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Search by lackadaisical quantum walk with symmetry breaking
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The lackadaisical quantum walk is a lazy version of a discrete-time, coined quantum walk, where each vertex
has a weighted self-loop that permits the walker to stay put. They have been used to speed up spatial search on a
variety of graphs, including periodic lattices, strongly regular graphs, Johnson graphs, and the hypercube. In these
prior works, the weights of the self-loops preserved the symmetries of the graphs. In this paper, we show that
the self-loops can break all the symmetries of vertex-transitive graphs while providing the same computational
speedups. Only the weight of the self-loop at the marked vertex matters, and the remaining self-loop weights can
be chosen randomly, as long as they are small compared to the degree of the graph.
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I. INTRODUCTION

The discrete-time, coined quantum walk is a quantum ana-
log of a discrete-time random walk, where a walker jumps
between adjacent vertices of a graph in superposition. It was
first proposed by Meyer as a quantum version of a cellular
automaton [1], and he showed that for the evolution to be
nontrivial, an internal degree of freedom was needed [2].
Meyer identified the internal degree of freedom as spin and
showed that the one-dimensional (1D) quantum walk was a
discretization of the Dirac equation of relativistic quantum
mechanics. Later, the internal degree of freedom was dubbed a
coin in the context of a quantum walk [3], so that the quantum
walk evolves by alternating between a quantum coin flip and
a shift to adjacent vertices. The discrete-time, coined quantum
walk has been used to design a variety of quantum algorithms,
including algorithms for searching [4], solving element dis-
tinctness [5], and solving boolean formulas [6]. Furthermore,
it is universal for quantum computing [7], so any quantum
circuit can be converted into a discrete-time quantum walk.

The lackadaisical quantum walk is a lazy version of this. It
was introduced in Ref. [8] for searching the complete graph,
which is the walk formulation of Grover’s unstructured search
problem [9]. In this initial work, � integer self-loops were
added to each vertex, with larger values of � corresponding
to greater laziness since there were more loops through which
the walker could stay put. Later, the � unweighted self-loops at
each vertex were replaced by a single self-loop of real-valued
weight � at each vertex, such that if � is an integer, it is
equivalent to the original definition of � integer self-loops per
vertex [10].

This generalization to real-valued weights led to speedups
for spatial search on a variety of graphs, including the
discrete torus with one marked vertex [11] and multi-
ple marked vertices [12–16], periodic square lattices of
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arbitrary dimension [17,18], strongly regular graphs [18],
Johnson graphs [18], the hypercube [18], regular locally arc-
transitive graphs [19], the triangular lattice [20], and the
honeycomb lattice [20]. All of these graphs are vertex tran-
sitive, meaning they have symmetries such that each vertex
has the same structure. Then, adding a self-loop of weight
� to each vertex preserves this symmetry, i.e., the graphs
remain vertex transitive. Hanoi networks have also been ex-
plored [14], and although they are not vertex transitive, they
do have some symmetry such that certain vertices have the
same structure. This symmetry remains when adding a self-
loop of weight � to every vertex. In all these prior works, the
self-loops preserved all the symmetries of the graphs.

Lackadaisical quantum walks with nonhomogeneous
weights were introduced for searching complete bipartite
graphs [21], where the self-loops in one partite set had one
weight, and the self-loops in the other partite set had an-
other weight. Regular complete bipartite graphs are vertex
transitive, and although the nonhomogeneous weights broke
this symmetry, not all the symmetry was broken, as vertices
within a partite set still evolved identically. Irregular complete
bipartite graphs are not vertex transitive, but vertices within a
partite set have the same structure, and the nonhomogeneous
weights retained this symmetry. Thus, in the regular case, the
self-loops supported some of the symmetries of the graphs,
and in the irregular case, they supported all the symmetries of
the graph.

In this paper, we show that the self-loops can break all
the symmetries of vertex-transitive graphs and still provide
the same computational speedups. We show that only the
weight at the marked vertex matters—all the other self-loops
can be weighted randomly. In the next section, we define the
quantum search algorithm by focusing on the complete graph,
and we show that the speedup provided by the lackadaisical
quantum walk remains when breaking the symmetry of the
graph. Then, in Sec. III, we present similar findings for other
vertex-transitive graphs, with search on periodic lattices sug-
gesting that the random weights should be small compared to
the degree of the graph. Finally, we conclude in Sec. IV.
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FIG. 1. A complete graph with N = 6 vertices and self-loops
�1, . . . , �6. A vertex is marked, indicated by a double circle.

II. COMPLETE GRAPH

In this section, we revisit searching the complete graph of
N vertices using a lackadaisical quantum walk, except each
self-loop can have a different weight. An example is shown
in Fig. 1, where we have N = 6 vertices with self-loops of
weight �1, �2, . . . , �6. This allows us to break the symmetries
of the graph.

The system evolves in the Hilbert space CN ⊗ CN with
basis vectors |u〉 ⊗ |v〉 = |uv〉 denoting a walker at vertex u
pointing toward vertex v. The system begins in a uniform
superposition over the vertices, and the amplitude at each
vertex is distributed along the edges by weight:

|ψ (0)〉 = 1√
N

N∑
i=1

|i〉 ⊗ 1√
N + �i − 1

(∑
j∼i

| j〉 +
√

�i|i〉
)

.

We have access to an oracle Q that we can query, and it negates
the amplitudes at the marked vertex. Let |a〉 ∈ {|1〉, . . . , |N〉}
denote the marked vertex. Then,

Q = (IN − 2|a〉〈a|) ⊗ IN .

The quantum walk consists of a coin flip C and a shift S. We
use the Grover diffusion coin with a weighted self-loop [10],
defined as

C =
N∑

i=1

[|i〉〈i| ⊗ (2|si〉〈si| − IN )],

where

|si〉 = 1√
N + �i − 1

(∑
j∼i

| j〉 +
√

�i|i〉
)

.

The shift causes a particle to jump and turn around, i.e.,

S|uv〉 = |vu〉.
The search algorithm evolves by repeated applications of

U = SCQ,

which queries the oracle Q and then takes a step of the quan-
tum walk SC. So, |ψ (t )〉 = Ut |ψ (0)〉.

In previous research [10], all the self-loops had the same
weight, i.e., �1 = · · · = �N = �, and it was shown that the
search algorithm behaved differently for different values of
�. This is shown in Fig. 2(a) for search on the complete graph
with N = 256 vertices. The black solid curve corresponds to
� = 0, which is the loopless algorithm. The success prob-
ability (i.e., the probability at the marked vertex) starts at

FIG. 2. Search on the complete graph of N = 256 vertices,
which has degree 255. In (a), every self-loop has weight �. In (b),
the self-loop at the marked vertex has weight �, while the rest are
chosen uniformly at random in the interval [0,10].

1/256, and as U is repeatedly applied, it rises to a success
probability of 1/2 after π

√
N/2

√
2 ≈ 18 steps. Then, the

success probability decreases again in a quasiperiodic manner.
The dashed red curve is � = 0.3, and the success probability
now reaches a value of 0.71. With � = 1, corresponding to
the dotted green curve, the success probability now reaches 1.
Finally, when � = 2, shown in the dot-dashed blue curve, the
success probability reaches 0.89. Thus, the optimal value of �

that maximally boosts the success probability is � = 1.
Analytically, it was shown in Sec. 6 of Ref. [10] that, for

large N , the success probability at time t for the homogeneous
lackadaisical quantum walk is

ph(t ) =
[

[1 − cos(αt )]
√

�(N − 1)

(� + 1)
√

N + � − 2

]2

+
[√

(2N + � − 3)(� + 1) sin(αt )

2(� + 1)
√

N + � − 2

]2

,
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where

α = sin−1

(√
(2N + � − 3)(� + 1)

N + � − 1

)
.

Simplifying these further for large N :

ph(t ) = �[1 − cos(αt )]2

(� + 1)2
+ sin2(αt )

2(� + 1)

= 8l sin4(αt/2) + (� + 1) sin2(αt )

2(� + 1)2
, (1)

and

α = sin−1

(√
2(� + 1)

N

)
. (2)

Also from Ref. [10], the success probability ph(t ) reaches a
peak of

p∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2(1−�) , � < 1/3,

4�
(�+1)2 , � � 1/3, � = o(N ),
16+9c

4c(c+1)
1
N , � = cN,

9
4�

, � = ω(N ),

at time

t∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cos−1 ( 2�
�−1 )√

2(�+1)

√
N, � < 1/3,

π√
2(�+1)

√
N, l � 1/3, � = o(N ),

π

sin−1
(√

c(c+2)
c+1

) , � = cN,

2, � = ω(N ).

For example, when � = 1, the success probability reaches
p∗ = 1 at time t∗ = π

√
N/2. Or, when � = 0, the success

probability reaches p∗ = 1/2 at time t∗ = π
√

N/2
√

2.
Now, say the self-loop at the marked vertex has weight

� while the remaining 255 self-loops have weights chosen
uniformly at random between 0 and 10. This breaks all the
symmetries of the graph, as each vertex has a different struc-
ture. In Fig. 2(b), we plot the success probability with the
same values of � as in Fig. 2(a), i.e., � = 0, 0.3, 1, 2. Com-
paring these figures, the success probabilities evolve nearly
identically, indicating that only the weight of the self-loop at
the marked vertex matters.

Let us prove that only the weight at the marked vertex af-
fects the search algorithm, asymptotically, for the case where
some self-loops have one weight and the remaining vertices
have another weight. This breaks the vertex transitivity of the

FIG. 3. (a) A complete graph with N = 6 vertices, where M = 4
vertices have self-loops of weight � and (N − M ) = 2 vertices have
self-loops of weight �′. A vertex is marked, indicated by a double
circle. (b) The same graph, but with identically evolving vertices
identically labeled and colored.

graph since the vertices no longer all have the same structure.
Hence, it proves that some of the symmetry of the graph can
be broken while preserving the speedup, as for the regular
complete bipartite graph [21]. Proving the general case with
every self-loop taking a different value, as in Fig. 2(b), is open.

To begin the proof, we assume M of the vertices have self-
loops of weight �, and the remaining (N − M ) vertices have
self-loops of weight �′. Without loss of generality, we take
the M vertices with weights � to have labels 1, 2, . . . , M, and
we take the remaining (N − M ) vertices with weights �′ to
have labels M + 1, M + 2, . . . , N . Then, the initial state of the
system is

|ψ (0)〉 = 1√
N

[
M∑

i=1

|i〉 ⊗ 1√
N + � − 1

(∑
j �=i

| j〉 +
√

�|i〉
)

+
N∑

i=M+1

|i〉 ⊗ 1√
N + �′ − 1

(∑
j �=i

| j〉 +
√

�′|i〉
)]

.

(3)

Without loss of generality, we assume that the marked vertex
is among the M vertices with self-loop weight �. An example
with N = 6 vertices and M = 4 is shown in Fig. 3(a).

With these assumptions, many of the vertices evolve iden-
tically to each other. In Fig. 3(b), we have labeled and colored
identically evolving vertices the same. There are only three
types of vertices: The marked vertex is labeled a and is red, the
other (M − 1) vertices with self-loops � are labeled b and are
blue, and the (N − M ) vertices with self-loops �′ are labeled c
and are yellow. Taking into account the direction that a walker
at each vertex can point, the system evolves in a 9D subspace
spanned by

|aa〉 = |a〉 ⊗ |a〉,

|ab〉 = |a〉 ⊗ 1√
M − 1

∑
b

|b〉,

|ac〉 = |a〉 ⊗ 1√
N − M

∑
c

|c〉,
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|ba〉 = 1√
M − 1

∑
b

|b〉 ⊗ |a〉,

|bb〉 = 1√
M − 1

∑
b

|b〉 ⊗ 1√
M + � − 2

(∑
b′ �=b

|b′〉 +
√

�|b〉
)

,

|bc〉 = 1√
M − 1

∑
b

|b〉 ⊗ 1√
N − M

∑
c

|c〉,

|ca〉 = 1√
N − M

∑
c

|c〉 ⊗ |a〉,

|cb〉 = 1√
N − M

∑
c

|c〉 ⊗ 1√
M − 1

∑
b

|b〉,

|cc〉 = 1√
N − M

∑
c

|c〉 ⊗ 1√
N + �′ − M − 1

(∑
c′ �=c

|c′〉 +
√

�′|c〉
)

.

Then in this {|aa〉, |ab〉, . . . , |cc〉} basis, the initial state (3) is

|ψ (0)〉 = 1√
N

(√
�

N + � − 1
|aa〉 +

√
M − 1

N + � − 1
|ab〉 +

√
N − M

N + � − 1
|ac〉 +

√
M − 1

N + � − 1
|ba〉 +

√
(M − 1)(M + � − 2)

N + � − 1
|bb〉

+
√

(M − 1)(N − M )

N + � − 1
|bc〉 +

√
N − M

N + �′ − 1
|ca〉 +

√
(M − 1)(N − M )

N + �′ − 1
|cb〉 +

√
(N − M )(N − M + �′ − 1)

N + �′ − 1
|cc〉

)
,

(4)

and the search operator U = SCQ is

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N−�−1
N+�−1 − 2

√
�M1

N+�−1 − 2
√

�
√

NM

N+�−1 0 0 0 0 0 0

0 0 0 −N−�+3
N+�−1

2
√

M�

N+�−1
2
√

NM

N+�−1 0 0 0

0 0 0 0 0 0 −N−�′+3
N+�′−1

2
√

M1

N+�′−1

2
√

NM�′
N+�′−1

− 2
√

�M1

N+�−1
N2M�

N+�−1 − 2
√

NM M1

N+�−1 0 0 0 0 0 0

0 0 0 2
√

M�

N+�−1 −N−2M�+2
N+�−1

2
√

M�NM

N+�−1 0 0 0

0 0 0 0 0 0 2
√

M1

N+�′−1 − N2M�′
N+�′−1

2
√

M1NM�′
N+�′−1

− 2
√

�NM

N+�−1 − 2
√

NM M1

N+�−1 − N−2M�

N+�−1 0 0 0 0 0 0

0 0 0 2
√

NM

N+�−1
2
√

M�NM

N+�−1
N−2M�

N+�−1 0 0 0

0 0 0 0 0 0
2
√

NM�′
N+�′−1

2
√

M1NM�′
N+�′−1

N−2M�′
N+�′−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where

M1 = M − 1,

M� = M + � − 2,

NM = N − M,

NM�′ = N − M + �′ − 1,

N2M� = N − 2M + � + 1,

N2M�′ = N − 2M + �′ + 1,

N−2M� = N − 2M − � + 1,

N−2M�′ = N − 2M + �′ − 1.

To find the evolution of the system, we want to find the
eigenvectors and eigenvalues of U (5). Then, we can express
the initial state (4) as a linear combination of these eigenvec-
tors, and the state of the system at time t is obtained by simply

multiplying each eigenvector by its eigenvalue t times. This is
difficult to do exactly, but it can be done asymptotically. In
Sec. II A, we do this assuming N is the dominant variable. In
Sec. II B, we assume M scales with N , so for large N , there
is also an asymptotic contribution from M. In both of these
cases, we will prove that the success probability evolves the
same as the homogeneous lackadaisical quantum walk in (1).
Before continuing on to other graphs, we end this section on
the complete graph in Sec. II C, showing that another reason-
able initial state yields the same evolution, asymptotically.

A. Large N

In this section, we assume N is the dominant variable, e.g.,
N − M + �′ − 1 ≈ N . That is, in little-o notation, M = o(N ).
Then, for large N , the initial state (4) becomes

|ψ (0)〉 = |cc〉. (6)
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Then, as shown in Appendix A using degenerate perturbation theory, the (unnormalized) eigenvectors and eigenvalues of U (5)
for large N are

|�1〉 = [0, 0, 0, 0, 1, 0, 0, 0, 0]ᵀ, λ1 = −1,

|�2〉 = 1√
2

[0, 0, 1, 0, 0, 0, 1, 0, 0]ᵀ, λ2 = −1,

|�3〉 = 1√
2

[0, i, 0, 1, 0,−i, 0,−1, 0]ᵀ, λ3 = i − 1√
N

,

|�4〉 = 1√
2

[0, i, 0, 1, 0, i, 0, 1, 0]ᵀ, λ4 = i + 1√
N

,

|�5〉 = 1√
2

[0,−i, 0, 1, 0, i, 0,−1, 0]ᵀ, λ5 = −i − 1√
N

,

|�6〉 = 1√
2

[0,−i, 0, 1, 0,−i, 0, 1, 0]ᵀ, λ6 = −i + 1√
N

,

|�7〉 =
[

1, 0, i

√
� + 1

2�
, 0, 0, 0,−i

√
� + 1

2�
, 0,

1√
�

]ᵀ

, λ7 = e−iα,

|�8〉 =
[

1, 0,−i

√
� + 1

2�
, 0, 0, 0, i

√
� + 1

2�
, 0,

1√
�

]ᵀ

, λ8 = eiα,

|�9〉 = [1, 0, 0, 0, 0, 0, 0, 0,−
√

�]ᵀ, λ9 = 1, (7)

where α is defined in (2).

To find the evolution of the system for large N , we express
|ψ (0)〉 (6) as a linear combination of the approximate eigen-
vectors of U that we just found (7):

|ψ (0)〉 = a|�1〉 + b|�2〉 + c|�3〉 + d|�4〉 + e|�5〉
+ f |�6〉 + g|�7〉 + h|�8〉 + i|�9〉,

where

a = b = c = d = e = f = 0,

g = h =
√

�

2(� + 1)
,

i = −
√

�

� + 1
.

That is,

|ψ (0)〉 =
√

�

2(� + 1)
|�7〉 +

√
�

2(� + 1)
|�8〉 −

√
�

� + 1
|�9〉.

Applying U to this multiplies each eigenvector by its eigen-
value, so the state at time t is

|ψ (t )〉 = Ut |ψ (0)〉

=
√

�

2(� + 1)
e−iαt |�7〉 +

√
�

2(� + 1)
eiαt |�8〉

−
√

�

� + 1
|�9〉.

Substituting in for the |�i〉’s, the state in the
{|aa〉, |ab〉, . . . , |cc〉} basis is

|ψ (t )〉 =
[ √

�

� + 1
[cos(αt ) − 1], 0,

sin(αt )√
2(� + 1)

, 0, 0, 0,

− sin(αt )√
2(� + 1)

, 0,
� + cos(αt )

� + 1

]ᵀ

. (8)

The success probability with respect to time is the sum of the
squares of the amplitudes of |aa〉, |ab〉, and |ac〉, which is

p(t ) = �

(� + 1)2
[cos(αt ) − 1]2 + sin2(αt )

2(� + 1)

= 8� sin4
(

αt
2

) + (� + 1) sin2(αt )

2(� + 1)2
. (9)

This is exactly the same success probability as the homo-
geneous case (1). So, asymptotically, the nonhomogeneous
lackadaisical quantum walk evolves the same as the homo-
geneous lackadaisical quantum walk with weight �.

B. Large N and M

In this section, we assume M scales with N . That is, in
big-	 notation, M = 	(N ). Then, for large N , M becomes
a constant multiple of N . For example, if one-fourth of the
self-loops have weight � and three-fourths of the self-loops
have weight �′, then M = (1/4)N . So in general, for large N ,
we can write M = kN for some constant k. Then, for example,
N − M + �′ − 1 = N − kN = (1 − k)N for large N .
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Then, for large N , the initial state (4) becomes

|ψ (0)〉 = k|bb〉 +
√

k(1 − k)|bc〉 +
√

k(1 − k)|cb〉 + (1 − k)|cc〉. (10)

As shown in Appendix B, using degenerate perturbation theory, the (unnormalized) eigenvectors and eigenvalues of U (5) are
asymptotically

|�1〉 = 1√
2

[0,
√

k,
√

1 − k,
√

k, 0, 0,
√

1 − k, 0, 0]ᵀ, λ1 = −1,

|�2〉 = [0, 0, 0, 0, 1 − k,−
√

k(1 − k), 0,−
√

k(1 − k), k]ᵀ, λ2 = −1,

|�3〉 = 1√
2

[
0,−i

√
1 − k, i

√
k,−√

1 − k,−(1 + i)
√

k(1 − k), (1 + i)

(
k − 1

2
− i

2

)
,
√

k, (1 + i)

(
k − 1

2
+ i

2

)
,

(1 + i)
√

k(1 − k)

]ᵀ
, λ3 = ie−iφ,

|�4〉 = 1√
2

[
0,−i

√
1 − k, i

√
k,−√

1 − k, (1 + i)
√

k(1 − k),−(1 + i)

(
k − 1

2
− i

2

)
,
√

k,−(1 + i)

(
k − 1

2
+ i

2

)
,

− (1 + i)
√

k(1 − k)

]ᵀ
, λ4 = ieiφ,

|�5〉 = 1√
2

[
0, i

√
1 − k,−i

√
k,−√

1 − k,−(1 − i)
√

k(1 − k), (1 − i)

(
k − 1

2
+ i

2

)
,
√

k, (1 − i)

(
k − 1

2
− i

2

)
,

(1 − i)
√

k(1 − k)

]ᵀ
, λ5 = −ieiφ,

|�6〉 = 1√
2

[
0, i

√
1 − k,−i

√
k,−√

1 − k, (1 − i)
√

k(1 − k),−(1 − i)

(
k − 1

2
+ i

2

)
,
√

k,−(1 − i)

(
k − 1

2
− i

2

)
,

− (1 − i)
√

k(1 − k)

]ᵀ
, λ6 = −ie−iφ,

|�7〉 =
[

1, i

√
k(� + 1)

2�
, i

√
(1 − k)(� + 1)

2�
,−i

√
k(� + 1)

2�
,

k√
�
,

√
k(1 − k)

�
,−i

√
(1 − k)(� + 1)

2�
,

√
k(1 − k)

�
,

1 − k√
�

]ᵀ

,

λ7 = e−iα,

|�8〉 =
[

1,−i

√
k(� + 1)

2�
,−i

√
(1 − k)(� + 1)

2�
, i

√
k(� + 1)

2�
,

k√
�
,

√
k(1 − k)

�
, i

√
(1 − k)(� + 1)

2�
,

√
k(1 − k)

�
,

1 − k√
�

]ᵀ

,

λ8 = eiα,

|�9〉 = [1, 0, 0, 0,−k
√

�,−
√

k(1 − k)�, 0,−
√

k(1 − k)�,−(1 − k)
√

�]ᵀ, λ9 = 1, (11)

where

φ = sin−1

(
1√
N

)
,

and α is defined in (2). As before, we express the initial state (10) as a linear combination of the eigenvectors (11):

|ψ (0)〉 = a|�1〉 + b|�2〉 + c|�3〉 + d|�4〉 + e|�5〉 + f |�6〉 + g|�7〉 + h|�8〉 + i|�9〉,
where

a = b = c = d = e = f = 0,

g = h =
√

�

2(� + 1)
,

i = −
√

�

� + 1
.
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In other words, for large N ,

|ψ (0)〉 =
√

�

2(� + 1)
|�7〉 +

√
�

2(� + 1)
|�8〉 −

√
�

� + 1
|�9〉.

Applying U then multiplies each eigenvector by its eigen-
value, so the state |ψ (0)〉 after t applications is

|ψ (t )〉 = Ut |ψ (0)〉

=
√

�

2(� + 1)
e−iαt |�7〉 +

√
�

2(� + 1)
eiαt |�8〉

−
√

�

� + 1
(1)t |�9〉

=
[ √

�

� + 1
[cos(αt ) − 1],

√
k

2(� + 1)
sin(αt ),

√
1 − k

2(� + 1)
sin(αt ),−

√
k

2(� + 1)
sin(αt ),

k

� + 1
[� + cos(αt )],

√
k(1 − k)

� + 1
[� + cos(αt )],

−
√

1 − k

2(� + 1)
sin(αt ),

√
k(1 − k)

� + 1
[� + cos(αt )],

1 − k

� + 1
[� + cos(αt )]

]ᵀ

.

Note when k → 0, the amplitudes involving b vertices (i.e.,
|ab〉, |ba〉, |bb〉, |bc〉, and |cb〉) all go to zero, and we get (8)
from the previous section where M is small compared to N .
This is because for small M and large N , the overwhelming
majority of vertices are c vertices, and the b vertices do not
play a significant role. In contrast, for large M, a significant
number of vertices are also b vertices, and they have nonzero
amplitudes during the evolution. This contrast can also be seen
in the initial states (6) and (10).

Continuing, the success probability at time t is the sum of
the norm squares of the amplitudes of |aa〉, |ab〉, and |ac〉,
which is

p(t ) = �

(� + 1)2
[cos(αt ) − 1]2 + k

2(� + 1)
sin2(αt )

+ 1 − k

2(� + 1)
sin2(αt )

= 8� sin4
(

αt
2

) + (� + 1) sin2(αt )

2(� + 1)2
. (12)

This is the same success probability as (1), and so asymp-
totically, it evolves just like the homogenous lackadaisical
quantum walk where each vertex has a self-loop of weight
�. Note although the success probability for small M in (9)
is the same as the success probability for large M in (12),
the amplitudes that contribute to each success probability are
different. In (9), success comes from the |aa〉 and |ac〉 terms,

while in (12), success comes from the |aa〉, |ab〉, and |ac〉
terms. This is another example of the contribution, or lack
thereof, from b vertices.

C. Another initial state

The initial state (3) that we have used so far is a uniform
superposition over the vertices, meaning if we were to mea-
sure the position of the walker at the start, we would get
each vertex with equal probability. This reflects our initial
lack of knowledge of where the marked vertex is, and that
each vertex is equally likely to be marked. If we perform
a nonhomogeneous lackadaisical quantum walk by applying
SC without the query Q, however, then the state evolves, even
though we have not learned any information about where the
marked vertex may be because we have not queried the oracle.
To address this, the 1-eigenvector of Uwalk = SC can be used
as the starting state instead [22]:

|σ 〉 = 1√
N (N − 1) + M� + (N − M )�′

×
[

M∑
i=1

|i〉 ⊗
(∑

j �=i

| j〉 +
√

�|i〉
)

+
N∑

i=M+1

|i〉 ⊗
(∑

j �=i

| j〉 +
√

�′|i〉
)]

. (13)

While this is not a uniform superposition over the vertices, it
has the property that it is unchanged when we walk without
the oracle query, i.e., Uwalk|σ 〉 = SC|σ 〉 = |σ 〉. For the irreg-
ular complete bipartite graph, such an initial state can lead to
a different evolution [22]. For the complete graph, however,
we will now prove that the evolution is asymptotically the
same, so it does not matter if we use (3) or (13) as the initial
state.

To begin the proof, in (13), the denominator of the overall
factor, for large N , is

N (N − 1) + M� + (N − M )�′ ≈ N2.

Then, for large N , (13) asymptotically approaches

1

N

[
M∑

i=1

|i〉 ⊗
(∑

j �=i

| j〉 +
√

�|i〉
)

+
N∑

i=M+1

|i〉 ⊗
(∑

j �=i

| j〉 +
√

�′|i〉
)]

. (14)

Next, consider (3). Its radicands are, for large N ,

N + � − 1 ≈ N,

N + �′ − 1 ≈ N.

Then, for large N , (3) also asymptotically approaches (14).
Since the two initial states (3) and (13) both approach (14),
they are asymptotically equivalent. Our numerical simulations
are consistent with this; using either initial state results in
roughly the same evolution.
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FIG. 4. Search on the regular complete bipartite graph with N =
256 vertices, which has degree 128.

III. ADDITIONAL GRAPHS

In this section, we explore search on a variety of vertex-
transitive graphs. Vertex-transitive graphs are necessarily
regular, meaning each vertex has the same degree, or number
of neighbors. Ignoring self-loops, we denote the degree d . For
example, the complete graph has a degree d = N − 1, since
each vertex is adjacent to each of the N − 1 other vertices.
Using a homogeneous lackadaisical quantum walk, the opti-
mal value of � for vertex-transitive graphs is asymptotically
d/N [11]. For example, for the complete graph, this was
(N − 1)/N ≈ 1 for large N . Many of the results in this section
are very similar to the complete graph from the previous sec-
tion. Periodic lattices, however, are different, and they suggest
that the random weights should be small compared to the
degree of the graph.

We begin with the regular complete bipartite graph of N
vertices, which consists of two partite sets, each with N/2
vertices, such that each vertex is adjacent to every vertex in the
other partite set and nonadjacent to every vertex in its own set.
So, the degree is d = N/2. Search with N = 256 is shown in
Fig. 4. The solid black curve is without self-loops [22]. With
each self-loop weight equal to the optimal value of d/N =
1/2, we get the dashed red curve. Randomly choosing the
self-loops at the unmarked vertices to have weights between
0 and 10, which breaks the symmetries of the graph, we get
the dotted green curve, and it closely matches the dashed red
curve, indicating that only the weight at the marked vertex
matters, asymptotically.

Johnson graphs are next. A Johnson graph is denoted
J (n, k). Its vertices are k-element subsets of n symbols, and
vertices are adjacent if they differ in exactly one symbol.
For example, J (4, 2) has four symbols. Using a, b, c, and d
as the symbols, the vertices are ab, ac, ad , bc, bd , and cd .
Vertices ab and ac are adjacent because they differ in one
symbol, and ab and cd are nonadjacent because they differ
in two symbols. In general, the Johnson graph J (n, k) has
n choose k = C(n, k) vertices, and each vertex has k(n − k)
neighbors. The solid black curve in Fig. 5 shows the suc-
cess probability for search on J (10, 5) without self-loops.
With each self-loop weight equal to the optimal value of

FIG. 5. Search on the Johnson graph J (10, 5), which has N =
252 vertices and degree 25.

d/N = k(n − k)/C(n, k) = 25/252 = 0.099206, we get the
dashed red curve. Breaking the symmetries of the graph, in
the dotted green curve, we keep the weight of the self-loop
at the marked vertex equal to 0.099206, while the remaining
self-loops have weights chosen uniformly at random in the
interval [0,10]. We see that the success probability evolves
similarly to the dashed red curve, so only the weight at the
marked vertex matters, asymptotically.

Strongly regular graphs are also vertex transitive. A
strongly regular graph has parameters (N, d, λ, μ), where the
graph has N vertices, every vertex has d neighbors, adjacent
vertices share λ common neighbors, and nonadjacent vertices
share μ common neighbors. One family of strongly regular
graphs is the Paley graphs, where N is a prime power such that
N = 1 (mod 4). Then, k = (N − 1)/2, λ = (N − 5)/4, and
μ = (N − 1)/4. For example, search on the Paley graph (257,
128, 63, 64) is shown in Fig. 6. The solid black curve is the
loopless case. With each self-loop weight equal to the optimal
value of d/N = 128/257 = 0.498054, we get the dashed red
curve. Choosing the weights of the self-loops at the unmarked
vertices uniformly at random in the interval [0,10], we get

FIG. 6. Search on the Paley graph of N = 257 vertices, which
has degree 128.
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the dotted green curve, and it closely matches the dashed red
curve. Again, only the weight at the marked vertex matters,
asymptotically.

Next, we explore search on arbitrary-dimensional peri-
odic square lattices, which will lead to a new observation.
Figure 7(a) shows the success probability for searching the
2D periodic square lattice with N = 16 × 16 = 256 vertices
and degree d = 4. The solid black curve is the evolution
without self-loops [23]. With each self-loop weight equal to
the optimal value of d/N = 4/N = 4/256 = 0.015625, we
get the dashed red curve. Now, we break the symmetries by
only giving the self-loop at the marked vertex a weight of
0.015625, while the remaining 255 self-loops have weights
that are chosen uniformly at random in the interval [0,10].
The success probability is shown in the dotted green curve. It
does not match the dashed red curve. One might assume this
is because N is too small, and so we search a larger 2D lattice
in Fig. 7(b) with N = 32 × 32 = 1024 vertices and degree
d = 4. Again, the dotted green curve differs from the dashed
red curve. Thus, increasing N did not help, and search on even
larger 2D lattices with N = 4096, 16384, and 65536 vertices,
all of which have degree 4, confirms that increasing N is not
the solution. Instead, let us choose the random self-loops to
be in the interval [0,1] so that they are smaller. Now, from the
dot-dashed blue curves of Figs. 7(a) and 7(b), we get good
agreement with the dashed red curves. This suggests that the
weights of the random self-loops must be small relative to
some quantity, and that quantity is not N .

We propose that the quantity is the degree d of the graph.
That is, the self-loops at the unmarked vertices do not matter
as long as their weights are small compared to the degree
of the graph. As intuition, consider an unmarked vertex. If
its self-loop has a small weight compared to the number of
other edges it has, then the self-loop plays a negligible role in
the evolution. The evolution at the vertex is overwhelmingly
dictated by the numerous other edges. Next, we offer several
tests of this argument.

As a test of our observation, in Fig. 7(c), we explore search
on the 5D lattice of N = 1024 vertices, which has degree
d = 10. Since this has a larger degree than the 2D lattices in
Figs. 7(a) and 7(b), the self-loops at the unmarked vertices
should be less relevant. Figure 7(c) indicates that this is true.
With weights randomly chosen in [0,10], the dotted green
curve is closer to the dashed red curve than in Figs. 7(a) and
7(b). It is not perfect, however, as some of the weights in
[0,10] may be comparable to the degree d = 10. If we instead
choose the weights in [0,1], then the agreement should be even
better, as we confirm in the dotted blue curve of Fig. 7(c).

In a way, lattices are an outlier because the number of ver-
tices N can be increased without changing the degree d . With
the previous graphs (the complete graph, regular complete bi-
partite graphs, Johnson graphs, and Paley graphs), increasing
N also increased the degree d . So, taking N to be large also
takes d to be large, so increasing N will cause the self-loops
at unmarked vertices to be irrelevant. Our observation is also
consistent with the homogeneous lackadaisical quantum walk,
for which � = d/N is optimal. With this choice, the self-loops
at the unmarked vertices are guaranteed to be small compared
to the degree because we are dividing the degree by the num-
ber of vertices.

FIG. 7. Search on periodic square lattices of various sizes and
dimensions. (a) N = 16 × 16 = 256, degree 4. (b) N = 32 × 32 =
1024, degree 4. (c) N = 4 × 4 × 4 × 4 × 4 = 1024, degree 10.

Next, we consider hypercubes. In one dimension, the hy-
percube is a path of two vertices. In two dimensions, it is
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FIG. 8. Search on the (a) 10D hypercube, which has N = 1024
vertices and degree 10, and (b) 14D hypercube, which has N =
16384 vertices and degree 14.

a square of four vertices. In three dimensions, it is a cube
of eight vertices. In four dimensions, it is a tesseract of 16
vertices. In general, the nD hypercube has N = 2n vertices and
degree n. Search on the 8D hypercube is shown in Fig. 8(a),
and the solid black curve is the loopless case. With each self-
loop weight equal to the optimal value of n/2n = 8/256 =
0.03125, we get the dashed red curve. Breaking the symme-
tries of the graph, we keep the weight of the self-loop at the
marked vertex equal to 0.03125, but choose the rest uniformly
at random in the interval [0,10]. This is the dotted green curve.
As we saw with the lattices, it does not match the dashed red
curve because the degree d = 8 does not dominate the loops
chosen in [0,10]. If we instead randomly choose the weights
in the interval [0,1], we get the dot-dashed blue curve, and this
does match the dashed red curve. We could also increase the
size of the hypercube, which increases its degree. In Fig. 8(b),
we show search on the 14D hypercube, which has N = 16384
vertices and degree d = 14. The dotted green curve is closer
to the dashed red curve, and this is consistent with our

observation; by increasing the degree from 8–14, the weights
at the unmarked vertices become less relevant. As before,
choosing the weights in [0,1], as shown in the dot-dashed blue
curve, results in even better agreement with the dashed red
curve.

IV. CONCLUSION

We have shown that a lackadaisical quantum walk can
break the symmetries of vertex-transitive graphs while main-
taining its speedup for spatial search. That is, its speedup is
not dependent on supporting the symmetries of the graph. We
demonstrated this by giving every self-loop a different weight,
which causes each vertex to evolve differently. Only the
weight of the self-loop at the marked vertex affects the search
algorithm, as long as the other weights are small compared
to the degree of the graph. We proved this for the complete
graph for the specific case of two weights, and proving this in
general for the complete graph and all vertex-transitive graphs
is an open question.

Naturally, one may ask whether a similar result holds
for graphs that are not vertex transitive. Prior work on the
irregular complete bipartite graph partially answers this. In
Ref. [21], the self-loops in one partite set had weight �1,
while the self-loops in the other partite set had weight �2.
If the marked vertices are all in the first partite set (with
self-loops �1), then �2 may or may not affect the evolution,
depending on the initial state. With the usual initial state that
is a uniform superposition over the vertices, then �2 can affect
the evolution, as shown in Fig. 4 of Ref. [21]. If the initial
state is a 1-eigenvector of the quantum walk (similar to |σ 〉 in
Sec. II C), then �2 does not make a difference. Both of these
results assume that the number of vertices in each partite set
is large. If this is not true, and �2 is comparable to or large
compared to the number of vertices, then it can affect the
evolution with either initial state, as shown in Fig. 3(c) and
Fig. 5(c) of Ref. [21].
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APPENDIX A: COMPLETE GRAPH, LARGE N

To find the eigenvectors and eigenvalues of U (5) for large
N , we use degenerate perturbation theory. First, we take the
leading-order terms of U , which gives us the matrix U0:

U0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 0 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The normalized eigenvectors and eigenvalues of U0 are much easier to find. They are

|v1〉 = 1√
2

[0, 0, 1, 0, 0, 0, 1, 0, 0]ᵀ, −1,

|v2〉 = [0, 0, 0, 0, 1, 0, 0, 0, 0]ᵀ, −1,

|v3〉 = 1√
2

[0, 0, 0, 0, 0, i, 0, 1, 0]ᵀ, i,

|v4〉 = 1√
2

[0, i, 0, 1, 0, 0, 0, 0, 0]ᵀ, i,

|v5〉 = 1√
2

[0, 0, 0, 0, 0,−i, 0, 1, 0]ᵀ, −i,

|v6〉 = 1√
2

[0,−i, 0, 1, 0, 0, 0, 0, 0]ᵀ, −i,

|v7〉 = [0, 0, 0, 0, 0, 0, 0, 0, 1]ᵀ, 1,

|v8〉 = 1√
2

[0, 0,−1, 0, 0, 0, 1, 0, 0]ᵀ, 1,

|v9〉 = [1, 0, 0, 0, 0, 0, 0, 0, 0]ᵀ, 1.

Next, we lift the degeneracy by including the next-leading-order terms of U , which acts as a perturbation. Together, the
leading- and next-leading-order terms of U are

U ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 − 2
√

�√
N

0 0 0 0 0 0

0 0 0 −1 0 2√
N

0 0 0

0 0 0 0 0 0 −1 0 2√
N

0 1 − 2
√

M1√
N

0 0 0 0 0 0

0 0 0 0 −1 2
√

M�√
N

0 0 0

0 0 0 0 0 0 0 −1 2
√

M1√
N

− 2
√

�√
N

− 2
√

M1√
N

−1 0 0 0 0 0 0

0 0 0 2√
N

2
√

M�√
N

1 0 0 0

0 0 0 0 0 0 2√
N

2
√

M1√
N

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For large N , the asymptotic eigenvectors of U ′ are linear
combinations of the degenerate eigenvectors of U0 [24]. For
example, starting with the two eigenvectors of U0 that have
eigenvalue −1, two linear combinations α1|v1〉 + α2|v2〉 will
be asymptotic eigenvectors of U ′, i.e.,(

U ′
11 U ′

12
U ′

21 U ′
22

)(
α1

α2

)
= λ

(
α1

α2

)
,

where U ′
i j = 〈vi|U ′|v j〉, and λ is the eigenvalue. Evaluating

the matrix components,(−1 0
0 −1

)(
α1

α2

)
= λ

(
α1

α2

)
.

Solving this eigenvalue relation, two asymptotic eigenvectors
and eigenvalues of U ′ are

|�1〉 = |v2〉, λ1 = −1,

|�2〉 = |v1〉, λ2 = −1.

Similarly, for the eigenvectors of U0 with eigenvalue i, two
asymptotic eigenvectors of U ′ take the form α3|v3〉 + α4|v4〉,

where (
U ′

33 U ′
34

U ′
43 U ′

44

)(
α3

α4

)
= λ

(
α3

α4

)
.

This can be evaluated to get:

(
i 1√

N
1√
N

i

)(
α3

α4

)
= λ

(
α3

α4

)
.

Solving this, two (unnormalized) asymptotic eigenvectors and
eigenvalues of U ′ are

|�3〉 = −|v3〉 + |v4〉, λ3 = i − 1√
N

,

|�4〉 = |v3〉 + |v4〉, λ4 = i + 1√
N

.

Next, for the eigenvectors of U0 with eigenvalue −i, two
asymptotic eigenvectors of U ′ take the form α5|v5〉 + α6|v6〉,
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where

(
U ′

55 U ′
56

U ′
65 U ′

66

)(
α5

α6

)
= λ

(
α5

α6

)
.

This can be evaluated to get:

(
−i 1√

N
1√
N

−i

)(
α5

α6

)
= λ

(
α5

α6

)
.

Solving this yields the following (unnormalized) asymptotic
eigenvectors and eigenvalues of U ′:

|�5〉 = −|v5〉 + |v6〉, λ5 = −i − 1√
N

|�6〉 = |v5〉 + |v6〉, λ6 = −i + 1√
N

.

Lastly, for eigenvectors of U0 with eigenvalue 1, three asymp-
totic eigenvectors of U ′ take the form α7|v7〉 + α8|v8〉 +
α9|v9〉, where

⎛
⎝U ′

77 U ′
78 U ′

79
U ′

87 U ′
88 U ′

89
U ′

97 U ′
98 U ′

99

⎞
⎠

⎛
⎝α7

α8

α9

⎞
⎠ = λ

⎛
⎝α7

α8

α9

⎞
⎠.

This can be evaluated to get:⎛
⎜⎜⎜⎝

1
√

2
N 0

−
√

2
N 1 −

√
2�
N

0
√

2�
N 1

⎞
⎟⎟⎟⎠

⎛
⎝α7

α8

α9

⎞
⎠ = λ

⎛
⎝α7

α8

α9

⎞
⎠.

Solving this yields the following (unnormalized) asymptotic
eigenvectors and eigenvalues of U ′:

|�7〉 = 1√
�
|v7〉 − i

√
� + 1

�
|v8〉 + |v9〉,

λ7 = 1 − i

√
2(� + 1)

N
≈ e−iα,

|�8〉 = 1√
�
|v7〉 + i

√
� + 1

�
|v8〉 + |v9〉,

λ8 = 1 + i

√
2(� + 1)

N
≈ eiα,

|�9〉 = −
√

�|v7〉 + |v9〉, λ9 = 1.

where α is defined in (2). Then, by plugging in the respective
|vi〉, we get the (unnormalized) asymptotic eigenvectors of U ′
in the {|aa〉, |ab〉, . . . , |cc〉} basis that were given in (7).

APPENDIX B: COMPLETE GRAPH, LARGE N AND M

Assuming M = kN for some constant k, then for large N , the leading-order terms of the search operator U (5) are

U0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 −1 0 0

0 1 − 2k −2
√

k(1 − k) 0 0 0 0 0 0

0 0 0 0 2k − 1 2
√

k(1 − k) 0 0 0

0 0 0 0 0 0 0 2k − 1 2
√

k(1 − k)

0 −2
√

k(1 − k) 2k − 1 0 0 0 0 0 0

0 0 0 0 2
√

k(1 − k) 1 − 2k 0 0 0

0 0 0 0 0 0 0 2
√

k(1 − k) 1 − 2k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The normalized eigenvectors and eigenvalues of U0 are

|v1〉 = [0, 0, 0, 0, 1 − k,−
√

k(1 − k), 0,−
√

k(1 − k), k]ᵀ, −1,

|v2〉 = 1√
2

[0,
√

k,
√

1 − k,
√

k, 0, 0,
√

1 − k, 0, 0]ᵀ, −1,

|v3〉 =
[

0, 0, 0, 0,−
√

k(1 − k), k − 1

2
− i

2
, 0, k − 1

2
+ i

2
,
√

k(1 − k)

]ᵀ
, i,
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|v4〉 = 1√
2

[0,−i
√

1 − k, i
√

k,−√
1 − k, 0, 0,

√
k, 0, 0]ᵀ, i,

|v5〉 =
[

0, 0, 0, 0,−
√

k(1 − k), k − 1

2
+ i

2
, 0, k − 1

2
− i

2
,
√

k(1 − k)

]ᵀ
, −i,

|v6〉 = 1√
2

[0, i
√

1 − k,−i
√

k,−√
1 − k, 0, 0,

√
k, 0, 0]ᵀ, −i,

|v7〉 = [0, 0, 0, 0, k,
√

k(1 − k), 0,
√

k(1 − k), 1 − k]ᵀ, 1,

|v8〉 = 1√
2

[0,−
√

k,−√
1 − k,

√
k, 0, 0,

√
1 − k, 0, 0]ᵀ, 1,

|v9〉 = [1, 0, 0, 0, 0, 0, 0, 0, 0]ᵀ, 1.

Adding the next-order terms of the search operator U (5), we get

U ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 2
√

k�√
N

− 2
√

(1−k)�√
N

0 0 0 0 0 0

0 0 0 −1 2
√

k√
N

2
√

1−k√
N

0 0 0

0 0 0 0 0 0 −1 2
√

k√
N

2
√

1−k√
N

− 2
√

k�√
N

1−2k −2
√

k(1−k) 0 0 0 0 0 0

0 0 0 2
√

k√
N

2k − 1 2
√

k(1−k) 0 0 0

0 0 0 0 0 0 2
√

k√
N

2k − 1 2
√

k(1−k)

− 2
√

(1−k)�√
N

−2
√

1−k
√

k 2k − 1 0 0 0 0 0 0

0 0 0 2
√

1−k√
N

2
√

k(1−k) 1−2k 0 0 0

0 0 0 0 0 0 2
√

1−k√
N

2
√

k(1−k) 1−2k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From degenerate perturbation theory, linear combinations of
the degenerate eigenvectors of U0 are asymptotic eigenvectors
of U ′. Using this with the eigenvectors of U0 with eigenvalue
−1, for large N , two linear combinations α1|v1〉 + α2|v2〉 will
be asymptotic eigenvectors of U ′, i.e.,(

U ′
11 U ′

12
U ′

21 U ′
22

)(
α1

α2

)
= λ

(
α1

α2

)
,

where U ′
i j = 〈vi|U ′|v j〉 and λ is the eigenvalue. Evaluating the

matrix components,(−1 0
0 −1

)(
α1

α2

)
= λ

(
α1

α2

)
.

Solving this, two asymptotic eigenvectors and eigenvalues of
U ′ are

|�1〉 = |v2〉, λ1 = −1,

|�2〉 = |v1〉, λ2 = −1.

Similarly this can be done for each of the other grouped
degenerate eigenvectors of U0. For the eigenvectors of U0 with
eigenvalue i, two asymptotic eigenvectors of U ′ take the form
α3|v3〉 + α4|v4〉, i.e.,(

U ′
33 U ′

34
U ′

43 U ′
44

)(
α3

α4

)
= λ

(
α3

α4

)
.

This can be evaluated to get:(
i 1+i√

2N
1−i√

2N
i

)(
α3

α4

)
= λ

(
α3

α4

)
.

Solving this yields the following (unnormalized) asymptotic
eigenvectors and eigenvalues of U ′:

|�3〉 = 1 + i√
2

|v3〉 + |v4〉, λ3 = i + 1√
N

≈ ie−iφ,

|�4〉 = −1 + i√
2

|v3〉 + |v4〉, λ4 = i − 1√
N

≈ ieiφ,
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where

φ = sin−1

(
1√
N

)
.

For the eigenvectors of U0 with eigenvalue −i, the linear
combination would be α5|v5〉 + α6|v6〉 which can be solved
by the matrix:

(
U ′

55 U ′
56

U ′
65 U ′

66

)(
α5

α6

)
= λ

(
α5

α6

)
.

This can be evaluated to get:

(
−i 1−i√

2N
1+i√

2N
−i

)(
α5

α6

)
= λ

(
α5

α6

)
.

Solving this matrix then gives us the following (unnormal-
ized) asymptotic eigenvectors and eigenvalues:

|�5〉 = 1 − i√
2

|v5〉 + |v6〉, λ5 = −i + 1√
N

≈ −ieiφ,

|�6〉 = −1 − i√
2

|v5〉 + |v6〉, λ6 = −i − 1√
N

≈ −ie−iφ.

Lastly, for the eigenvectors of U0 with eigenvalue 1, the linear
combination would be α7|v7〉 + α8|v8〉 + α9|v9〉 which can be

solved by the matrix:⎛
⎝U ′

77 U ′
78 U ′

79
U ′

87 U ′
88 U ′

89
U ′

97 U ′
98 U ′

99

⎞
⎠

⎛
⎝α7

α8

α9

⎞
⎠ = λ

⎛
⎝α7

α8

α9

⎞
⎠.

This can be evaluated to get:⎛
⎜⎜⎜⎜⎜⎝

1
√

2
N 0

−
√

2
N 1 −

√
2�
N

0
√

2�
N 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

α7

α8

α9

⎞
⎟⎟⎟⎠ = λ

⎛
⎜⎜⎝

α7

α8

α9

⎞
⎟⎟⎠.

Solving this matrix then gives us the following (unnormal-
ized) asymptotic eigenvectors and eigenvalues:

|�7〉 = 1√
�
|v7〉 − i

√
� + 1

�
|v8〉 + |v9〉,

λ7 = 1 − i
√

2(� + 1)√
N

≈ e−iα,

|�8〉 = 1√
�
|v7〉 + i

√
� + 1

�
|v8〉 + |v9〉,

λ8 = 1 + i
√

2(� + 1)√
N

≈ eiα,

|�9〉 = −
√

�|v7〉 + |v9〉, λ9 = 1,

where α is defined in (2). Then, plugging in the respec-
tive |vi〉’s, we get the approximate eigenvectors of U in the
{|aa〉, |ab〉, . . . , |cc〉} basis, which were given in (11).
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