
and the transfer function u(x, t ), and we also know the corre-
sponding potential V0(x, t ). First we calculate V1(x, t ) from
Eq. (12) with A1(t ) = 1 and if it is not real we choose an
expression for Â1(t ) to make it real. The details of how to do
this are given in the original literature. If this is not possible
the calculation may be mathematically interesting, but there
is very unlikely to be any physical applications of the results.
Next we calculate Â0(x, t ) from Eq. (10) and then Â(x, t ) from
Eq. (9). Finally we find φ(x, t ) from Eq. (8) or (11) and that is
the wave function corresponding to the potential V1(x, t ). This
completes the calculation because that V1(x, t ) and φ(x, t ) are
the potential and solutions of the lower of Eqs. (5).

IV. POLAR REPRESENTATIONS OF WAVE FUNCTIONS
AND SUPERSYMMETRIC QUANTUM MECHANICS

In this section we will use wave functions in the form of
Eq. (1) in an implementation of the time-dependent supersym-
metry method. To this end we write the transfer function, the
initial wave function and the final wave function respectively
as

u(x, t ) = Ru(x, t )eiSu (x,t )/h̄, ψ (x, t ) = Rψ (x, t )eiSψ (x,t )/h̄,

φ(x, t ) = Rφ (x, t )eiSφ (x,t )/h̄. (14)

Henceforth in this section we will drop the explicit x and t
dependence of these quantities for clarity. Next we substitute
these forms into Eq. (11). It turns out that if we insist that

∂Sψ

∂x
= ∂Su

∂x
(15)

then Sφ = Sψ , and

Rφ = Â(t )

(
∂Rψ

∂x
− Rψ

Ru

∂Ru

∂x

)
. (16)

As it is the expression for S that determines the dynam-
ics of the particle, this means that the new solution of the
Schrödinger equation obeys the same dynamical equations
as the old solution (up to a constant of integration). Now
let us put the first of Eqs. (14) into Eq. (13). After some

manipulation this yields

V1 = V0 − h̄2

m

[
1

Ru

∂2Ru

∂x2
− 1

R2
u

(
∂Ru

∂x

)2]
(17)

Prior to the first transformation the quantum potential is given
by

VB(Rψ (x, t )) = − h̄2

2m

1

Rψ (x, t )

∂2Rψ (x, t )

∂x2
(18)

and after the first transformation it is given by

VB(Rφ (x, t )) = − h̄2

2m

1

Rφ (x, t )

∂2Rφ (x, t )

∂x2
. (19)

Building Eq. (19) from Eq. (16) and making use of both (15)
and (2) it can be shown that

VB(Rφ ) = VB(Rψ ) + h̄2

m

[
1

Ru

∂2Ru

∂x2
− 1

R2
u

(
∂Ru

∂x

)2]
(20)

Now adding Eqs. (17) and (20) yields our key result that

V1 + VB(Rφ ) = V0 + VB(Rψ ), (21)

i.e., the sum of the usual classical potential and the quantum
potential is conserved by a supersymmetry transformation
provided Eq. (15) is satisfied. This is just what we observed
at the end of Sec. II: that V (x, t ) + VB(x, t ) is conserved if
S(x, t ) is the same for the initial and final wave function. In
Eqs. (17) and (20) we have shown mathematically that the
same quantity is subtracted from V0 as is added to VB(Rψ )
and have provided an explicit expression for that quantity.
Equation (21) should be regarded as a mathematical condition
on the wave functions and potentials. That this can be written
in terms of the quantum potential enables us to discuss this
result in terms of the de Broglie–Bohm model.

In fact when we have an initial wave function for which
the value of S satisfies Eq. (15) we can perform any number
of supersymmetry transformations on it and each wave func-
tion will have the same expression for S. The classical and
quantum potentials are not conserved individually by a time-
dependent supersymmetry transformation (there would be no
point in it if they were), so an interesting way of regarding
such a transformation is as transferring potential between the
classical potential and the quantum potential. In the following
section we illustrate this with a number of examples.

V. EXAMPLES

In this section we display a number of examples of trans-
ferring weight between the classical and quantum potentials.
As part of this we calculate some expectation values. Because
of the symmetry these are all zero if calculated in the usual
manner. Here the wave functions displayed are equal to zero
at x = 0 at all times, so it is legitimate to calculate the expec-
tation value over just one half of the space, which we have
done.

A. The free-particle Hermite wave function

In this first example we consider a known free particle
wave function. This will form the starting point for subsequent
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FIG. 1. Left: The quantum potential of equation (27) as a function of position at several different times for n = 3 and τ = 1. Right A
space-time map for the probability density associated with the wave function of Eq. (22) with n = 3.

examples where it is used to initiate a number of supersym-
metry transformations. A solution of the time-dependent free
particle Schrödinger equation with a form suitable for illus-
trating the above theory is

�(x, t ) =
√

1

n!

( m

h̄τπ

)1/4 2−n/2

(1 + t2/τ 2)1/4
e(− mτx2

2h̄(t2+τ2 )
)

× e[−i(n+1/2) arctan( t
τ

)]e( imx2t
2h̄(t2+τ2 )

)

× Hn

[(
mτ

h̄(t2 + τ 2)

)1/2

x

]
. (22)

Here the symbols have their usual meanings. τ is a positive
constant with the dimensions of time. τ = 1 has been chosen
throughout this paper unless otherwise stated. Hn is a Hermite
polynomial and n is a non-negative integer quantum number.
To our knowledge this wave function was first found by Miller
[15]. It has a number of interesting properties which have
been discussed since by Bagrov et al. [20], Guerrero et al.
[16,17], and Strange [18] for example. The probability density
associated with this wave function is displayed in Fig. 1. For
this case

S(x, t ) = mx2t

2(t2 + τ 2)
− (n + 1/2)h̄ arctan

( t

τ

)
(23)

and

R(x, t ) =
√

1

n!

( m

h̄τπ

)1/4 2−n/2

(1 + t2/τ 2)1/4

× e(− mτx2

2h̄(t2+τ2 )
)Hn

[(
mτ

h̄(t2 + τ 2)

)1/2

x

]
. (24)

Then Eq. (3) yields

dx

dt
= xt

t2 + τ 2
, (25)

which can be solved trivially to give

x = x0

√
t2 + τ 2

τ
, (26)

where x0 is a constant of integration. The division by τ here
is not necessary, but is done to give x0 units of distance. This

result has also been obtained using semiclassical methods in
Ref. [18]. For the values of the parameters used we find the
expectation value of position 〈x̂〉 has x0 = 2.394. We can use
Eq. (24) in (4) to find the quantum potential for this wave
function:

VB(R(x, t )) = τ [(n + 1/2)(t2 + τ 2)h̄ − mx2τ ]

2(t2 + τ 2)2
. (27)

The wave function (22) is one member of a family of wave
functions that all have the S(x, t ) given by Eq. (23) for any
particular value of n. This wave function is in some sense
maximally quantal because the entirety of the potential it
experiences is the quantum potential. In Fig. 1 we plot this po-
tential for several times for n = 3. We note that this potential
depends on t2 as opposed to t , meaning that Fig. 1 would look
the same if we replaced the values of t by −t . Furthermore
any properties of a particle experiencing this potential should
be of identical magnitude at ±t . The potential is an inverted
parabola at all times, but it becomes flatter very rapidly. As
this corresponds to zero conventional potential this is also
V + VB which is constant for all wave functions found from
Eq. (22) using a supersymmetry transformation.

B. A wave function generated from a single
supersymmetry transformation

In this example we have chosen a simple case u(x, t ) =
�(x, t ) above with n = 1, and ψ (x, t ) = �(x, t ) with n = 3.
V0 = 0 of course and then after one supersymmetry procedure

V1(x, t ) = h̄

(
τ

t2 + τ 2
+ h̄

mx2

)
(28)

and

VB(x, t ) = − mx2τ 2

2(t2 + τ 2)2
+ 5τ h̄

2(t2 + τ 2)
− h̄2

mx2
. (29)

V1(x, t ) and VB(x, t ) at t = 0 are shown as the blue dashed and
red dotted lines respectively on the left-hand side of Fig. 2.
Clearly the supersymmetry transformation has introduced an
infinity into the potential. This comes about because Ru passes
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FIG. 2. Left: The potentials of Eqs. (28) (blue, dashed) and (29) (red, dotted) and the sum V (x, t ) + VB(x, t ) (black, full) as a function of
position at t = 0. The black full line is identical to the blue t = 0 line in Fig. 1. Right: A space-time map of the probability density for this
wave function [blue (dark) = a very low probability density and yellow (light) = a high probability density].

through zero at the origin. The wave function is given by

φ(x, t ) =
(m

h̄

)7/4 4x2τ 5/4

√
3(π + πt2/τ 2)1/4(t2 + τ 2)

× e
i
2 [ mx2t

h̄(t2+τ2 )
−7 arctan( t

τ
)]e− mx2τ

2h̄(t2+τ2 ) (30)

and so

R(x, t ) =
(m

h̄

)7/4 4x2τ 5/4

√
3(π + πt2/τ 2)1/4(t2 + τ 2)

e− mx2τ

2h̄(t2+τ2 )

(31)
and

S(x, t ) = mx2t

2(t2 + τ 2)
− 7

2
h̄ arctan

( t

τ

)
. (32)

S(x, t ) here is in the same form as Eq. (23) which implies
that the dynamics is also the same (to within a constant).
It is straightforward to verify that the expectation value 〈x̂〉
obeys Eq. (26) with x0 = 2.128. In this case it is easy to see
why the two branches of the probability density are separate:
the classical potential has an infinity at the origin meaning
that any particle experiencing this potential will be unable to

pass through it and hence will be trapped on one side of the
potential for all times.

C. Quantum surfing wave function

As a further example we perform the two successive
supersymmetry transformations described by Strange and
Rasinskaitė [27] to obtain a solution of the Schrödinger
equation where the particle appears to “surf” on the time-
dependent potential.

For this example we have taken the wave function from
Eq. (30) above as ψ (x, t ) for a second supersymmetry trans-
formation. Then we have performed another supersymmetry
calculation analogous to that of the example in Sec. V B,
starting from the same eigenfunction �(x, t ), but with n = 1
for u(x, t ) and n = 2 for ψ (x, t ) to get a new u(x, t ) for input
to the second supersymmetry transformation. Note that we
have used the same quantum number for u(x, t ) in both of our
first round of supersymmetry transformations. This is because
they then both generate the same new potential. Using this
potential generated from the first transformation as V0 in the
second transformation we end up with the output potential

V1(x, t ) = 2τ h̄[4m2x4τ 2 + 8mx2τ (t2 + τ 2)h̄ − (t2 + τ 2)2h̄2]

(t2 + τ 2)[2mx2τ + (t2 + τ 2)h̄]2
, (33)

and the quantum potential is

VB(x, t ) = τ [−4m3x6τ 3 + 8m2x4τ 2(t2 + τ 2)h̄ − 5mx2τ (t2 + τ 2)2h̄2 + 11(t2 + τ 2)3h̄3]

2(t2 + τ 2)2[2mx2τ + (t2 + τ 2)h̄]2
. (34)

The classical potential at t = 0 is shown as the blue dashed
line in the left diagram of Fig. 3. It retains that shape for
all times, but for t � 0 it is very stretched and shallow. As
time increases from t = −∞ the potential contracts towards
zero, the maxima of the potential get closer to zero, and the
central potential well deepens until it takes on the form shown
in Fig. 3. For t > 0 the motion of the potential reverses and
it becomes very stretched and shallow again. The quantum
potential is given by the red dotted line on the left of Fig. 3.

For t � 0 and t � 0 it is close to an inverted parabola.
Around t = 0 a more well-defined peak appears symmetric
about x = 0 and the rest of the parabola decreases in size.
This peak is an exact “counterbalance” to the potential well
formed in the classical potential. The right-hand side of Fig. 3
is a space-time map of the probability density determined
from the wave function that is output from the supersymmetry
transformation. This is a single-particle wave function and,
although there are two branches to the probability density, the
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FIG. 3. Left: The potentials of Eq. (33) (blue, dashed) and (34) (red, dotted) and the sum V (x, t ) + VB(x, t ) (black) as a function of position
at t = 0. The black full line is identical to the blue t = 0 line in Fig. 1. Right: A space-time map of the probability density for this wave
function [blue (dark) = a very low probability density and yellow (light) = a high probability density].

particle will only inhabit one of them at any one time. This is
determined by the boundary conditions, Clearly the particle
is fairly well localized at t = 0 but the probability density
spreads out rapidly either side of t = 0. If we evaluate the
expectation value of position as a function of time we find it
obeys Eq. (26) with x0 ≈ 1.305. There is a region between
the two peaks at t = 0 where the probability density is close
to zero, so there is very little probability of the particle being
there. However different values of the free quantum number
associated with ψ yield eigenfunctions where the probability
density is high at the bottom of the well. Comparing the
right-hand sides of Figs. 2 and 3 we see that the quantum
surfing probability density has superficially the same shape

the that shown in Fig. 2, but it broadens considerably more
rapidly.

D. A highly localized wave function

We present this example because, while in some ways
apparently unphysical, it also exhibits some noteworthy prop-
erties. Here we have repeated the calculation in example B
with n = 1 for u(x, t ) and n = 4 for ψ (x, t ). The output wave
function from this calculation is our new u(x, t ). We have
repeated this procedure with n = 1 and n = 2 respectively and
the output from that calculation is our new ψ (x, t ). We then
perform the further supersymmetry transformation that results
in the more complicated resultant classical potential

V1(x, t ) = 2τ h̄[16m4x8τ 4 − 8m2x4τ 2h̄2(t2 + τ 2)2 + 48mx2τ h̄3(t2 + τ 2)3 − 3h̄4(t2 + τ 2)4]

(t2 + τ 2)[−4m2x4τ 2 + 4mx2τ h̄(t2 + τ 2) + h̄2(t2 + τ 2)2]2
(35)

and a quantum potential given by

VB(x, t ) = τ [−16m5x10τ 5 + 80m4x8τ 4h̄(t2 + τ 2) − 232m3x6τ 3h̄2(t2 + τ 2)2 + 80m2x4τ 2h̄3(t2 + τ 2)3]

2(t2 + τ 2)2[−4m2x4τ 2 + 4mx2τ h̄(t2 + τ 2) + h̄2(t2 + τ 2)2]2

+ τ [−137mx2τ h̄4(t2 + τ 2)4 + 19h̄5(t2 + τ 2)5]

2(t2 + τ 2)2[−4m2x4τ 2 + 4mx2τ h̄(t2 + τ 2) + h̄2(t2 + τ 2)2]2
. (36)

These potentials are shown at t = 0 in the left panel of Fig. 4
along with their total, which is the black full line and is
identical to the equivalent lines in the previous figures. The
potential here has a new characteristic in that it contains a
pair of infinities and these move symmetrically towards the
origin for t < 0 and away from the origin for t > 0. The
origin of these infinities is easy to see. In Eqs. (17) and
(18) we see that an infinity will arise in the classical po-
tential and in the quantum potential if Ru = 0, and that is
indeed the case here. Furthermore, a zero in Ru will arise
from a zero in u(x, t ). As can be seen from Eq. (11), a zero
in u(x, t ) will lead to an infinity in the new wave function
φ(x, t ). This means that infinities in both the potential and
probability density will coincide in space and time. This is

shown in the right-hand panel of Fig. 4, where the infinity
dominates the probability density, which makes it very highly
localized. Unusually, we have here a localized wave func-
tion that does not broaden. It is tied to a particular position
by the zero in u(x, t ). The expectation value 〈x̂〉 cannot be
determined numerically because of the infinities in the prob-
ability density. However the probability density peak must
correspond with the expectation value of position and so
the right-hand panel of Fig. 4 also shows the expectation
value of position as a function of time. We can estimate
graphically that for this case x0 = 1.554. The nonspreading
nature of the probability density continues indefinitely in
both time and space. While the picture this solution gives
us, of a particle trapped at an infinite potential peak, is

062213-6



QUANTUM POTENTIAL IN TIME-DEPENDENT … PHYSICAL REVIEW A 104, 062213 (2021)

FIG. 4. Left: The potentials of Eqs. (35) (blue, dashed) and (36) (red, dotted) and the sum V (x, t ) + VB(x, t ) (black, full) as a function of
position at t = 0. The black full line is identical to the blue t = 0 line in Fig. 1. Right: A space-time map of the probability density for this
wave function [blue (dark) = a very low probability density and yellow (light) = a high probability density].

unphysical, the lack of broadening it produces is worth not-
ing.

E. A final wave function

We have seen that there exist families of potentials and so-
lutions of the Schrödinger equation that have identical values
of the quantum number n and identical values of S(x, t ), but
differing potentials and values of R(x, t ), such that V (x, t ) +
VB(x, t ) is always the same. One “end” of this series is the
example in Sec. V A where the classical potential is zero and
the quantum potential takes on the value of Eq. (27). At the
other end of the scale is the case where the classical potential
is given by Eq. (27),

V (x, t ) =
[

7
2 (t2 + τ 2)h̄ − mx2τ

]
τ

2(t2 + τ 2)2
(37)

for n = 3, and the quantum potential is zero. A solution to the
time-dependent Schrödinger equation for this potential can be
found by inspection as

ψ (x, t ) = B

(t2 + τ 2)1/4

× exp

{
i

[
mx2t

2h̄(t2 + τ 2)
− 7

2
arctan

( t

τ

)]}
, (38)

where B is a constant. Clearly this eigenfunction is a member
of the same family as the previous examples because it has
the same expression for S(x, t ). It is easy to verify that the
quantum potential associated with this wave function is zero.
This potential and wave function represent two things. First
the action

S(x, t ) = mx2t

2(t2 + τ 2)
− 7h̄

2
arctan

( t

τ

)
(39)

is a solution of Eq. (2) with the quantum potential equal to
zero, i.e., the classical Hamiltonian-Jacobi equation. Standard
classical mechanics leads to this action describing motion of
a classical particle according to Eq. (26). So, in one sense the
result of Eq. (38) describes a fairly simple classical particle.
On the other hand, the potential of Eq. (37) is the potential that

gives the solution in example A its “quantumness.” The wave
function it generates, shown in Eq. (38), is unnormalizable.
and the probability density it produces is independent of x, so
it is constant over all space. We can calculate the probability
and probability current density easily using the standard pre-
scriptions giving

ρ(x, t ) = B2

(t2 + τ 2)1/2
, J (x, t ) = t

τ

B2x0t

t2 + τ 2
, (40)

and if we define velocity as current density divided by proba-
bility density we find

v = J
ρ

= x0

τ

t

(t2 + τ 2)1/2
, (41)

which, with x = x0

√
t2 + τ 2)/τ is equivalent to Eq. (25),

hence showing that a particle described by this wave function
does obey the same dynamical equations as the other exam-
ples.

VI. DISCUSSION

This work leads to an alternative perspective on both super-
symmetric quantum mechanics and on the Madelung-Bohm
representation of the Schrödinger equation.

We have seen that one way of viewing a supersymmetry
transformation is as a procedure to transfer potential between
the quantum potential and the classical potential function pro-
vided simple restrictions are placed on the quantum mechani-
cal action. This enables us to create families of wave functions
which have differing values of R(x, t ) but the same S(x, t ).
Members of these families all have the same basic dynam-
ics, but differing initial probability distributions. The transfer
function u(x, t ) is required by the method to be a solution of
the same Schrödinger equation as the wave function before the
supersymmetry transformation ψ (x, t ), but within that limita-
tion we still have some freedom to choose the nature of the
transferred potential. In turn this gives us the capability to in-
fluence the properties of the resulting wave function. The for-
malism generalizes straightforwardly to higher dimensions.

This has been illustrated in a set of examples where we
have found several members of the same family of wave func-
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tions, each of which has the same basic dynamics (apart from
an arbitrary constant of integration), but have very different
probability densities. One noteworthy case is where we can
add infinities to the classical potential and subtract them from
the quantum potential, which leads to particles whose position
is localized and does not broaden with time.

Equations (2) are an alternative, less general form of the
Schrödinger equation. Because they are a pair of coupled
equations for R(x, t ) and S(x, t ) it is often stated that these
two quantities determine each other. In this work we have
shown, rigorously, that this is not the case. There is a poten-
tially infinite set of different expressions for the probability
amplitude R(x, t ) for a given S(x, t ). This is consistent with
the interpretation that of all the possible dynamics defined by
Eq. (3) we are choosing those that are compatible with the
initial probability distribution R2(x, 0) [4]. In some sense the

quantum potential contains the quantum nature of the particle.
Therefore we can regard the supersymmetry procedure as
adding or subtracting “quantumness” to the wave function.
The examples used to illustrate the theory are all members
of the same family. Example A has zero classical potential
and nonzero quantum potential and so may be regarded as
the most quantum mechanical case. Example E is the most
classical in the same sense because the particle experiences
the full classical potential, but zero quantum potential. The
example that actually behaves most classically is example D
as it does not broaden.

We conclude by pointing out that the procedure described
here provides a means of investigating the effects of the quan-
tum potential in many more cases and provides a route to
a deeper understanding of the relationship between classical
and quantum mechanics.
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