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Enhanced steady-state coherence via repeated system-bath interactions
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The appearance of steady-state coherence (SSC) from system-bath interactions proves that quantum effects
can appear without an external drive. Such SSC could become a resource to demonstrate a quantum advantage
in the applications. We predict the generation of SSC if the target system repeatedly interacts with independent
and noncorrelated bath elements. To describe their behavior, we use the collision model approach of system-
bath interactions, where the system interacts with one bath element (initially in an incoherent state) at a time,
asymptotically (in the fast-collision regime) mimicking a macroscopic Markovian bath coupled to the target
system. Therefore, the SSC qualitatively appears to be the same as if the continuous Markovian bath were used.
We confirm that the presence of composite system-bath interactions under the rotating-wave approximation is the
necessary condition for the generation of SSC using thermal resources in collision models. Remarkably, we show
that SSC substantially increases if the target system interacts collectively with more than one bath element at a
time. A few bath elements collectively interacting with the target system is sufficient to increase SSC at nonzero
temperatures at the cost of a tolerable lowering of the final state purity. From the thermodynamic perspective, the
SSC generation in our collision models is inevitably linked to a nonzero power input (and thus heat dissipated
to the bath) necessary to reach the steady state, although such energetic cost can be lower compared to cases
relying on SSC nongenerating interactions.
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I. INTRODUCTION

It is well known that quantum coherence is a valu-
able physical resource useful for many applications [1]. In
quantum thermodynamics, for example, experiments have
demonstrated [2] that, within the small-action limit [3], quan-
tum coherence between different internal energy states of the
working substance allows a quantum heat engine to produce
more power than its classical counterpart. In quantum metrol-
ogy, it has been shown [4] that long-time coherence in the
state of the sensing particles can be used to outperform the
precision of frequency estimation [5] when compared with
entanglement-based strategies. However, such a strategy relies
on the coherence trapping effect [6] and therefore has the
practical disadvantage that the state of the probes needs some
initial coherence. Therefore, such quantum advantage cannot
appear autonomously in quantum matter.

It is precisely the aim of several investigations to find
processes in microscopic and mesoscopic systems that lead,
on demand and without external coherent drives, to the gen-
eration of robust quantum coherence, entanglement in the
steady state, or quantum synchronization [7]. For instance, in

*ancheyta6@gmail.com
†kolar@optics.upol.cz
‡gguarnieri88@gmail.com
§filip@optics.upol.cz

[8] an autonomous quantum thermal machine produces de-
generate steady-state coherence (SSC) in a two-qubit system
interacting, incoherently, with two thermal baths at different
temperatures. In [9] sufficient conditions for the generation
of energetic SSC (coherence between states with different
energies [10]) in a two-level system in contact with a single
thermal bath were identified. Those conditions that we will
discuss in detail in the present work rely on the particular
structure of the composite [9] system-bath interaction. Re-
markably, in both examples [8,9], the SSC is independent of
the initial state of the system, which could be initially inco-
herent. Such independence makes these strategies, in a sense,
similar to earlier proposals for preparing nonequilibrium
quantum phases [11] and implementing robust dissipative
quantum computation [12] using quantum-reservoir engineer-
ing of many-body systems.

The framework put forward in [9] was recently applied
in [13] to obtain nonequilibrium steady states (NESSs) with
SSC. There the thermodynamic cost to produce such coher-
ence was calculated numerically and, interestingly, nonzero
work and heat currents at the steady state were necessary to
maintain the NESSs with SSC [13]. On the other hand, in [14]
an experimentally feasible semiconductor double-quantum-
dot charge qubit in permanent contact with a thermal bath
was proposed to implement the characteristic structure of the
interaction Hamiltonian of [9].

Other works deal with the characterization of coherence
but from the point of view of the resource theory of quantum
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thermodynamics [15–19]. For instance, it was shown in [20]
that Gibbs-preserving maps can outperform thermal opera-
tions by creating quantum coherence from energy eigenstates.
Remarkably, in [21] a crucial no-go theorem was introduced,
showing that quantum coherence cannot be broadcast in every
finite-dimensional system, therefore, ruling out the free cost
generation of coherent superpositions from incoherent states;
see also [22] for a closely related work.

In this paper, motivated by the generality of the suffi-
cient conditions that guarantee the generation of SSC in
[9], we extend those results to the framework of repeated
pulsed interactions [23–27], also known as collision mod-
els [28–34]. These models not only give theoretical insight
into microscopic processes in the baths required to achieve
SSC, but mainly they can be, in some cases, efficiently im-
plemented on a quantum processor [35,36] or linear optical
schemes [37]; other potential platforms may be cold trapped
ions [38] and quantum circuits [39]. Such proof-of-principle
nonautonomous experiments will simulate SSC with current
experimental techniques and verify mechanisms to obtain
SSC under various conditions in parallel with the ongoing
search for suitable autonomous platforms [14].

In particular, we study here the creation and collective
enhancement of energetic SSC (along with high purity) in a
target system (described by a qubit or by a harmonic oscil-
lator) interacting with an effective bath. The effective bath
is modeled as a stream of bath elements, clusters of qubits,
or linear harmonic oscillators in thermal states that interact
for a short period of time with the target system in which
SSC is to be created. This underlying microscopic procedure
yields effectively a Markovian time-independent master equa-
tion description of the target system. An analytic solution is
employed to access the steady state, independently of the sys-
tem’s initial state. In order to obtain the transient dynamics we
use numerical calculations, as well as approximated solutions.

Overview of the results

Our results show that even for the composite system-bath
interactions taken into account, there exist specific scenarios
[for instance, when the rotating-wave approximation (RWA)
is not valid] in which the sufficient conditions found in [9] are
not applicable for SSC generation in the context of collision
models describing open quantum dynamics. This is due to the
physically different way of modeling the thermal bath in this
work, compared to [9], showing that these two approaches are
not equivalent from the perspective of SSC generation.

We find the following at low bath temperatures.
(i) Energetic SSC and the corresponding purity of the sys-

tem reach their maximum value.
(ii) Energetic SSC can be substantially increased, together

with the system energy, as the number of elements in the
corresponding bath clusters increases, although lowering the
resulting system purity at the same time.

(iii) Both energetic SSC and purity possess a small constant
plateau, allowing for possible experimental observation.

For high bath temperatures [40] we find the following.
(iv) The SSC is washed out and the target system reaches

a completely incoherent mixed state, irrespective of the bath-
cluster size.

To characterize our models from a thermodynamic per-
spective, we establish a clear connection between the power
input, characterizing the steady state, and create nonzero SSC
for a certain class of collision models used in our work. Our
results show that for, e.g., qubit-qubit collisions defined by
a certain interaction, the power input is proportional to the
created SSC. On the other hand, another class of interactions,
not generating SSC, needs as well a positive power supply.
These facts lead us to the following observation.

(v) Positive power input does not guarantee SSC genera-
tion, but any SSC consumes a certain power to be generated.

Finally, we find that the correct splitting, in terms of heat
and work, in the dynamical version of the first law of ther-
modynamics cannot be obtained by just knowing the change
of the system’s internal energy. In addition, the generation of
energetic SSC induces substantial modifications in the heat
current that deviate from the Landauer formulation of trans-
port theory.

II. SSC FROM QUBIT BATH ELEMENTS

A. Asymptotic coherence

In this section we focus on the setup described in Fig. 1
with individual interactions described by N = 1, i.e., when
the target system consists of a two-level system (TLS) (qubit)
with a free Hamiltonian HS = ωσz/2 and the bath elements
are represented by another TLS of frequency ωB. Here and
from now on, we set h̄ = 1. We assume that the interaction
between the target qubit and each respective bath element
can be written in a particular form, which we call composite,
allowing for spontaneous creation of SSC [9],

VI = f1σz ⊗ (σ B
− + σ B

+ ) + f2(σ+ ⊗ σ B
− + σ− ⊗ σ B

+ ), (1)

where σ± (σ B
±) are the ladder operators of the target TLS

(bath element) and f1,2 are two real coupling constants. In
the above expression, the composite interaction VI consists
of the so-called parallel, H‖HS = f1σz ⊗ (σ B

− + σ B
+ ), and or-

thogonal, H⊥HS ≡ VI − H‖HS , components with respect to
HS [9]. The parallel component alone ( f1 �= 0 and f2 = 0)
induces dephasing of the target qubit while creating coher-
ence on the bath element. On the other hand, the orthogonal
component alone ( f1 = 0 and f2 �= 0) describes a damping
interaction between the target system and the bath element,
i.e., it causes solely quantum hopping, while the total exci-
tation being conserved. Such hopping alone [the orthogonal
part of (1)] can create coherence only between the incoherent
target qubit and the incoherent bath element. Only if the
bath element has quantum coherence on its own can it be
transferred to the target by the hopping interaction. In order
to have nonzero quantum coherence in the target asymptotic
steady state, both interactions are therefore necessary in the
interaction Hamiltonian; it is however not clear if they are
also sufficient for SSC creation. Only if both components are
turned on ( f1 f2 �= 0) is the coherence in the bath element
(created by the parallel component) transferred to the target
system by the orthogonal interaction. The interaction (1) ap-
proximately describes the pulsed dynamics of the two-level
system in trapped ion [38] and superconducting circuit [39]
experiments when the oscillator representing the bath B is
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FIG. 1. Schematic representation of a basic collision model or
repeated interaction scheme extended throughout the paper. (a) The
bath elements represented by clusters of N independent and noncor-
related two-level systems or qubits (lower green circles) of frequency
ωB are initially in a thermal state of inverse temperature β. Each bath
element interacts collectively during a short period of time τ with
a target TLS (red) of frequency ω through the interaction Hamilto-
nian VI . This procedure makes short-time collisions with the bath
elements acting as an effective Markovian bath [13], although such
collision schemes have the potential to generate more general types
of evolution. (b) Pictorial representation of the initial density matrix
ρB of each bath TLS. Before the interaction with the target qubit, ρB

has only diagonal elements (green squares). After a few collisions,
the density matrix ρ of the target TLS will contain coherence (red
squares) regardless of whether ρ was initially an incoherent state.
(c) Due to the composite structure of VI , the coherence generated in
ρ reaches, after several collisions, a stationary value. Remarkably,
such steady-state coherence substantially increases with the size of
each cluster. It is shown how fast typically SSC, quantified with the
l1-norm of coherence, grows for N = {1, 2, 3}, τ = 1, and β = 5.

weakly excited. It corresponds to the low-temperature limit,
where SSC appears. At this point we would like to mention
the general logic adopted throughout this work. Each collision
defined by the interaction VI corresponds, in principle, to
a certain microscopic model, underlying some type of ex-
periment (see, e.g., [38,39]). We model such a discrete type
of dynamics numerically, employing short-time (but finite)
interactions (collisions) of the target system with a bath unit.
Every such particular target-bath interaction VI defines, under
certain conditions, a corresponding Markovian master equa-
tion (ME) (see Appendix A for derivation), which is more
suitable for analytical solutions used and discussed in our
work. We have checked the correspondence of the purely
numerical and ME-based (analytical) results, confirming the
excellent match in the regime of parameters used throughout
the paper. Examples of this match are shown, e.g., in Figs. 2(a)
and 6. as discrete dots on solid curves.

Note that Eq. (1) can be rewritten as a bilinear combination
VI = s† ⊗ A + s ⊗ A† between system and bath operators, if
we define the operators as s = f1σz + f2σ− and A = σ B

−. If
we perform the corresponding trace over the incoherent bath

states ρB, the dynamical equation for the target qubit acquires
the well-known form of the time-independent Markovian
master equation (see Appendix A for a detailed derivation)

dρ

dt
= − iω

2
[σz, ρ] + 〈σ B

−σ B
+〉L[ f1σz + f2σ−]ρ

+〈σ B
+σ B

−〉L[ f1σz + f2σ+]ρ, (2)

where L[x]ρ ≡ xρx† − 1
2 (x†xρ + ρx†x) is the usual Lindblad

superoperator and 〈x〉 = tr{xρB} is the expectation value of
an arbitrary operator x with respect to the initial (thermal)
bath state. In addition to the detailed derivation of Eq. (2)
given in Appendix A, we stress here that this equation holds
conditioned on the limit of short interaction time τ and the
condition of renormalization of VI by 1/

√
τ (see Appendix A

for details). The above equation can be solved easily by
numerical methods. Exactly both of the above-mentioned con-
ditions allow for a direct connection of the collision model and
system dynamics described by an effective master equation of
the Lindblad type. This connection allows for the possibility
to obtain analytical expressions for 〈σx〉, 〈σy〉, and 〈σz〉 in the
steady state (see Appendix B). It is important to note that the
second and third terms on the right-hand side of (2) should not
be interpreted as terms causing only incoherent deexcitation
and incoherent excitation, respectively. As we will see, these
Lindblad superoperators L[x]ρ are able to generate coherence
in the energy basis of the target qubit, even in the steady state,
because they contain a linear combination of both parallel
( f1σz) and orthogonal ( f2σ±) components with respect to HS

as their argument [x]. We recall that for f1 f2 = 0, Eq. (2) will
not generate SSC.

In order to quantify the possible generation of coherence
in the target (qubit) system, we use the l1-norm of the co-
herence measure [41]. This is defined as the absolute value
of the off-diagonal element of the density matrix of interest
C(t ) = ∑

i �= j |ρi, j (t )|. For the state of the qubit ρ this can be
easily written as C(t ) = |〈σx(t )〉 + i〈σy(t )〉|, used from now
on, having the following form in the steady state, taking
CSS ≡ limt→∞ C(t ) (see Appendix B 1 for details):

CSS = f1 f2
r(T )

s(T ) + ω2
. (3)

Here

r(T ) = 〈[σ B
−, σ B

+]〉[ω2 + 〈{σ B
−, σ B

+}〉2(2 f 2
1 + f 2

2 /2
)2]1/2

,

(4)

s(T ) = 〈{σ B
−, σ B

+}〉2(2 f 2
1 + f 2

2 /2
)(

f 2
1 + f 2

2 /2
)

(5)

are two functions that may depend, based on the result of the
commutator and anticommutator average of the bath opera-
tors, on the temperature T of the corresponding bath elements.
In deriving Eq. (2) we use the condition trB{VIρB} = 0, which
implies that the initial state of the bath elements cannot have
coherence in the energy basis. Moreover, any diagonal state of
the ancillary qubits is a Gibbs thermal state since it can always
be written in the Gibbs form ρB

th = exp(−βωBσ B
z /2)Z−1,

where Z = 2 cosh(βωB/2) and β = (kBT )−1 is the inverse
temperature. This temperature is the so-called apparent tem-
perature introduced in [40] as T ≡ (ωB/kB) ln(pB

g/pB
e )−1,

where pB
g (pB

e ) is the probability to find each bath qubit

062209-3



RICARDO ROMÁN-ANCHEYTA et al. PHYSICAL REVIEW A 104, 062209 (2021)

0 1 2
0.5

0.75

0.95

0 1 2
0

0.4

0.8

kBT/�ωB

N = 3

N = 8

N � 1

N � 1

N = 2

N = 1

N = 1RWA interaction

PssCss

(a)

0 0.5 1 1.5

0.1

0.2

0.3

0 0.5 1 1.5

0.7

0.9
1

kBT/�ωB

NCR = 3 N
=

3

NRWA = 3

NCR = 1

N
=

1

NRWA = 1

N = {1, 3}
PTLS

TS

CR

RWA

CTLS
TS

(b)

FIG. 2. (a) Steady-state coherence [Eq. (3)] in the target two-level system of Fig. 1 as a function of scaled temperature of the bath elements
(lowest green solid line) in the case of a RWA type of interaction, Eq. (6) for N = 1. When the target qubit interacts collectively with clusters
of N noncorrelated bath qubits (see Fig. 1), the SSC increases substantially (upper green solid lines) until it saturates to the value CSS (green
dashed line). The latter corresponds to the theoretical upper bound CSS = C0 tanh(ωB/2kBT ) maximizing SSC for N � 1. The parameters are
ω = ωB = 1, f1 = f2/

√
2, f2 = 0.6, and N = {1, 2, 3, 8}. The inset shows the steady-state purity of the target qubit as a function of the same

scaled temperature. Purity decreases when the number of qubits in the clusters increases from N = {1, 2} (blue solid lines) until a saturated
value (blue dashed line) for N � 1. Blue and red dots represent a purely numerical calculation of the repeated interaction model where, for τ =
0.051, the steady state is reached after approximately 103 collisions. Note that these results are independent of the initial state of the target qubit
and that the CSS and PSS have opposite trends of cluster-size N dependence, i.e., as the system coherence increases with the size of the cluster,
its purity decreases. Remarkably, the plateau region in CSS and PSS allows reaching their maximum values for kBT/h̄ωB > 0. (b) Dependence
of optimized transient-state coherence CTS [Eq. (15)] on the bath temperature in cases when the system interacts with N = {1, 3} bath TLSs
via RWA interaction (labeled by the subscript RWA) [Eq. (6)] or with counterrotating terms included [Eq. (12)]. The counterrotating results
clearly have an edge over the RWA results in terms of attainable coherence CTS. In contrast, the corresponding optimized system state purity
PTS [Eqs. (16)] of the counterrotating interaction is suppressed with respect to the RWA scenario. The temperature dependence enters the
results through the system’s initial inversion z0 = − tanh(h̄ω/2kBT ) and assumption that the system and the bath have initially the same
temperature T and frequency ω = ωB. The values of the parameters are ωB = ω = 1 and f1 = f2 = 0.15. These values of the interaction
constants [while being close to the edge of the validity of approximation (20)] are roughly three times smaller than the values optimizing CSS

in (a). This is the reason for lower values being reached in the transient regime.

in its ground (excited) state. In such a case 〈[σ B
−, σ B

+]〉 =
tanh(βωB/2) and 〈{σ B

−, σ B
+}〉 = 1. This makes r(T ) the only

temperature-dependent function. In particular, when β 
 1
we approximate tanh(βωB/2) ≈ βωB/2 and the steady-state
coherence [Eq. (3)] vanishes approximately as ωB(ωT )−1

in the high-temperature limit. The opposite low-temperature
limit β � 1 leads the only thermal factor to tanh(βωB/2) ≈
1, leaving only the rest of the parameters to determine the SSC
value. From Eq. (3) it is interesting to note that, as long as the
product f1 f2 is nonzero, SSC can be generated in the target
qubit, even at zero temperature [see the lower green curve in
Fig. 2(a)]. Ultimately, this result (3) is independent of whether
we had chosen σ B

y instead of σ B
x as the parallel component

H‖HS of (1).
We would like to stress that the result of generation of

SSC is completely independent of the initial state of the target
system and it is very different from the results obtained in
[42–45]. In those works it was not possible to create SSC at
zero temperature, because their strategy relies on the presence
of thermal photons that must be absorbed by a composite
(many-body) system made of at least two coupled two-level
atoms (the target system) in which the SSC are to be created.
Moreover, such atoms had to be close enough in space, in or-
der to treat them as indistinguishable, when a thermal photon

was absorbed. This is in contrast with our repeated interaction
scheme, where SSC can be generated on a single two-level
system and even at zero temperature.

Interestingly, following the ideas of [46–48], it is instruc-
tive to generalize previous results for the case in which the
target qubit interacts, repeatedly, with clusters made of N
independent and noncorrelated bath qubits [49], instead of a
single-bath TLS (see Fig. 1). Thus, in Eq. (1) we can replace
σ B

± by
∑N

j=1 σ
( j)
± ≡ S±, and thus the corresponding collective

interaction between the target qubit and each cluster reads

VI = f1σz ⊗ (S− + S+) + f2(σ+ ⊗ S− + σ− ⊗ S+). (6)

The operators S± are known as the collective spin operators
[46]. Although such a type of collective interaction could
be challenging to implement experimentally in the context
of collision models, recent works show that clusters with up
to N = 25 fully controllable superconducting qubits can be
realized [50,51]. For this new collective interaction, the basic
structure of (2) and (3) will essentially remain unchanged. In
such a case, it is easy to show that the expectation value of
the commutator and anticommutator between the collective
spin operators, with respect to the incoherent cluster state
ρcl = ⊗N

j=1 ρ
j
th (ρ j

th being the thermal state of the jth qubit
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in the cluster), is

〈{S−, S+}〉 = N, 〈[S−, S+]〉 = N tanh(βωB/2). (7)

Substituting these expressions in (4) and (5), the l1-norm of
coherence (3) will now also depend on N as

CSS = f1 f2 tanh(βωB/2)
r(N )

s(N ) + ω2
, (8)

where

r(N ) = N
√

ω2 + N2
(
2 f 2

1 + f 2
2 /2

)2
, (9a)

s(N ) = N2(2 f 2
1 + f 2

2 /2
)(

f 2
1 + f 2

2 /2
)
. (9b)

It is worth noting that in this cluster scenario, a substantial
increase of the SSC values in the target qubit can be obtained
when the size of each cluster also increases. The behavior
of such SSC, as a function of the bath temperature and the
number of bath qubits in each cluster, is shown in Fig. 2(a).
When the number of qubits in the clusters is large N � 1
[upper index ∞ in Eq. (10)], the steady-state coherence (8)
can be well approximated by a simple form

C∞
SS ≈ C0 tanh(βωB/2), C0 ≡ f1 f2

f 2
1 + f 2

2 /2
, (10)

which is an upper bound for the generation of SSC at a
fixed temperature [see the green dashed line of Fig. 2(a)].
In Eq. (10), C0 represents the l1-norm of coherence of the
target qubit at the steady state, at zero temperature, and for
N being large, i.e., C0 is the T → 0 and N → ∞ limit of
(8). Note that C0 as a function of f1 or f2 reaches an upper
bound of 1/

√
2 ≈ 0.7 for f2 = √

2 f1. Based on numerical
evidence, this upper bound represents an absolute maximum
of coherence attainable within the models assumed in our
work. This complements the recent numerical results obtained
in [13], where the authors found that, only for N = 1, the
maximal amount of SSC is achievable when the weights of
the parallel and orthogonal components of a repeated interac-
tion similar to Eq. (1) are equal to each other. Let us recall
that Eq. (1) can be rewritten as VI = f1σz ⊗ σ B

x + f2(σx ⊗
σ B

x + σy ⊗ σ B
y )/2. In comparison, the interaction considered

in [13] is, in our notation, VI = Jzyσz ⊗ σ B
y + (Jxσx ⊗ σ B

x +
Jyσy ⊗ σ B

y ), where each Ji is a real coupling constant [see Eq.
(30) of [13]]. There the authors found that the combination
Jzy = Jx = Jy gives the maximal amount of SSC.

It is instructive to know how close C∞
SS can be to the ideal

situation where the qubit is in a pure coherent superposition
of its two energy eigenstates. First note that the state vector
|ψ〉 for such a coherent superposition can be written as |ψ〉 =
(|e〉 + |g〉)/

√
2, where |e〉 (|g〉) is the excited (ground) state.

The corresponding density matrix ρ = |ψ〉〈ψ | allows one to
use C(t ) and get an l1-norm of coherence C = 1.0, which is the
largest value of C that one can obtain for a two-level system.
In comparison, the maximum value of C∞

SS, as discussed in
the preceding paragraph, is 1/

√
2 ≈ 0.7, i.e., nearly 70% of

the ideal situation. This means that for the collision model
described in Fig. 1, it is enough to have incoherent clusters
made of a few qubits to generate a considerable amount of
SSC [see Fig. 2(a)].

To study quantum coherence in the target qubit, we have
chosen the energy basis of the system as our preferred basis.
However, from the above results we have no indication of
the purity of the qubit’s final state. The purity represents, in
principle, the coherence with respect to an optimally cho-
sen basis (achieved by a proper change of the basis) which
is instructive to compare with C(t ). Hence, to characterize
the final state of the qubit better, we calculate the purity
P (t ) = tr{ρ2(t )} [52], which is a basis-independent quantity.
The purity takes its maximum value P = 1 if the state is pure
and its minimum of P = 1/d , with d the dimension of the
corresponding Hilbert space, when the state is completely
mixed [53]. For the simplest case of a density matrix of a
qubit, the purity in the steady state can be easily written as
PSS = (1 + C2

SS + 〈σz〉2
SS)/2, where 〈σz〉SS and CSS are defined

in (B9) and (8), respectively.
The inset of Fig. 2(a) shows the behavior of the steady-state

purity PSS as a function of the scaled temperature of the bath
qubits. We point out that for low temperatures, the final state
of the target qubit is close to a pure state, especially when it
interacts with only one bath qubit at a time [see Fig. 2(a), blue
solid line (N = 1)]. In contrast to the l1-norm of coherence
CSS, the purity PSS decreases with the number of qubits N in
each bath cluster. In particular, for N � 1 the purity in the
steady state is well approximated by

PSS ≈ 1

2
+

(
1

2
+ f 2

2

8 f 2
1

)
C2

0 tanh2(βωB/2). (11)

When the second term in this equation vanishes at high tem-
peratures, the purity PSS reduces to its minimum value of 1

2 ,
i.e., the final state of the target qubit is a completely mixed
state [see the blue dashed line in the inset of Fig. 2(a)]. For
any other finite value of N the purity PSS will fall between
these two limiting curves [blue dashed and top blue solid
in Fig. 2(a)]. Moreover, the plateau region in CSS and PSS

allows for reaching their maximum values in the limit 0 <

kBT/h̄ωB 
 1. In such a low-temperature regime, the purity
decreases from its maximum value as proportional to C2

0 , i.e.,
is of second order in the generated maximum coherence C0.
Remarkably, we notice a trade-off between coherence and
purity for generation of SSC. In particular, the relation (11)
shows that the purity is a quadratic function of the SSC [cf.
with Eq. (10)].

Physically, the cluster schemes discussed above allow for
more significant system coherence, as they effectively in-
crease the system-bath coupling strength [50,51]. This is due
to the additive nature of the interaction [see Eq. (6)]. Such
stronger coupling in turn causes stronger system correlations
with the clusters, resulting in a lower final system-state purity
[see Fig. 2(a)].

It is interesting to see how the energy population of
the target qubit in the steady state, measured by 〈σz〉SS, is
modified due to the generation of SSC. For instance, when
N � 1, such an expectation value is well approximated by
〈σz〉SS ≈ − tanh(βωB/2)(1 − f1C0/ f2) [see Eq. (B9) for its
exact value]. This result shows that the formation of SSC
induces corrections in the thermal population of the target
qubit with respect to the case when the system is coupled
to an effective thermal bath solely via the RWA interaction,
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i.e., if f1 = 0 and f2 �= 0. In such a case, the qubit population
inversion is equal to the standard Boltzmann factor 2nF −
1 = − tanh(βωB/2), where nF = [exp(h̄ωB/kBT ) + 1]−1 is
the Fermi-Dirac mean occupation number of the spin system.
Notice that these corrections to population are of the same
order of magnitude as SSC, because they depend on f 2

1 and
f 2
2 . These types of corrections were recently pointed out in

[14] and in the Supplemental Material of [9]. We additionally
remark that, to get such corrections in those works, a quite
complex perturbation expansion of a generalized equilibrium
state had to be used for the derivation, in contrast to the simple
calculations presented in our work.

So far, we have considered solely the RWA type of interac-
tion, as in Eqs. (1) and (6), including only rotating (RWA)
terms in VI . However, if we want to examine the possible
effects of the counterrotating (CR) terms included in the qubit
system and the bath elements interaction Hamiltonian, we
should use, e.g., the form

VI = f1σz ⊗ (σ B
− + σ B

+ ) + f2(σ− + σ+) ⊗ (σ B
− + σ B

+ ), (12)

which can be rewritten as VI = f1σz ⊗ σ B
x + f2σx ⊗ σ B

x . This
non-energy-preserving interaction contains the counterrotat-
ing terms σ+ ⊗ σ B

+ and σ− ⊗ σ B
−, which were neglected in the

second term of Eq. (1), reflecting the use of the RWA. Im-
portantly, for the interaction (12), we can identify the parallel
and orthogonal projections H‖HS = f1σz ⊗ σ B

x and H⊥HS =
f2σx ⊗ σ B

x , respectively, again in the spirit of [9]. With respect
to the discussion in Sec. III, we may alternatively refer to
Eq. (12) as the Rabi-type interaction Hamiltonian. Such an in-
teraction is available in both trapped ions and superconducting
circuit experiments [38,39]. The interaction Hamiltonian (12)
can be also rewritten as VI = s†A + sA†, with s = f1σz + f2σx

and A = σ B
−. Here s is a Hermitian operator s = s†. Therefore,

using the interaction (12) in (A7), the following master equa-
tion can be derived:

dρ

dt
= − iω

2
[σz, ρ] + 〈{σ B

−, σ B
+}〉L[ f1σz + f2σx]ρ. (13)

In Appendix B 2 we show that it is not possible to generate
SSC in the target qubit if the dynamics is described by the
above master equation (13). By comparison with Eq. (2),
we recognize their similar structure up to the term f2σ+
neglected in the definition of the argument s = f1σz + f2σ−
of the Lindbladian Eq. (2) with respect to Eq. (13). We
can intuitively understand (13) as the infinite bath temper-
ature limit of Eq. (2), due to the equality 〈{σ B

−, σ B
+}〉/2 =

limT →∞〈σ B
−σ B

+〉 = limT →∞〈σ B
+σ B

−〉 = 1
2 . Thus, the system

dynamics determined by Eq. (13) will generate no steady-state
coherence in the energy basis of the system, as it might be
interpreted similarly as limT →∞ CSS [see Eq. (3)], and this
is vanishing as T −1 in the high-temperature limit [see the
discussion below Eq. (5)].

However, it is quite remarkable that coherence in the en-
ergy basis of the target qubit can still be generated during the
time evolution (see Sec. II B and also the end of Appendix B 2
for details). As a matter of fact, for f1 f2 = 0 Eq. (13) will not
generate coherence, even in the transient evolution.

B. Optimal transient-state coherence

In the situations considered in Sec. II A, we have examined
the qubit system properties in the long-time (many-collision)
limit. For the tests using pulsed experimental control [38,39],
it is advantageous to know if the quantum coherence is at-
tainable in the transient-state (TS) (finite time or number
of collisions) regime. Such a question was possible to ask
in the previous work [9] as well, but there it was an ex-
tremely complex task to answer it, compared to the collision
interactions used here. Therefore, we present here the results
for the maximum value (with respect to time or number of

collisions) of coherence CTLS
TS attainable after some specific,

optimized, time or number of collisions, for otherwise fixed
values of the rest of the parameters, and its comparison to
the asymptotic value of SSC. The results presented below
are a good approximation of the exact numerical solution in
the regime of small (with respect to system frequency) values
of system-bath (TLS clusters in this case) coupling constants
f1 (2) (specified below).

As the coherence in the transient regime is determined by
the system dynamics, one has to work out the solution of the
corresponding Bloch equations (B2) and (B12). These apply
to the interaction approximated via the RWA [cf. Eq. (6)] and
the interaction including counterrotating terms [cf. Eq. (12)],
respectively.

These solutions read formally

〈�σ 〉RWA = exp[Bt](〈�σ 〉0 + B−1�c) − B−1�c,
〈�σ 〉CR = exp[Bt]〈�σ 〉0,

(14)

where 〈�σ 〉 = (〈σx〉, 〈σy〉, 〈σz〉)T and 〈�σ 〉0 = (0, 0, z0)T stands
for the initial Bloch vector with z0 = − tanh(βω/2) the inver-
sion of the system’s thermal population, chosen as a natural
initial condition. The superscripts RWA and CR reflect the
type of interaction between the system qubit and the bath
TLS cluster, resulting in different differential-system defining
matrices B and B and constant vector �c, defined in Eqs. (B2)
and (B12), respectively.

The derivation of the time-optimized values of coherence
and purity is based on the approximate solution of the above-
mentioned Bloch equations. The solution can be found, e.g.,
by the Laplace transform method and assuming small enough
damping terms in the corresponding Bloch equations (see
Appendix B for more details). The resulting optimal values
of transient-state coherence (TSC) for a qubit colliding with
clusters of qubits (of size N) read

CTLS(RWA)
TS ≈ 2 f1 f2N |z0| exp

[ − πN
(

f 2
1 + f 2

2 /4
)
/ω

]
/ω,

CTLS(CR)
TS ≈ 4 f1 f2N |z0| exp

[ − πN
(

f 2
1 + f 2

2

)
/ω

]
/ω, (15)

which are a good approximation of the exact numerical re-
sults, if the parameters satisfy f1, f2 
 ω = ωB, N � 3, and
1
2 � |z0| � 1 (see the horizontal gray dashed line in Fig. 6, as
a typical example). As one can note, the TS coherence scales
with f1 and f2 in the same way as its steady-state counterpart
CSS in the low-temperature and weak-interaction limits. The
derivation of Eqs. (15) [and (16) below] assumes that the
initial system state is in thermal equilibrium with the bath and
that the system is resonant with each bath element. In the limit
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FIG. 3. (a) Comparison of the achievable coherence of the qubit interacting with clusters of the N = 3 bath TLS and its dependence on
temperature T . The figure shows the superiority and the typical behavior of the optimized TSC [Eq. (15)] over the SSC [Eq. (8)] for the
same values of the relevant parameters f1 = f2 = 0.15, ω = ωB = 1, and N = 3 in the small to moderate f1 (2) regime. (b) Comparison of the
optimized coherence achievable in the transient regime (TSC) with the linear harmonic oscillator and two-level system clusters with N = 3
bath units and its dependence on the bath temperature T . The oscillator clearly shows an advantage over the two-level systems in yielding
higher TSC for the same values of the parameters f1 = f2 = 0.15, ω = ωB = 1, and N = 3 [cf. Eqs. (20) and (15)].

of weak damping assumed here, the time at which the system
coherence is maximized reads tmax ≈ π/ω (cf. Fig. 6 for an
example).

In the same regime of parameters, we obtain results for
the optimized system purity P [in the same time instant as
Eq. (15)]. They read

PTLS(RWA)
TS ≈ 1

2

(
1 + z2

0

)
,

PTLS(CR)
TS ≈ 1

2

{
1 + z2

0 exp
[ − 2πN

(
f 2
1 + f 2

2

)
/ω

]}
. (16)

The regime of parameter values in which the above approx-
imations work well describes effectively the underdamped
dynamics, in the sense that the effective system damping is
weak enough. In the opposite overdamped case, one should
better resort to numerical evaluation.

Comparing the above results, we can see the surpris-
ing effect of the counterrotating terms (σ+ ⊗ σ B

+ + H.c.) on

the optimized system purity PTLS(CR)
TS with respect to the

rotating-wave-approximated PTLS(RWA)
TS . These terms boost

the thermally generated transient-state coherence CTLS(CR)
TS .

The counterrotating terms result in additional basis sensitive
quantum correlation of the system and the bath elements,
lowering the system purity noticeably, even for the relatively
short evolution times, but at the same time creating larger
off-diagonal terms in the system state [see Fig. 2(b)]. Within
the validity range of Eqs. (15) and (16), limited by the values
f1, f2 
 ω = ωB, N � 3, and 1

2 � |z0| � 1, we can see the
trend [cf. Fig. 2(b) for N = {1, 3}] showing that increasing
the number N of cluster units leads to an increase of the
coherence CTS and decrease of the corresponding purity PTS,
provided the rest of the parameters are fixed ( f1 (2) ≈ 0.15).
Such a feature generally holds for both types of interactions,
i.e., RWA or CR. A thorough numerical investigation of more
precise quantitative behavior of the quantities of interest is
beyond the scope of this paper.

In general, focusing on the TSC can be more profitable
compared to SSC. The first positive aspect is the smaller num-
ber of interactions (shorter waiting time) necessary to reach
the respective coherence value. This should be understood
as follows. Microscopically, every real (pulsed) or numerical
experiment consists of a certain number of interactions (col-
lisions) between the system of interest and the (bath) units.
Each such interaction has some (possibly small, but) finite
duration τ . Thus, the total evolution time is proportional to
the number of collisions t = nτ . Such a numerical experiment
underlies our work as well (see Fig. 6), although we prefer to
use predominantly the effective master equation reasoning.

Another positive aspect of TSC is that it is larger than SSC,
which is certainly true for the counterrotating case, where
SSC even vanishes [see the discussion below Eq. (13)]. In
the case of the RWA interaction, the situation is a little bit
more complex. In the small to moderate f1 (2) value regime
[cf. Eq. (15)], the TSC value always overcomes the SSC [cf.
Fig. 3(a)]. In the regime of strong system-bath coupling, e.g.,
for the parameter values used in Fig. 2(a), the time-optimized
value of the coherence coincides with the SSC [Eq. (8)].

III. SSC FROM OSCILLATOR BATH ELEMENTS

A. Asymptotic coherence

The oscillators forming the bath can carry more coherence
than qubits; therefore, it might be fruitful to consider an os-
cillator bath to generate SSC or TSC. Thus, by choosing a
particular composite system-bath interaction [9]

VI = f1σz ⊗ (b + b†) + f2(σ+ ⊗ b + σ− ⊗ b†), (17)

we assume the bath elements to be linear harmonic oscillators
(LHOs), instead of the two-level baths of the preceding sec-
tion (see Fig. 4). Similarly to Sec. II A, the coherence is at first
generated in the bath and then transferred back to the system.
However, in the LHO case, the bath cluster cannot be saturated
(due to the infinite dimension) and thus coherence could be
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FIG. 4. (a) Schematic showing clusters of N independent and
noncorrelated linear harmonic oscillators of frequency ωB as the bath
elements (green harmonic potentials) replacing the bath qubits (cf.
Fig. 1). (b) Before their interaction with the target qubit (red) of
frequency ω, the LHOs are initially in a thermal state ρB where
its populations (green squares) follow the standard Boltzmann dis-
tribution. After successive interactions, the density matrix ρ of the
target qubit has coherence (red squares). (c) Typical behavior of the
generation of SSC in the target qubit for the simplest case of N = 1
bath LHOs in each cluster.

expected to be larger, in principle, if the interaction strength
f1 increases. Formally, the interaction (17) is obtained from
(1) by replacing σ B

− (σ B
+) with b (b†), where b (b†) is the anni-

hilation (creation) operator of the quantum LHO, obeying the
standard commutation relation [b, b†] = 1. We observe that
(17) can be rewritten as VI = s ⊗ A† + s† ⊗ A if s = f1σz +
f2σ− and A = b. Therefore, it is straightforward to show that
the reduced dynamics of the target qubit will be described by
an equation identical to (2), with the only difference being that
we need to replace 〈σ B

−σ B
+〉 by 〈bb†〉 and 〈σ B

+σ B
−〉 by 〈b†b〉. As

in the previous section, we assume here that each LHO is in
a thermal state such that 〈b†b〉 = nT , 〈{b, b†}〉 = 2nT + 1, and
〈[b, b†]〉 = 1. Here nT is the average Bose-Einstein occupa-
tion number given by nT = [exp(h̄ωB/kBT ) − 1]−1, whereas
at high temperatures nT ∼ kBT/h̄ωB.

The interaction (17) is easily generalized, as in the pre-
vious section, to the case in which the target qubit interacts
collectively with bath clusters made of N noncorrelated
and independent harmonic oscillators. For such a case, the
corresponding master equation describing the target qubit dy-
namics and its l1-norm of coherence in the steady state are
basically the same as the results (2) and (3), respectively, with
the only difference being that the expressions in (7) must be
replaced by their bosonic counterparts

〈{B, B†}〉 = N coth(βωB/2), 〈[B, B†]〉 = N. (18)

We have defined B ≡ ∑N
k=1 bk and B† ≡ ∑N

k=1 b†
k as the col-

lective annihilation and creation bath operators of each cluster,
respectively.

To obtain the l1-norm of coherence in the target qubit, the
expectation values (18) have to be used in Eqs. (4) and (5).

We point out that an increase of steady-state coherence, as
a function of the number of bath LHOs in each cluster, is
possible [see the solid lines in Fig. 5(a)]. It is important to
mention that, although the overall behavior of the quantities
plotted in Figs. 2(a) and 5(a) has a similar form, it differs
in the details. For instance, in Fig. 5(a) the decrease of SSC
with the bath temperature is slower compared to the behavior
plotted in Fig. 2(a). However, when the number of oscillators
N within the clusters is large, the l1-norm of coherence in the
steady-state reduces to CSS = C0 tanh(βωB/2), which is the
same limit found in Sec. II A [see the black dashed line in
Fig. 5(a)]. This result can be understood in the following way,
with a clear link to the results of Sec. II A. When the number
N of TLSs bath elements increases, one can always use the
Holstein-Primakoff representation [54] in which the collective
spin operators S± [Eq. (6)] can be written as bosonic operators
in such a way that the interaction (6) and the expression of
collective interaction (17) become equivalent. This procedure
is sometimes called the thermodynamic limit [55], meaning
that N → ∞. Mathematically, this is know as the Heisenberg-
Weyl contraction of the SU(2) Lie group. On the other hand,
if each bath element (either harmonic oscillator or qubit) is
prepared in its ground state (i.e., at zero temperature) then
both coth(βωB/2) and tanh(βωB/2) approach unity; hence,
the expectation values (18) and (7) are the same. This means
that at low temperatures the target qubit reaches the same SSC
values regardless of whether the stream of bath elements is
made of harmonic oscillators or a set of qubits. This could
have been anticipated, because at low enough temperatures,
each harmonic oscillator behaves as an effective two-level
system due to the fact that there are not enough thermal
excitations to populate more than the first excited state. We
can therefore advantageously use bath oscillators to extended
experimental platforms suitable for the tests and to obtain SSC
for larger temperatures. However, for large enough bath tem-
peratures, the CSS scales approximately as ωB/T , approaching
zero as in the case of TLS bath clusters.

The inset of Fig. 5(a) shows the steady-state purity PSS =
(〈σz〉2

SS + C2
SS + 1)/2 of the target qubit as a function of

the scaled temperature kBT/h̄ωB for two limit cases, when
the bath clusters are made of one harmonic oscillator (blue
solid line) and when these contain a large number N � 1
of harmonic oscillators (blue dashed line). From the above-
mentioned argument we know that the explicit expression of
PSS, for N � 1, is given by (11). Contrary to the l1-norm of
coherence, the purity decays faster in this configuration com-
pared to the case with the bath qubit. This observation can be
made from a careful comparison of the corresponding insets of
Figs. 2(a) and 5(a). It confirms the already described trade-off
between the SSC and purity which establish a benchmark for
further investigation of SSC. Alternatively, we may take into
account the counterrotating terms in (17), obtaining

VI = f1σz ⊗ (b + b†) + f2(σ− + σ+) ⊗ (b + b†), (19)

which resembles the interaction Hamiltonian (12). The sec-
ond term of (19) is known as the quantum Rabi interaction,
which is often written as σx ⊗ Xb [56], with Xb ≡ b + b†.
The quantum Rabi interaction describes, in the fields of
cavity and circuit quantum electrodynamics, the ultrastrong-
coupling regime between the electromagnetic radiation and
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FIG. 5. (a) Steady-state coherence with respect to the energy basis of the qubit system repeatedly colliding with the stream of LHOs
(representing the bath) (cf. Fig. 4). As before, the coherence is quantified with the l1-norm of coherence C(t ) as a function of the bath oscillator’s
scaled temperature (see lowest solid line) (N = 1). The SSC can increase substantially if the qubit interacts with clusters of N noncorrelated
and independent harmonic oscillators (see upper solid lines). The parameters are ω = ωB = 1, f1 = f2/

√
2, f2 = 0.6, and N = {1, 2, 3, 8}

(solid lines). The dashed line corresponds to the theoretical limit (10) for N � 1. (b) Dependence of time-optimized coherence [Eq. (20)] on
the bath temperature in cases when the system interacts with N = {1, 3} bath LHOs via RWA interaction (labeled RWA) [Eq. (17)] or with
counterrotating terms included [Eq. (19)]. As in the case of the TLS bath, the counterrotating results clearly have an edge over the RWA results
in terms of attainable coherence C. Similarly, the corresponding system state purity P [Eqs. (21)] of the counterrotating interaction is suppressed
with respect to the RWA scenario. The temperature dependence enters the results through the system’s initial inversion z0 = − tanh(h̄ω/2kBT )
and the assumption that the system and the bath have initially the same temperature T and are resonant ω = ωB. The values of the parameters
are the same as in Fig. 2(b). Note the different scales on the vertical axes in (a) and (b), for the same reasons as in Fig. 2(b).

matter at its most fundamental level [57]. To study the princi-
pal appearance of SSC using the trapped ion experiments, it
can be induced in a controllable way by a two-tone external
drive [38]. It is easy to show that the corresponding master
equation of the reduced dynamics for a target qubit, describ-
ing an interaction like (19), will be given by (13) with the
replacement 〈{σ B

−, σ B
+}〉 → 〈{b, b†}〉. Therefore, no SSC can

be created. The coherence occurs only during the transient
dynamics governed by this master equation.

B. Optimized transient-state characteristics

As in the previous section, we compare the value of co-
herence and state purity generated in the steady state with
the time-optimized values possible to acquire during the tran-
sient state. These results reflect the experimental possibility
to interrupt the target system evolution at a certain point. We
assume small values f1 (2) and the system and bath elements to
be resonant and both in a thermal initial state at temperature T .
These assumptions yield the approximate values of coherence
maxima (with respect to the time) as

CLHO(RWA)
TS ≈ 2 f1 f2N exp

[ − πN
(

f 2
1 + f 2

2 /4
)
/|z0|ω

]
/ω,

CLHO(CR)
TS ≈ 4 f1 f2N exp

[ − πN
(

f 2
1 + f 2

2

)
/|z0|ω

]
/ω, (20)

corresponding well to the numerical results if the parameters
satisfy f1, f2 
 ω = ωB, N � 3, and 1

2 � |z0| � 1 (cf. Fig. 6).
As in the case of TLS from the previous section, we note
that the transient-state coherence has the same scaling as its

steady-state counterpart in the low-temperature and weak- (in
the same sense as in previous sections) coupling limits.

In the same range of parameters, we can derive the values
of purity achievable at the same instant of evolution as in
Eq. (20), reading

PLHO(RWA)
TS ≈ 1

2

(
1 + z2

0

)
,

PLHO(CR)
TS ≈ 1

2

{
1 + z2

0 exp
[ − 2πN

(
f 2
1 + f 2

2

)
/|z0|ω

]}
.

(21)

This difference is basically resulting from the effect of
the counterrotating terms (σ+ ⊗ b† + H.c.) in the interaction
Hamiltonian, present for the Rabi interaction [see Fig. 5(b)].

As in the previous section (see Sec. II B for details), the
general comparison of the coherence achievable in the TSC vs
SSC regime remains the same. The typical behavior of the sys-
tem coherence when using the LHO clusters is qualitatively
the same as in Fig. 3(a), TSC being superior to SSC values
of coherence for the same parameters in the RWA moderate
interaction regime, the same being true for the counterrotating
interaction.

At the end of this section, we would like to compare the
results for coherence achievable with clusters of LHO vs TLS
bath units, again in the moderate-coupling regime. A compari-
son of the results stemming from Eqs. (15) and (20) shows the
superiority of LHO over the TLS bath units in generating the
TSC [see Fig. 3(b)]. These results indicate the role of the bath
unit dimension in generation of the coherence in the transient
dynamics and that the higher dimension of the units might be
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preferable for reaching higher TSC values. A more thorough
analysis and comparison in the strong-coupling regime should
rely on a fully numerical approach, which is beyond the scope
of this paper. It will be useful for the preparation of a proof-
of-principle experiment with trapped ions or superconducting
circuits.

IV. SSC IN A TARGET OSCILLATOR

So far, we have focused on generating SSC in two-level tar-
get systems. Due to the essential role of quantum systems with
infinite Hilbert space, as quantum-mechanical resonators, in
the development of quantum technologies with hybrid sys-
tems [58], in this section we would like to point out the
analysis of replacing the target qubit from previous sections
with a quantum harmonic oscillator with free Hamiltonian
HS = ω0a†a. Remarkably, we have found cases where the
composite system-bath repeated interaction, having counter-
rotating terms, can generate SSC in the target harmonic
oscillator as well. From the resource theory approach of quan-
tum thermodynamics, this is also interesting because it has
been recently proven [21] that only reference frames (systems
displaying quantum coherence) with infinite Hilbert space
can be used to perform catalytic coherence [59], a weaker
form of coherence broadcasting (see also [22]). For instance,
VI = f1a†a ⊗ Xb + f2Xa ⊗ Xb represents the case of the tar-
get oscillator interacting with a bath oscillator, where Xc ≡
c + c†. Notice that VI can also be written as the bilinear com-
bination s† ⊗ A + s ⊗ A†, with s = f1a†a + f2Xa and A = b.
Following the procedure described in previous sections and in
Appendix A, it is easy to show that the corresponding master
equation for the target oscillator is given by

dρ

dt
= −iω0[a†a, ρ] + 〈{b, b†}〉L[ f1a†a + f2Xa]ρ, (22)

which resembles Eq. (13). The corresponding expectation
value 〈a〉 at the steady state is (see Appendix C) 〈a〉SS =
− f1 f2/( f 2

1 + i2ω̃), where ω̃ ≡ ω0/〈{b, b†}〉, causing a dis-
placement of the target oscillator by the quantity 〈Xa〉SS =
−2 f1 f2/( f 2

1 + 4ω̃2 f −2
1 ). This result shows that the target

oscillator will end up in a steady state with some degree
of coherence, independently of its initial state, as long as
the product f1 f2 is nonzero. Recall that for any incoherent
state ρinc of the harmonic oscillator, tr{ρinca} ≡ 〈a〉inc = 0.
Remarkably, there is a stark difference between qualitative
properties of the results if using LHOs instead of the TLS
as a target system, as long as the bath units are LHOs in-
teracting mutually by the counterrotating type of interaction
(see Sec. III A). The LHO system acquires nonzero SSC in
the T → 0 limit, in contrast to the TLS, and this SSC survives
even in the high-temperature limit. When the bath oscillator
is replaced by clusters of N noncorrelated and independent
harmonic oscillators, we just need to replace 〈{b, b†}〉 by
〈{B, B†}〉 in Eq. (22) and in the expression of 〈a〉SS.

Another interesting composite interaction in the spirit
of Eq. (17) is VI = f1a†a ⊗ (b + b†) + f2(a† ⊗ b + a ⊗ b†),
where we recognize the first term of VI as an optomechanical
interaction and the second one as the usual coupling between
two harmonic oscillators with the RWA. Within the repeated
interactions approach the corresponding master equation of

the target oscillator is

dρ

dt
= −iω0[a†a, ρ] + 〈bb†〉L[ f1a†a + f2a]ρ

+〈b†b〉L[ f1a†a + f2a†]ρ. (23)

Note the similarity to Eq. (2). In Appendix C we have found
some approximate results suggesting that Eq. (23) could gen-
erate SSC in the target harmonic oscillator. Additionally, we
require the bath oscillators to be in a thermal state with a
temperature T �= 0, as the thermal population nT stands in the
nominator of 〈a〉SS. Therefore, no SSC can be generated in the
target oscillator at low temperatures. This example contrasts
with what was found in previous sections, where the SSC
is maximum precisely at T = 0. Similarly to the previous
RWA case [Eq. (22)], the nonzero average 〈a〉SS appears in
the high-T limit of the bath oscillators.

Similar results can be obtained for two-level systems in
thermal states replacing the bath oscillators in the two previ-
ous interactions. For such a case, the non-energy-preserving
interaction is, for example, VI = f1a†a ⊗ σ B

x + f2Xa ⊗ σ B
x ,

which represents the inverse scenario of Fig. 4, where the role
of the target system and the bath elements is interchanged.

The results of this short section underline the strong
dimension-dependent differences, influencing SSC attainabil-
ity in the target system, depending on the nature of the bath
units.

V. THERMODYNAMIC COST FOR GENERATION OF SSC

In any collision model there is an implicit time dependence
present in the microscopic switching on and switching off
of the interaction between the target system and the bath
elements. From this perspective, any collision model is mi-
croscopically nonautonomous, although it can be effectively
described by a master equation (time evolution) correspond-
ing to an autonomous system. This can be useful for current
experimental platforms to simulate the appearance of SSC.
The implicit time dependence means that from a quantum
thermodynamic point of view, one can consider the corre-
sponding thermodynamic cost for such a process [23,24].

In this section we investigate this cost using the appropriate
expressions for the heat and work necessary to maintain the
steady state and thus SSC. To do that, we will use the general
formulas for heat Q̇, work Ẇ , and internal energy d〈HS〉/dt
rates derived in the Appendix B of [60] for a boundary-driven
Lindblad master equations, like the ones used throughout this
work. These formulas, in our notation, yield

Q̇ = 1

2
〈[VI , [VI ,HB]]〉, (24a)

Ẇ = −1

2
〈[VI , [VI ,HS + HB]]〉, (24b)

d〈HS〉
dt

= −1

2
〈[VI , [VI ,HS]]〉, (24c)

where HS (HB) is the system (bath element) free Hamiltonian.
The expectation values in the above equations have to be
calculated with respect to product state ρ(t ) ⊗ ρB, where ρB

is the initial incoherent (thermal) state of each bath element
and ρ(t ) is the instantaneous state of the target system. The
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quantities in Eqs. (24) satisfy the dynamical version of the first
law [61] d〈HS〉/dt = Q̇ + Ẇ . With these definitions, the Q̇
and Ẇ quantities correspond to the following sign convention:
If they are injected (added) to the system, they are positive.

We first consider the situation studied in Sec. II A, where
the bath elements are two-level systems, i.e., HB = ωBσ B

z /2,
and VI is given in Eq. (1). For such a case it is easy to show
that

Q̇ = f 2
2 ωB(nF − 〈σ+σ−〉) + f 2

1 ωB(2nF − 1)

+ f1 f2ωB〈σx〉, (25a)

Ẇ = (ω − ωB) f 2
2 (nF − 〈σ+σ−〉) − f 2

1 ωB(2nF − 1)

+ (ω − 2ωB) f1 f2〈σx〉/2, (25b)

d〈HS〉
dt

= f 2
2 ω(nF − 〈σ+σ−〉) + 1

2
f1 f2ω〈σx〉, (25c)

where nF = [exp(h̄ωB/kBT ) + 1]−1. In consistency with the
rest of the paper, we consider the resonant case ω = ωB in
the following three paragraphs. Furthermore, for the sake of
simplicity, we focus on the case N = 1 (single bath unit at
each interaction) and the steady-state situation to avoid, e.g.,
the initial-state ambiguities.

In such steady-state settings, the left-hand side of (25c)
is zero, yielding the expected energy balance ẆSS = −Q̇SS.
In the case of the energy-conserving interaction f1 = 0,
Eqs. (25b) and (25a) dictate d〈HS〉SS/dt = ẆSS = Q̇SS ≡ 0,
i.e., a true equilibrium situation with the energy currents
vanishing. In contrast, the f1 f2 �= 0 regime leads the system
to a nonequilibrium steady state, characterized by a nonva-
nishing power input and dissipated heat rate ẆSS = −Q̇SS >

0, describing the energy cost per collision WSS = ẆSSτ > 0
maintaining the steady state (τ being the collision duration).
This injected energy is directly dissipated to the bath as heat
QSS = −ẆSSτ < 0 per collision.

Explicitly, we obtain, for CSS > 0,

ẆSS(T ) = | f1| ω
(
2ω2 + 4 f 4

1 + f 2
1 f 2

2

)
| f2|

√
4ω2 + (

4 f 2
1 + f 2

2

)2
CSS(T ) > 0, (26)

where CSS is the SSC [see Eq. (3)] showing proportionality
between the power input and achieved energy basis coherence
of the system TLS, balanced by the heat flowing to the bath
during each collision. Such a type of relation [Eq. (26)] opens
the possibilities for optimization (minimization) of ẆSS for a
given achieved SSC.

Here we also want to emphasize the nontrivial splitting
in terms of heat and work of Eq. (25c). Unlike in Ref. [60],
knowing the change of the system’s internal energy only,
obtained from the Lindblad master equation, is insufficient to
identify the appropriate expressions of heat (25a) and work
(25b) involved in our collision model using composite interac-
tions, showing richer thermodynamic aspects of obtaining the
energetic coherence. This fact can be underlined by another
observation regarding the interactions described by Eq. (12).
While with this interaction we cannot obtain SSC, the work in-
put rate is strictly positive, ẆSS = ω( f 2

1 + f 2
2 ) tanh (βω/2) �

0, even in this case, and moreover is larger than (26) for
the same relevant parameters. This sets up the possibility of
broader thermodynamic evaluation, as from these examples

it is clear that discussing the thermodynamic efficiency of
obtaining SSC can be nontrivial.

The second example corresponds to the case of harmonic-
oscillator bath elements (see Sec. III A) with HB = ωBb†b and
VI given by Eq. (17). In this case the appropriate thermody-
namic expressions (24) are

Q̇ = f 2
2 ωB[nT − (2nT + 1)〈σ+σ−〉] − f 2

1 ωB

+ f1 f2ωB(2nT + 1)〈σx〉, (27a)

Ẇ = (ω − ωB) f 2
2 [nT − (2nT + 1)〈σ+σ−〉] + f 2

1 ωB

+ (ω − 2ωB) f1 f2(2nT + 1)〈σx〉/2, (27b)

d〈HS〉
dt

= f 2
2 ω[nT − (2nT + 1)〈σ+σ−〉]

+ f1 f2ω(2nT + 1)〈σx〉/2, (27c)

where nT = [exp(h̄ωB/kBT ) − 1]−1. Remarkably, one can
easily show that Eqs. (25) and (27) coincide when the bath
elements are prepared in the ground state. This happens be-
cause nF,T vanishes for T → 0 and means that, in addition to
reaching the same SSC in the target system, either with qubits
or harmonic oscillators as the bath elements, the associated
thermodynamic cost is also the same in the low-temperature
regime. On the other hand, at high temperatures and res-
onant conditions, the steady-state solution of, for example,
Eq. (27b) is simply ẆSS ≈ ω f 4

1 /( f 2
1 + f 2

2 /2). In general, for
f1 f2 �= 0, Ẇ is nonzero because [VI ,HS + HB] �= 0, regard-
less of whether the resonance condition ω = ωB is satisfied.
Therefore, the generation of SSC using composite interac-
tions is an out-of-equilibrium situation, accompanied by a
work cost given in Eqs. (25b) and (27b) for qubits and oscil-
lators bath elements, respectively. Similar conclusions were
obtained in [13] but using a purely numerical calculation. In
contrast, our analytical results help us to better understand
each quantity’s thermodynamic structure in relatively simple
terms. For example, one can verify that in the steady state and
resonant conditions, ẆSS in Eq. (27b) is proportional to the
SSC through 〈σx〉SS [see Eq. (B10)], as it is the case of TLS
bath units, given in Eq. (26). When f1 = 0 in Eq. (25a), this re-
duces to a Landauer-like expression Q̇ = f 2

2 ωB(nF − 〈σ+σ−〉)
[62]. Therefore, the generation of SSC induces strong modi-
fications in the heat current that deviate from the well-known
formulation of transport theory.

Finally, we would like to discuss some implications of
the above results on our collision model’s physical interpre-
tation. The fact that the work cost is nonzero (due to the
on-off switching of the interaction) during the SSC genera-
tion makes the model, strictly speaking, nonautonomous. This
is a consequence of the particular time-dependent system-
bath interaction we have chosen. However, it is worth noting
that the corresponding Lindblad description in the continuous-
time limit regime, which we also consider, clearly describes
the dynamics of a nondriven and time-independent, i.e., au-
tonomous, open quantum system [see, e.g., Eq. (2)]. In this
sense, we can gradually approach a description of autonomous
dynamics by a sequence of short-time nonautonomous col-
lisions. It can be useful to simulate such effects for many
current experimental platforms with trapped ions or supercon-
ducting circuits.
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VI. CONCLUSION

We have shown that quantum coherence can be gener-
ated, together with high purity, in a target quantum system
when this briefly and repeatedly interacts with individual
bath elements initially in incoherent (thermal) states. In our
collision approach, typical for many experimental platforms
with trapped cold ions and superconducting circuits, a large
number of bath elements play the role of an entire bath.
Not only do these models give theoretical insight into the
microscopic processes in the baths required to achieve SSC,
but mainly they can be straightforwardly implemented using
current experimental platforms.

Similarly to the previous work in [9], we confirm here
that the composite nature of the system-bath interaction repre-
sents an important condition to obtain the system steady-state
coherence. However, our results clearly show that modeling
the open systems by spin-boson and collision models is not
fully equivalent. For the spin-boson model the composite
interaction represents a sufficient condition [9], i.e., if the
interaction is composite, then SSC is created. In contrast, our
collision-based results reveal that in such a case of modeling,
the composite interaction represents a necessary condition on
SSC only, i.e., if one wants to create SSC, then the interaction
has to be composite.

We stress that, unlike coherence trapping [6], the SSC is
independent of the initial state of the target system. Moreover,
SSC can be created on individual quantum system. This is
because, from the point of view of the bath, the compound
target system does not need to have parts indistinguishable
like in [44,45]. Such SSC can be increased substantially, if
collective interactions between the target system and clus-
ters of bath units are introduced. We observe that for low
temperatures of the bath, the amount of SSC does not depend
on the exact nature of the bath elements, with both qubit and
oscillator bath units reaching the same SSC value. For higher
temperatures, the SSC is however higher for the oscillator-
composed baths. This is of practical importance because one
might have flexibility in choosing which physical systems best
fit the experimental needs.

Due to the simple dynamics generated in our collision
model allowing insight into the microscopic processes during
the interaction, we have been able to study the generation of
the transient coherence in the regime of weak to interme-
diate values of the system-bath coupling constants f1 (2) in
an approximate manner. Within this interaction regime we
have found that for a wide range of parameters, optimized
TSC surpasses SSC, especially in the low-temperature regime.
Moreover, in the TSC regime, it is more profitable to employ
oscillator bath units than two-level system units, as the former
generate higher coherence of the target system.

Remarkably, the simple structure of our results also allows
us to characterize the intimate relationship between steady-
state or transient coherence and the state purity. In particular,
we have found that, for a given interaction Hamiltonian of
the composite form [with parallel and orthogonal components
of the interaction; see the discussion below Eq. (1)], the co-
herence and purity reach their maximum in the presence of
a zero-temperature bath, possessing a small constant plateau
in the regime of small temperature (thus allowing for experi-

mental observation) and finally showing a monotonic decrease
for increasing temperature. It is furthermore worth noticing,
however, that coherence and purity behave in the opposite way
with respect to the presence of counterrotating terms in the in-
teraction Hamiltonian: For every fixed temperature T , the lack
of these terms leads to an increase in the maximum achievable
purity and a decrease in the corresponding maximum amount
of coherence (where by this we mean the maximum of the
SSC within the RWA compared to the maximum of the TSC
when counterrotating terms are present).

Although our results show positive effects in the sense
of generating relatively high SSC or TSC and purity, one
may naturally ask if these results represent any fundamental
limits. The answer is negative; thus the way to beat the max-
imum coherence values achieved within models and settings
assumed in our work can be a good future research target. Our
results are of course based on our assumed models and the
properties of used states, e.g., states of the bath units. Thus,
if we would relax some requirements or assumptions on the
bath-state properties, we might speculate on the increase of
SSC and TSC values and jointly the system purity. Another
way leading to possibly overcoming the limits of our current
models may lie in the search for more effective (in terms of
coherence generation) Hamiltonians and protocols or, e.g.,
in the extension of the system-bath interaction time. Such
modification brings the evolution beyond the one described in
our work, namely, to a more complex one including terms of
higher order than linear in the interaction time. A full analysis
of such possible scenarios is definitely a suitable topic for
future work.

From the thermodynamic perspective, we have considered
the power input necessary to maintain the nonequilibrium
steady state featuring SSC. Although this has been done under
relatively simplifying assumptions (resonance and a single
bath unit interaction only), we have clearly established a
direct connection between the inevitable energy input and
the produced SSC, showing direct proportionality between
these quantities. In contrast, we have recognized system-bath
interactions, which also need nonzero power input to evolve
the system to the steady state, while not generating any SSC,
hence the power input being unused, in a sense. Thus, we
have characterized the steady state from different and in fact
complementary perspectives, which might stimulate further
and deeper analysis of SSC from a thermodynamic point of
view.

It may be noted that, while following from [9], in our
present analysis we have focused on interactions of the system
with a single bath described by the classes of system-bath
interaction Hamiltonians of the form Hint = ∑

j Os, j ⊗ bE +
H.c. The more general type Hint = ∑

j Os, j ⊗ bE , j + H.c.,
where the summation index is extended to the bath operators,
can be considered as well (although still describing the inter-
action with a single bath). Composite interactions belonging
to the latter and not included in the former can, in certain
cases, also lead to the generation of SSC, a recent example
of which was considered in a qubit-based collision model in
Eq. (30) of [13], where the presence of counterrotating terms
also allowed for the observation of SSC. While being beyond
the scope of the present work, this represents an interesting
outlook for future work.
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APPENDIX A: COLLISION MODEL OF THE
SYSTEM-BATH INTERACTION

This Appendix describes a simple and general collision
model (see an example in Fig. 1). This consists of the system
of our main interest repeatedly interacting with a stream of
bath elements that are initially prepared in an incoherent state,
namely, the thermal state. As we show at the end of this
Appendix, a large number of bath elements will play the role
of an environment. During the short time of interaction of
duration τ , the total Hamiltonian is

H = HS + HB + VI/
√

τ , (A1)

where HS and HB are the system free Hamiltonian and the
free Hamiltonian of one of the bath elements, respectively,
and VI represents the interaction between these two. Note
that, for mathematical reasons that will become clear be-
low, we have rescaled the interaction term by a factor 1/

√
τ

[13,24,32,60,63,64]. Apparently, shorter τ increases the inter-
action energy.

Further, we assume that each bath element before its in-
teraction with the system of interest at a time tn = nτ does
not share any correlation with the latter and with any other
bath element, so the state of the total system ρtot (tn) is
given by the tensor product between the system state de-
noted by ρ(tn) and a thermal state ρB of the incoming bath
element, ρtot (tn) = ρ(nτ ) ⊗ ρB, where ρB = exp(−βHB)Z−1,
with Z the partition function and β ≡ (kBT )−1 the inverse
scaled-temperature. After the interaction with a bath element,
the state of the system of interest at time tn+1 is given
by the stroboscopic map [32], ρ[(n + 1)τ ] = trB{ρ ′

tot (tn+1)} ≡
trB{U [ρ(nτ ) ⊗ ρB]U †}, where U = exp(−iHτ ) is the evolu-
tion operator of the total system and trB is the partial trace over
the bath degrees of freedom. We can use the Baker-Campbell-
Hausdorff formula to compute the unitary transformation up
to the second order in τ ,

ρ ′
tot (tn+1) = e−iHτ ρ(nτ ) ⊗ ρBeiHτ

= ρ(nτ ) ⊗ ρB − [iHτ, ρ(nτ ) ⊗ ρB]

+ 1

2!
[iHτ, [iHτ, ρ(nτ ) ⊗ ρB]] + O(τ 3), (A2)

which after using (A1) in (A2) and keeping terms at most
linear in τ yields

ρ ′
tot (tn+1) = −iτ [HS + HB + VI/

√
τ , ρ(nτ ) ⊗ ρB]

− τ

2
[VI , [VI , ρ(nτ ) ⊗ ρB]] + ρ(nτ ) ⊗ ρB. (A3)

Taking the partial trace over the bath B in the above expression
and without any loss of generality assuming trB{VIρB} = 0, as
is customary [30,32,65,66], we get

ρ((n + 1)τ ) − ρ(nτ ) = −iτ [HS, ρ(nτ )]

− τ

2
trB{[VI , [VI , ρ(nτ ) ⊗ ρB]]},

(A4)

which does not depend on the free bath Hamiltonian HB.
The condition trB{VIρB} = 0 does not restrict the interaction
with the bath elements; actually, such an assumption can be
enforced by moving into the interaction picture representation
of a rescaled local Hamiltonian of the system (see [65,66]).
For a particular example where trB{VIρB} �= 0 and its impact
on the spectral response of the target system is shown, see
Ref. [48]. Then the continuous-time limit of the model can
be obtained if we divide (A4) by τ and take the limit τ → 0
[28,29,31,46–48]. This yields the reduced dynamics of the
qubit density matrix as [24,32,60]

dρ

dt
= −i[HS, ρ] − 1

2
trB{[VI , [VI , ρ ⊗ ρB]]}, (A5)

where dρ/dt ≡ limτ→0[ρ((n + 1)τ ) − ρ(nτ )]τ−1.
For the case in which VI can be written as the bilinear

combination VI = s†A + sA† between the system and bath
operators s and A, respectively, the bath trace in (A5) can be
easily worked out. Thus, with such an interaction Hamilto-
nian, Eq. (A5) acquires the simple and more familiar Lindblad
form

dρ

dt
= −i[HS, ρ] + 〈AA†〉L[s]ρ + 〈A†A〉L[s†]ρ, (A6)

where L[x]ρ ≡ xρx† − 1
2 (x†xρ + ρx†x) and 〈x〉 ≡ tr{xρB},

with ρB the initial (thermal) state of the bath. Using (1) as
the interaction Hamiltonian in (A6), we obtain Eq. (2). Let us
point out that, for the special case in which s is a Hermitian
operator s = s†, Eq. (A6) reduces to

dρ

dt
= −i[HS, ρ] + 〈{A, A†}〉L[s]ρ, (A7)

where {x, x†} = xx† + x†x is the anticommutator. In Sec. II we
saw that (A6) and (A7) are useful master equations describing,
respectively, system-bath interactions with and without the
rotating-wave approximation.

APPENDIX B: BLOCH EQUATIONS AND STEADY-STATE
COHERENCE

1. Rotating-wave-approximated interactions

Here we describe how to derive Eq. (3) using the inter-
action (1) with the counterrotating terms neglected (RWA
performed). First, we should note that from Eq. (2) it is easy
to prove, after some algebra, the following identities:

tr{L[ f1σz + f2σ±]ρσx} = −
(

2 f 2
1 + f 2

2

2

)
〈σx〉

+ f1 f2〈σz〉 ∓ 2 f1 f2, (B1a)

tr{L[ f1σz + f2σ±]ρσy} = −
(

2 f 2
1 + f 2

2

2

)
〈σy〉, (B1b)
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tr{L[ f1σz + f2σ±]ρσz} = − f 2
2 〈σz〉 + f1 f2〈σx〉 ± f 2

2 .

(B1c)

These identities will be useful to calculate the expectation
values 〈σi〉, where i = {x, y, z}, with respect to the state ρ of
the target qubit. Defining the vectors �σ = (σx, σy, σz )ᵀ and
�c = (cx, 0,−cz )ᵀ and using Eq. (2) along with the above ex-
pressions, the corresponding Bloch equations can be written
as

d

dt
〈�σ 〉 = B〈�σ 〉 + �c, (B2)

where 〈�σ 〉 is the Bloch vector and B is the following matrix:

B =
⎛
⎝−	 −ω 


ω −	 0

 0 −γ

⎞
⎠. (B3)

These Bloch equations follow directly from the quantum
master equation (A6), without any further approximation or
additional assumptions. We have defined the matrix elements
of B as

γ = f 2
2 〈{σ B

−, σ B
+}〉, cx = 2( f1/ f2)cz, (B4)


 = f1 f2〈{σ B
−, σ B

+}〉, cz = f 2
2 〈[σ B

−, σ B
+]〉, (B5)

	 = (
2 f 2

1 + f 2
2 /2

)〈{σ B
−, σ B

+}〉, (B6)

with averaging done with respect to ρB, the initial (thermal)
state of the bath. Making d〈�σ 〉/dt = 0, the steady-state values
〈σi〉SS of (B2) are easily obtained:

〈σx〉SS = f1 f2〈[σ B
−, σ B

+]〉	
	2 + ω2 − ( f1/ f2)2γ	

, (B7)

〈σy〉SS = ω

	
〈σx〉SS, (B8)

〈σz〉SS = 


γ
〈σx〉SS − cz

γ
. (B9)

To quantify the generation of SSC in the state ρ of the target
qubit we use the l1-norm of coherence, which is a suitable
measure to compute it [41]. For a two-level system this can be
defined as C(t ) = |〈σx(t )〉 + i〈σy(t )〉|. At the steady state and
using (B8), it reduces to

CSS = |〈σx〉SS|
√

1 +
(ω

	

)2
. (B10)

When we substitute (B6) and (B7) in the above expression we
obtain Eq. (3). Evidently, all these results are easily general-
ized for the case in which the the stream of bath single qubits
are replaced for a stream of bath clusters that interact with the
target qubit (see Fig. 1). In such a case, we should replace the
commutator and anticommutator with their respective expres-
sions given by Eq. (7).

2. Beyond-RWA interactions

Here we derive the steady-state solution of the Bloch vector
when the master equation (13) is used to describe the dy-
namics of the target qubit, i.e., when counterrotating terms
like the ones in (12) are taken into account. Using part of the

second term on the right-hand side of (13), we can calculate
the following quantities:

tr{L[ f1σz + f2σx]ρσx} = −2 f 2
1 〈σx〉 + 2 f1 f2〈σz〉, (B11a)

tr{L[ f1σz + f2σx]ρσy} = −2
(

f 2
1 + f 2

2

)〈σy〉, (B11b)

tr{L[ f1σz + f2σx]ρσz} = −2 f 2
2 〈σz〉 + 2 f1 f2〈σx〉. (B11c)

We take these expressions to write the corresponding Bloch
equations

d〈�σ 〉
dt

= B〈�σ 〉, (B12)

where �σ = (σx, σy, σz )ᵀ and

B =
⎛
⎝−γφ −ω 


ω −(γφ + γ ) 0

 0 −γ

⎞
⎠. (B13)

Note that the following definitions have been used:
γφ = 2 f 2

1 〈{σ B
−, σ B

+}〉, γ = 2 f 2
2 〈{σ B

−, σ B
+}〉, and 
 =

2 f1 f2〈{σ B
−, σ B

+}〉. From (B12) we can interpret γφ as an
effective dephasing rate, γ as an effective decay rate,
and 
 as an effective pumping term. Equation (B12) is a
homogeneous one, without any driving term inducing energy
population or quantum coherence.

It is easy to check that the steady-state solution of the Bloch
vector is 〈�σ 〉SS = (0, 0, 0)ᵀ. This means that the target qubit
probe ends up into a mix state with equal probabilities. There-
fore, no steady-state coherences can be generated in the qubit
probe when Rabi-type of interactions are considered as the
orthogonal part of the system Hamiltonian. However, during
the time evolution or transient state, it is still possible to show
that a certain amount of coherences in the target qubit can be
generated. To see this, using the Laplace transform method,
we obtain the approximated solutions for each component of
the Bloch vector

〈σx(t )〉 ≈ z0
 exp(−3γφt/2)√
ω2 − 
2 − γ 2

φ /4
sin

(
t
√

ω2 − 
2 − γ 2
φ /4

)
,

(B14)

〈σy(t )〉 ≈ z0
ω exp(−2γφt )

ω2 − 
2
[1 − cos(t

√
ω2 − 
2)],

(B15)

〈σz(t )〉 ≈ 


ω
〈σy(t )〉 + z0 exp(−2γφt ), (B16)

where z0 = 〈σz(0)〉 and 〈σx(0)〉 = 〈σy(0)〉 = 0 are the initial
conditions of 〈�σ 〉. The above expressions were obtained under
the assumption γ ≈ 2γφ , corresponding to the choice of the
values of coupling constants f2 = √

2 f1. Additionally to this
condition, we have made the approximation 3γφ ≈ 2γφ , by
assuming small coupling values f1 and f2 with respect to ω.
Therefore, (B14)–(B16) will be a good approximated solution
of the Bloch vector if all these requirements are satisfied
(see an example in Fig. 6). These assumptions suggest that
the more general form of the exponential arguments within
these approximations is exp[−t (γ + γφ )/2]. To obtain re-
sults allowing for time-optimized values of CTS and PTS, we
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ω*t

FIG. 6. Approximate evolution for the components of the Bloch
vector: 〈σx〉 (red line), 〈σy〉 (blue line), and 〈σy〉 (black line). The
green line is the l1-norm of coherence C and the black dashed
line is the optimized maximum according to Eq. (20). We have set√

2 f1 = f2, f2 = 0.3, and ω = ωB = 1. The initial state of the qubit
probe is a mixed state such that 〈σz(0)〉 = −0.6. Results from an
exact numerical simulation of the repeated (collision) interactions are
shown as the tick opacity dots, where the time between each collision
is set to τ = 0.051.

neglect γφ and 
 with respect to ω in arguments of goniomet-
ric functions in Eq. (B14), yielding

〈σx(t )〉 ≈ z0
 exp[−t (γ + γφ )/2]

ω
sin(tω), (B17)

〈σy(t )〉 ≈ z0
 exp[−t (γ + γφ )/2]

ω
[1 − cos(tω)], (B18)

〈σz(t )〉 ≈ z0 exp[−t (γ + γφ )/2]. (B19)

Such simplified time evolution allows for time optimization
of the coherence C ≡ |〈σx(t )〉 + i〈σy(t )〉| and purity P ≡ (1 +
|〈�σ 〉|2)/2, yielding Eqs. (15) and (20) and Eqs. (16) and (21),
respectively. These results represent in fact weakly damped
oscillations of the Bloch vector in the regime of small system-
bath coupling constants f1(2).

The optimization procedure has the same ground in the
case of the RWA interaction [Eq. (17)]; only the intermediate
results are more cumbersome.

APPENDIX C: EQUATIONS OF MOTION FOR THE
TARGET OSCILLATOR

Here we present the equations of motion of a target har-
monic oscillator when this interacts, repeatedly, with a set of
bath oscillators, as described in Sec. IV. Once we have the
equation of motion we will obtain the expectation value of the
oscillator’s amplitude 〈a〉 at the steady state.

First, it is easy to show that tr{L[ f1a†a + f2Xa]ρa} =
− f 2

1 〈a〉/2 − f1 f2/2, and together with the master equation
(22), we obtain the equation of motion

d

dt
〈a〉 = −iω0〈a〉 − f 2

1

2
〈{b, b†}〉〈a〉 − f1 f2

2
〈{b, b†}〉. (C1)

Second, assuming the target oscillator is initially in an
incoherent state, then 〈a(0)〉 = 0 and one can find the time-
dependent solution of the above equation given by 〈a(t )〉 =
−(1 − e−K1t )K2/K1, where K1 ≡ iω0 + f 2

1 〈{b, b†}〉/2 and
K2 ≡ f1 f2〈{b, b†}〉/2. At the steady state the left-hand side
of Eq. (C1) vanishes and 〈a〉SS = −K2/K1; substituting K1,2

in such a ratio, one obtains 〈a〉SS = − f1 f2/( f 2
1 + i2ω̃), with

ω̃ ≡ ω0/〈{b, b†}〉.
On the other hand, using the master equation (23), it is also

easy to show that

d

dt
〈a〉 = −

(
iω0 + f 2

1

2
〈{b, b†}〉 + f 2

2

2

)
〈a〉

− f1 f2

2
〈b†b〉 − f1 f2

2
〈a2〉. (C2)

To solve this equation first we need to find the expression
for the equation of motion of d〈a2〉/dt ; this will depend
on terms like 〈a3〉 and so on. With this procedure we will
end up with an infinite number of coupled linear differential
equations. However, assuming weak coupling between the
target oscillator and the bath elements f 2

1,2 
 ω0, one may
neglect the last term on the right-hand side of (C2), which de-
pends on powers f 3

1,2 and higher. Thus, an approximate steady
solution for the target oscillator’s amplitude is just 〈a〉SS =
− f1 f2〈b†b〉/(i2ω0 + f 2

1 〈{b, b†}〉 + f 2
2 ), suggesting that SSC

could be generated in the target oscillator only when the
product f1 f2 is nonzero. Additionally, we require the bath
oscillators to be in a thermal state with a temperature T �= 0
such that 〈b†b〉 �= 0.
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