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Fluctuation and dissipation in memoryless open quantum evolutions
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The von Neumann entropy rate for open quantum systems is, in general, written in terms of entropy
production and entropy flow rates, encompassing the second law of thermodynamics. For memoryless open
quantum systems, whose evolutions correspond to one-parameter quantum dynamical semigroups, we find a
decomposition of the infinitesimal generator of the dynamics that unveils the fluctuation-dissipation structure of
these evolutions. Thus, the fluctuation part of this decomposition allows to relate the von Neumann entropy rate
with the divergence-based quantum Fisher information, at any time. Applied to continuous-in-time quantum
Gaussian channels, our decomposition leads to the quantum analog of the generalized classical de Bruijn
identity, thus expressing the quantum fluctuation-dissipation relation in that kind of channels. Finally, from this
perspective, we analyze how stationarity arises.
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I. INTRODUCTION

The study on quantum communication channels that de-
scribe the input-output maps corresponding to quantum
mechanical operations is at the core of quantum information
theory (see, e.g., Ref. [1]). Formally, these maps are given,
in the Schrödinger picture, by completely positive and trace-
preserving operations acting on density operators, whereas, in
the Heisenberg picture, they are given by identity-preserving
operations acting on observables. A physically interesting
property of these maps is that their composition is also a
quantum channel. Accordingly, the set of quantum channels
forms a semigroup. Moreover, quantum channels have an
inverse only when they describe a unitary evolution. A unitary
quantum channel requires for its implementation a quantum
system completely isolated from its surrounding environ-
ment. In practice, the implementation of unitary channels is
a great challenge. Consequently, the most common situation
corresponds to nonunitary quantum channels that lead to a
degradation of information during their use. To be able to
assess the degradation effects, it is important to describe the
evolutionary trajectory of the system that implements the
channel. The description is possible through continuous maps
over time. This is the point where quantum information theory
meets open quantum systems theory.

We focus in this work on memoryless quantum channels
that are continuous in time [2]. Therefore, the correspond-
ing open quantum evolutions correspond to one-parameter
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semigroups. The density operator ρ̂t of the evolved quantum
system is the solution of a time-independent Markovian mas-
ter equation [3]. These solutions are described by a linear map
that forms a one-parameter quantum dynamical semigroup in
the case of finite-dimensional Hilbert spaces [4] as well as in
the case of Gaussian channels in continuous-variable systems
[3,5,6], i.e., channels in infinite-dimensional separable Hilbert
spaces.

In general, an open system dynamics, given by the interac-
tion between the system and its environment, is modeled by a
combination of both deterministic and random effects. One of
the main approaches to the systematization of these random
and deterministic effects lies in the so-called fluctuation-
dissipation relations, both in the classical [7–11] and quantum
domains [12–17] (see also Ref. [18]). Roughly speaking, these
are relations that connect the deterministic characteristic of a
system with its fluctuating aspects, both in the equilibrium and
nonequilibrium regimes. Examples of these relations are the
linear and nonlinear Markov fluctuation-dissipation relations
[18]. In classical theory, these relations appear within Markov
processes where the probability distribution of the variables
of interest satisfies a Fokker-Planck equation. In particular, in
the case of a linear Fokker-Planck equation the corresponding
fluctuation-dissipation relations are just a set of identities that
link the correlations between the variables of interest with
the intensities of the fluctuation and dissipation effects in a
stationary regime [18]. Also in open quantum systems the
identification of diffusive (fluctuation) and dissipative terms in
master equations was performed, as for example in Ref. [19].

On the other hand, the ubiquitous notion of entropy is
transversal to physical and information theories, since it arises
naturally as a measure of uncertainty, randomness, or lack of
information about the state of a system [20]. For a quantum
system described by a density operator ρ̂, the von Neumann
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entropy is defined by S[ρ̂] = −Tr(ρ̂ ln ρ̂ ) where Tr denotes
the trace of an operator (see, e.g., Ref. [21]). This quan-
tity plays a key role in different contexts as in the study
of entropy production in open quantum systems in general
(see, e.g., Ref. [22]) and of quantum communication chan-
nels where different entropic quantities serve to characterize
the information-processing performance of the channels (see,
e.g., Refs. [23,24], among others). Here, we are interested in
the rate of change of the von Neumann entropy S[ρ̂t ] in one-
parameter semigroups. The analysis of the temporal behavior
of this entropy is of crucial importance, for instance, in order
to improve the communication rates of quantum channels, as
well as for studying stationary situations.

In open quantum theory, the study of the rate of change
of S[ρ̂t ] is usually oriented by a thermodynamic perspective
[22,25]. In this framework the focus is on the decomposition
of the rate of change into two parts: one corresponding to
the so-called entropy production rate �t , and the other one to
the entropy flux rate �̇t . From this point of view, the second
law of thermodynamics is nothing but the statement �t � 0.
Considerable progress has been made in recent years from
this perspective in particular in a general definition of �t

for general quantum processes (see Ref. [22] and references
therein). However, those approaches do not focus on the char-
acterization of the fluctuation and dissipation aspects of the
dynamics.

At this point a natural question arises: Is it possible to
identify generically random and deterministic effects in the
master equation for the density operator and for the rate
of change of the von Neumann entropy in one-parameter
semigroups? Here we provide a positive answer for all finite-
dimensional one-parameter memoryless quantum channels
and for all infinite-dimensional Gaussian one-parameter quan-
tum channels. Both situations are described by Lindblad
master equations whose solutions form quantum dynami-
cal semigroups [3–6,26,27]. Our approach is inspired by a
well-established result in classical information theory known
as the de Bruijn identity [28,29], which quantifies the rate
of change of the Shannon entropy of a classical random
variable, the output of an additive Gaussian noise channel.
More precisely, this identity quantifies how fast the chan-
nel becomes more random in terms of the nonparametric
Fisher information. The fact that a de Bruijn identity can
also be formulated for quantum systems was first posed in
Ref. [30] for the quantum diffusion process, a useful result
for formulating quantum entropy power inequalities [30–32].
However, the quantum diffusion process is a special subclass
of the Gaussian one-parameter quantum channels that does
not have dissipation effects. Therefore, our framework is also
inspired by the recently established generalization of the de
Bruijn identity for more general classical channels modeled
by Langevin forces described by stochastic differential equa-
tions, called Fokker-Planck channels [33,34], capturing the
trade-off between the diffusion and dissipation terms of the
evolution.

First, we propose a decomposition of the nonunitary
infinitesimal generator for any one-parameter quantum dy-
namical semigroup into two terms. The first one allows us
to relate the time derivative of the von Neumann entropy
with the divergence-based quantum Fisher information [35].

Accordingly, this term will be associated with the fluctuations
due to the noise introduced by the open quantum dynamics. In
addition, the second term will be connected with the dissipa-
tive contributions of the dynamics.

Afterwards, we focus on Gaussian channels, which are
among the most important channels in information processing
in both classical [28,36] and quantum [37–41] domains, as
they provide a faithful model for attenuation and noise effects
in most communication schemes, modeled by linear Lindblad
master equations [3]. For these channels, we find the fully
quantum counterpart of the generalization of the de Bruijn
identity for Fokker-Planck channels [33,34]. In these cases,
our proposal captures in a clear manner the diffusion and dissi-
pation contributions to the rate of change of the von Neumann
entropy given by the open quantum dynamics. Finally, we
analyze stationary situations, associated with thermal states
or not, within our framework.

The paper is organized as follows. In Sec. II A we review
the classical de Bruijn identity for channels with additive
Gaussian noise and its generalization for multidimensional
classical channels corresponding to Ornstein-Uhlenbeck pro-
cesses, i.e., modeled by Fokker-Planck equations with linear
drift and constant diffusion. In Sec. II B we show that the
diffusion term in the generalized classical de Bruijn iden-
tity can be written in terms of the Fisher information of the
probability distribution under the action of Langevin forces.
This provides an alternative interpretation of the diffusion
term as a measure of the noise introduced by these forces.
We also show that the second term in the generalized clas-
sical de Bruijn identity corresponds to the average flux of
the dissipative forces, i.e., a measure of the change of the
probability distribution in the directions opposite to these
forces. In Sec. III we present our first main result, namely,
a decomposition of the nonunitary infinitesimal generator
for any quantum dynamical semigroup that splits the dy-
namics into two different parts: fluctuation and dissipation.
Section IV A is devoted to the presentation of the notion
of divergence-based quantum Fisher information and some
of its properties. In Sec. IV B we present our second main
contribution, namely, the application of the results of Sec. III
in order to obtain a closed formula for the von Neumann
entropy rate of change for quantum dynamical semigroups,
where we discriminate the contributions of fluctuation and
dissipation. In Sec. V A, we present the basic formalism used
to describe one-parameter Gaussian channels. In Sec. V B,
we apply our results of Sec. IV B to obtain the quantum
counterpart of the generalized classical de Bruijn identity
in the case of one-parameter Gaussian channels. We also
show that the diffusion and dissipation terms of the iden-
tity obtained admit an interpretation completely analogous
to that given in Sec. II B for the corresponding terms in the
generalized classical de Bruijn identity. In Sec. V C we spe-
cialize the quantum de Bruijn identity for evolving Gaussian
states and in Sec. V D we study the stationarity conditions
in one-parameter Gaussian channels in light of our formal-
ism. We conclude with Sec. VI where we summarize our
findings. For ease of reading, some auxiliary calculations
and technical proofs are presented in Appendixes A, B,
and C.
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II. RATE OF SHANNON ENTROPY FOR A LINEAR
FOKKER-PLANCK EQUATION

A. Generalized de Bruijn identity

In classical information theory [28,36], the additive Gaus-
sian noise is probably the most used noise model to describe
many “natural” random processes viewed as a large sum of
noise sources and due to the central limit theorem [36,42,43].
The Gaussian noise channel corresponds to Xt = X0 + √

t Z ,
where Z ∼ N (0, 1) is a normally distributed random variable
with zero mean and unit variance, independent of the input
random variable X0 (that admits a finite variance). Here, t > 0
is a parameter (usually time) that controls the amount of ran-
domness added to the system. The evolution with respect to t
of the probability density function pt (x) of the output random
variable Xt is ruled by the heat equation d pt (x)

dt = 1
2

∂2 pt (x)
∂x2 . The

de Bruijn identity plays a fundamental role in classical infor-
mation theory [29,36,44], as it quantifies the rate of change
of the Shannon entropy h[pt ] = − ∫

R
pt (x) ln pt (x)dx at the

output of the channel, in terms of the Fisher information
J[pt ] = ∫

R
( ∂ ln pt (x)

∂x )2 pt (x) dx = − ∫
R

∂2 ln pt (x)
∂x2 pt (x) dx [45].

More precisely,

dh[pt ]

dt
= 1

2
J[pt ]. (1)

Because J > 0, the fundamental interpretation of this equality
is that Xt becomes more and more random as t (time) in-
creases, with J quantifying how fast. Applications of de Bruijn
identity include derivation of relevant information-theoretical
inequalities [44,46–48], definition of an entropic temperature
[49], and proof of monotonicity of some statistical complexity
measures [50], among others [51].

The de Bruijn identity extends to the multivariate case
[33,36], and its form has recently been obtained for slightly
more general channels modeled by Langevin forces described
by stochastic differential equations [33,34]. A similar ex-
pression for the rate of change of Shannon entropy was
previously given in the thermodynamic context [52,53], but
without pointing out its link with Fisher information. In par-
ticular, consider a multidimensional channel corresponding
to an Ornstein-Uhlenbeck process. It is characterized by an
N-dimensional random vector Xt that follows a stochastic
differential equation with linear drift μ(Xt , t ) = AXt − ξ and
constant diffusion parameter Σ(Xt , t ) = Σ,

dXt = (AXt − ξ)dt + Σ dWt . (2)

Here A and Σ are real constant matrices with dimensions
N × N and N × M (M � N), respectively, where Σ is of full
rank, ξ is an N-dimensional constant real vector, and Wt is an
M-dimensional standard Wiener process [54–57]. For μ = 0
(null vector), the N-dimensional Gaussian additive channel is
recovered. Note that the drift corresponds to the deterministic
effects, whereas the diffusion term Σ dWt characterizes the
random contributions in the dynamics.

The probability density function of the random variable Xt

satisfies the Fokker-Planck equation [55–57]:

d pt (x)

dt
= − ∂

∂xᵀ ((Ax − ξ)pt (x)) + 1

2

∂

∂xᵀD
∂

∂x
pt (x), (3)

where ∂
∂x = ( ∂

∂x1
, . . . , ∂

∂xN
)ᵀ is the gradient with respect to x =

(x1, . . . , xN )ᵀ and D = ΣΣᵀ is the diffusion matrix, which
is symmetric and positive semidefinite of rank M. For this
channel, the generalized de Bruijn identity is [34]

dh[pt ]

dt
= 1

2
tr(DJ[pt ]) + tr(A), (4)

where h[pt ] = − ∫
RN pt (x) ln pt (x)dN x (dN x = dx1 · · · dxN )

is the Shannon entropy, tr denotes trace of matrices, and the
Fisher information matrix is defined as

J[pt ] =
∫
RN

∂ ln pt (x)

∂x
∂ ln pt (x)

∂xᵀ pt (x) dN x

which, under regularity conditions, can be written in the form
[36]

J[pt ] = −
∫
RN

pt (x) H[ln pt (x)] dN x, (5)

with H = ∂
∂x

∂
∂xᵀ the Hessian matrix operator. The multivariate

de Bruijn identity is recovered when A = 0 (null matrix) and
ξ = 0 (null vector), whereas the original (scalar) de Bruijn
identity is recovered when in addition N = 1, D = 11. For
a continuous-variable system with an underlying symplec-
tic structure, N = 2n with n the number of classical modes
described by the canonically conjugate variables of position
xi = qi and momentum xn+i = pi, i = 1, . . . , n. Typical ex-
amples of this type are the description of Brownian motion
and the electric field in a laser where qi and pi are the classical
quadratures of the electric field [55,58].

In the next section we dissect the fluctuation-dissipation
structure of the generalized de Bruijn identity.

B. Fluctuation-dissipation relation in the generalized
de Bruijn identity

Let us rewrite the generalized de Bruijn identity (4) so as to
highlight the contributions of the fluctuations and dissipation.
More precisely, by expressing the Ornstein-Uhlenbeck pro-
cess as dXt

dt = Fdr + F f , where Fdr = AXt − ξ = μ(Xt , t ) are
the drift forces and F f = Σ dWt

dt are the fluctuating or Langevin
forces, the first term on the right-hand side (rhs) of Eq. (4) can
be explicitly identified as induced by fluctuations due to the
Langevin forces, and the second one by dissipation due to the
drift forces.

To this end, let us first rewrite the diffusion matrix under
the form

D =
M∑

m=1

�m�ᵀ
m, (6)

where �m are the column vectors of Σ. From the linearity
of the trace and the relation tr(�m�ᵀ

mJ) = �ᵀ
m J�m, the first

term on the rhs of Eq. (4) can therefore be expressed as

1

2
tr(DJ[pt ]) = 1

2

M∑
m=1

J[p(θ,�m ); θ ]
∣∣
θ=t , (7)

where p(θ,�m ) = pt (x − δθ �m) is the translated probability
distribution (δθ = θ − t), and indeed �ᵀ

m J[pt ] �m =
J[p(θ,�m ); θ ]|θ=t is the Fisher information J[p; θ ] =∫
RN p ( ∂ ln p

∂θ
)2dN x for the translated distribution.

062207-3



TOSCANO, BOSYK, ZOZOR, AND PORTESI PHYSICAL REVIEW A 104, 062207 (2021)

We remark that the rhs of Eq. (7) makes explicit the de-
pendence on the Langevin forces, �m, and also on the rank
M of the diffusion matrix D. From the unicity of D = ΣΣᵀ,
Σ is unique up to an orthogonal transformation, i.e., D =
Σ̄Σ̄ᵀ = ΣΣᵀ if and only if Σ̄ = ΣQ with Q an arbitrary M × M
orthogonal matrix; such a transform is equivalent to use any
other Langevin forces, �̄m, which are the columns vectors of
Σ̄. Furthermore, this also holds for any M × M̄ matrix Q of the
Stiefel manifold (M̄ � M), i.e., such that QQᵀ is the M × M
identity, so that the stochastic differential equation (2) with Σ̄
is the equivalent Langevin equation of that with the full rank
Σ. This shows that we can also express each particular matrix
D with an expression like in Eq. (7) but with the M̄ (M̄ > N)
columns of a matrix Σ̄. However, the Langevin forces turn out
to be not all independent. This kind of situation arises for the
diffusion matrices D that come from linear Lindblad master
equations [see Eq. (30)].

Moreover, from the expression DKL[p(θ,�m )‖pt (x)] =
1
2 J[p(θ,�m ); θ ]|θ=tδθ

2 + o(δθ2), where DKL is the Kullback-
Leibler divergence, or relative entropy [36,59], the first term
on the rhs of the classical de Bruijn identity (4) is essentially
a measure of the noise induced by the Langevin forces �m on
the probability distribution pt (x).

Second, from the definition of Fdr (x) = Ax − ξ, its diver-
gence is given by ∂Fdr (x)

∂xᵀ = tr(A), which gives, together with
〈 ∂Fdr (x)

∂xᵀ 〉pt = ∫
RN

∂Fdr (x)
∂xᵀ pt (x) dN x,

tr(A) =
〈
∂Fdr (x)

∂xᵀ

〉
pt

. (8)

From the fact that pt (x) Fdr (x) vanishes in the boundary of
RN (Xt admits a mean), so that the integral of ∂ (pt (x) Fdr (x))

∂xᵀ =
∂Fdr (x)

∂xᵀ pt (x) + ∂ pt (x)
∂xᵀ Fdr (x) vanishes, one equivalently has

tr(A) = −
∫
RN

∂ pt (x)

∂xᵀ Fdr (x) dN x. (9)

Note that this result can be recovered directly from the expres-
sion of Fdr (x), together with the identity∫

RN
x
∂ pt (x)

∂xᵀ dN x = −1. (10)

This is because x pt (x) vanishes in the boundary of RN (Xt

admits a mean), so that the integral of ∂ (x pt (x))
∂xᵀ = 1 pt (x) +

x ∂ pt (x)
∂xᵀ vanishes. Therefore, the quantity tr(A) can be inter-

preted as minus the total amount of change of the probability
distribution pt (x) in the direction given by the linear drift
force Fdr (x), or as the average of the drift force flux [52]. In
addition, by expressing A = AS + AAS with AS = (A + Aᵀ)/2
and AAS = (A − Aᵀ)/2, we have tr(A) = tr(AS ). Accordingly,
we rewrite the drift force as Fdr (x) = FS (x) + FAS (x) with
FS (x) = AS x and FAS (x) = AASx − ξ, in order to highlight
that only the symmetric part contributes to the drift force flux.
Moreover, whenever tr(A) < 0, we associate FS with a dissi-
pative force and FAS with a nondissipative one. These names
are justified because in the context where the Fokker-Planck
equation (3) describes a mechanical system, FS represents the
force in the phase space of the system that does not conserve
the energy and FAS corresponds to the Hamiltonian phase-
space force that conserves the energy.

Finally, we collect the expressions given in Eqs. (7) and (8)
to obtain

dh[pt ]

dt
= 1

2

M∑
m=1

J
[
p(θ,�m ); θ

]∣∣
θ=t

+
〈
∂Fdr (x)

∂xᵀ

〉
pt

. (11)

Let us observe that the first term on the rhs of the de
Bruijn identity (4) [or equivalently Eq. (11)] is strictly
positive, because each Fisher information is positive, i.e.,
J[p(θ,�m ); θ ]|θ=t > 0. On the other hand, the second term
has no definite sign due to its dependence on the sum of
the eigenvalues of AS , which can be negative, positive, or
zero. Therefore, a necessary condition for the existence of a
stationary solution of the Fokker-Planck equation (3) is the
entropic balance between these quantities. This can happen
only if Eq. (8) is negative, which leads to a condition on the
eigenvalues of AS . Recall that the existence of a stationary
solution also requires the matrix A to be asymptotically stable;
that is, all its eigenvalues must strictly have negative real part.
In principle, this condition does not have a direct connection
with respect to the one on the eigenvalues of AS .

In the sequel, we will obtain an analogous generalized de
Bruijn identity for the rate of change of the von Neumann
entropy in Gaussian channels whose Wigner function satisfies
the Fokker-Planck equation (3). Before that, in the next sec-
tion we will show that such a fluctuation-dissipation relation
in the quantum case has its origin in a particular decomposi-
tion of the nonunitary infinitesimal generator of the evolution
in quantum dynamical semigroups.

III. FLUCTUATION AND DISSIPATION IN QUANTUM
DYNAMICAL SEMIGROUPS

Here we consider memoryless quantum channels that are
continuous in time, which are described by one-parameter
semigroups. The density operator ρ̂t of the evolved quantum
system is a solution of a time-independent Markovian master
equation [60]. The general form of these equations, whose so-
lutions satisfy the completely positive condition, is known at
least in finite-dimensional Hilbert spaces. In the Schrödinger
picture, this corresponds to a Lindblad master equation (LME)
of the form [4,61]

d ρ̂t

dt
= L[ρ̂t ] = LU[ρ̂t ] + LNU[ρ̂t ], (12)

where

LU[ρ̂t ] = 1

ı h̄
[Ĥ , ρ̂t ] (13)

and

LNU[ρ̂t ] = 1

2h̄

K∑
k=1

(2L̂k ρ̂t L̂
†
k − L̂†

k L̂k ρ̂t − ρ̂t L̂
†
k L̂k ) (14)

are the infinitesimal generators of the unitary and nonunitary
evolution, respectively, with Ĥ the Hamiltonian of the system
and {L̂k}K

k=1 the Lindblad operators. When L is time inde-
pendent, the formal solution of Eq. (12) is ρ̂t = etLρ̂0, where
{�t = etL}t�0 is a quantum dynamical semigroup (QDS). At
least for finite dimension, any QDS is precisely described by a
LME [4]. Here, L could be bounded, or unbounded as happens
for QDSs in continuous-in-time Gaussian channels [3,5,6].
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In the Heisenberg picture, observables Ôt evolve accord-
ing to dÔt

dt = L̄U[Ôt ] + L̄NU[Ôt ], where L̄ denotes the adjoint
superoperator of L [6,62].

QDSs are also called quantum Markov semigroups [63].
These denominations emphasize the Markov semigroup prop-
erty: �t+s = �t�s [6], which is the quantum version of an
analogous semigroup property in time-homogeneous classi-
cal Markov processes [64]. Accordingly, in the same way
as classical Markov processes describe classical memoryless
channels, QDSs are suitable for describing memoryless quan-
tum channels.

We propose a general decomposition of LNU, which, in
the context of Gaussian channels, encompasses the notions of
diffusion and dissipation, as follows:

LNU = L1 + L2+3, L2+3 = L2 + L3, (15)

with L1, L2, and L3 real superoperators [65] given by

L1[Ô] = − 1

2h̄

K∑
k=1

([Âk, [Âk, Ô]] + [B̂k, [B̂k, Ô]]), (16a)

L2[Ô] = 1

2h̄

K∑
k=1

1

2
{[L̂k, L̂†

k ], Ô}, (16b)

L3[Ô] = 1

2h̄

K∑
k=1

(L̂kÔL̂†
k − L̂†

k ÔL̂k ). (16c)

This follows from the Cartesian decomposition of the Lind-
blad operators L̂k = Âk + ıB̂k via the Hermitian operators Âk

and B̂k defined by Âk = 1
2 (L̂k + L̂†

k ) and B̂k = 1
2ı

(L̂k − L̂†
k ).

Notice that L1 is self-adjoint, i.e., L̄1[Ô] = L1[Ô], as
is L2, while L3 is antisymmetric, i.e., L̄3[Ô] = −L3[Ô].
For the unit operator, L̄1[1̂] = L1[1̂] = 0, L̄2[1̂] = L2[1̂] =
1

2h̄

∑K
k=1[L̂k, L̂†

k ], and L̄3[1̂] = −L3[1̂] = −L2[1̂]. Conse-
quently, L1 and L2+3 are infinitesimal generators of QDSs in
themselves. Moreover, L1 is the generator of a unital QDS
[66].

We recall that the infinitesimal generator L does not
uniquely determine the form of the Hamiltonian Ĥ and Lind-
blad operators L̂k (see, e.g., Sec. 3.2.2. of [67]). On the one
hand, LME (12) is invariant under the unitary transformation
of the Lindblad operators:

L̂k → L̂′
k =

K∑
j=1

Wk, j L̂ j, (17)

where Wk, j are the entries of an arbitrary unitary matrix W.
We obtain that L1, L2, and L3 remain invariant under this
transformation (see Appendix A).

On the other hand, LME (12) is also invariant under the
inhomogeneous transformations

L̂k → L̂k + αk 1̂, (18a)

Ĥ → Ĥ + Ĥ ′
(

Ĥ ′ = 1

2ı h̄

K∑
k=1

(α∗
k L̂k − αkL̂†

k )

)
, (18b)

for any set of complex numbers {αk}K
k=1. Under these transfor-

mations, it is straightforward to show that the superoperators
transform as follows:

L1 → L1, (19a)

L2 → L2, (19b)

L3 → L3 − 1

ı h̄
[Ĥ ′, · ]. (19c)

In Sec. IV B we prove that, whereas L1 is the infinitesimal
generator of fluctuations in one-parameter quantum dynami-
cal semigroups, L2+3 = L2 + L3 is the infinitesimal generator
of dissipation. The justification of this characterization lies
in the contributions that these generators give to the rate of
change of the von Neumann entropy of the evolved quantum
states of the system.

IV. RATE OF VON NEUMANN ENTROPY FOR QUANTUM
DYNAMICAL SEMIGROUPS

A. Divergence-based quantum Fisher information

As seen in Sec. II, the Fisher information is a key measure
to quantify the rate of change of the Shannon entropy in the
additive Gaussian channel or in the channel described by the
Ornstein-Uhlenbeck process, via the classical de Bruijn iden-
tities (1) and (4), respectively [29,34]. The first attempt, to our
knowledge, to find a quantum counterpart of Eq. (1) is given
by König and Smith in Ref. [30], where the divergence-based
quantum Fisher information (DQFI) is related to the rate of
change of the von Neumann entropy for an evolution governed
by the quantum diffusion semigroup. The DQFI is one of
the forms of the Fisher information defined in the quantum
domain, and is precisely that appearing in the rate of von
Neumann entropy in QDSs, in general.

The DQFI is defined as the second derivative of the relative
entropy [35], i.e.,

Jq[ρ̂θ ; θ ]|
θ=θ0

= d2S
[
ρ̂θ‖ρ̂θ0

]
dθ2

∣∣∣∣
θ=θ0

, (20)

with S[ρ̂θ‖ρ̂θ0 ] = Tr(ρ̂θ (ln ρ̂θ − ln ρ̂θ0 )). As noticed in [35],
this DQFI is greater than the quantum Fisher informa-
tion based on the symmetric logarithmic derivative [68–70],
whereas the respective classical versions coincide [36].

In the particular case of the family of density operators
ρ̂θ,Ĉδθ

= Ûθ−θ0 ρ̂θ0 Û †
θ−θ0

, generated by the unitary Ûθ−θ0 with

a generator Ĉδθ = ı
dÛθ−θ0

dθ
Ûθ−θ0 (where δθ = θ − θ0), we have

(see Appendix B)

Jq
[
ρ̂θ,Ĉδθ

; θ
]∣∣

θ=θ0
= Tr

(
ρ̂θ0

[
Ĉ0,

[
Ĉ0, ln ρ̂θ0

]])
, (21)

where Ĉ0 = Ĉδθ |θ=θ0 . It can be seen that when Ĉδθ is inde-
pendent of θ , expression (21) reduces to the one given in
[30]. In what follows we consider the family ρ̂θ,Ĉ generated

from ρ̂θ0 = ρ̂t by unitaries of the form Ûδθ = e− ı
h̄ δθ Ĉ (with

δθ = θ − t).
In the next section we show how the DQFI appears in the

fluctuation-dissipation structure of the rate of change of the
von Neumann entropy in QDSs.
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B. The rate of change of von Neumann entropy

By exploiting the decomposition (15) with L1, L2, and
L3 given in Eqs. (16), we obtain that the rate of change
of the von Neumann entropy, S[ρ̂t ] = −Tr(ρ̂t ln ρ̂t ), can be
written in terms of the divergence-based quantum Fisher
information (21). Note first that dS[ρ̂t ]

dt = −Tr(( d ρ̂t

dt ) ln ρ̂t ) =
−Tr(L[ρ̂t ] ln ρ̂t ) = −Tr(ρ̂t L̄[ln ρ̂t ]). Consequently, from the
expression of L = LU + LNU given by Eqs. (13) and (15) and
(16), together with the self-adjoint character of L1 and L2, and
the antisymmetry of L3, we obtain

dS[ρ̂t ]

dt
= 
t − �t (22)

with 
t = −Tr(ρ̂tL1[ln ρ̂t ]) and �t = Tr(ρ̂t (L2 −
L3)[ln ρ̂t ]). Notice that we used the fact that

Tr(ρ̂t [Ĥ , ln ρ̂t ]) = 0 (23)

(this can be established by simple algebra) so that the contri-
bution to Eq. (22) from the unitary evolution, LU, vanishes.

Now, from the expressions of L1 [Eq. (16a)] and of the
DQFI in the form (21), we can express the first contribution
on the rhs of Eq. (22) in terms of the DQFI as follows:


t = 1

2

K∑
k=1

(
Jq

[
ρ̂

θ,
√

h̄Âk
; θ

] + Jq
[
ρ̂

θ,
√

h̄B̂k
; θ

])|θ=t , (24)

where ρ̂θ,Ĉ are generated by the unitaries Ûδθ = e− ı
h̄ δθ Ĉ (δθ =

θ − t), with Ĉ = √
h̄Âk or

√
h̄B̂k being the Hermitian genera-

tors of the unitaries. From S[ρ̂θ,Ĉ‖ρ̂t ] = 1
2 Jq[ρ̂θ,Ĉ ; θ ]|θ=tδθ

2 +
o(δθ2) (see Appendix B or Refs. [30,35]), we conclude that 
t

is essentially a measure of the noise induced by unitaries Ûδθ ,
with generators

√
h̄Âk and

√
h̄B̂k , on the state ρ̂t . Accordingly,


t plays a role analogous to that given by the first term,
Eq. (7), on the rhs of the classical de Bruijn identity.

In addition, let us emphasize that both quantities 
t and
�t are invariant under the transformations given by Eqs. (17)
and (18). This is due to the invariance of the superoperators,
L1, L2, and L3, under the transformation in Eq. (17) and the
effects (19). These effects, together with Eq. (23), justify that
the energy-conserving contributions coming from Ĥ ′ induce
no contribution in �t . As a consequence, �t characterizes the
contributions of dissipative forces to the rate of change of von
Neumann entropy. Accordingly, decomposition (22) reflect a
fluctuation-dissipation relation in the rate of change of the von
Neumann entropy for QDSs, analogous to the one given by
Eq. (11) for the Shannon entropy rate in classical channels
corresponding to Ornstein-Uhlenbeck processes.

We highlight that the fluctuation-dissipation relation (22)
is a direct consequence of the decomposition (15) for the in-
finitesimal generators in the LME. In this respect, we can say
that the decomposition (15) is itself a fluctuation-dissipation
relation for QDSs in its own, where the infinitesimal generator
L1 is associated with the fluctuation part of the evolution
and L2+3 with the dissipation part. This decomposition de-
termines the fluctuation-dissipation structure not only of the
rate of change of the von Neumann entropy in QDSs, but
also of the rate of change of the mean value of any time-
independent observable, Ô, of the quantum system being

described, i.e., d〈Ô〉ρ̂t
dt = Tr(ρ̂tL1[Ô]) + Tr(ρ̂t (L2 − L3)[Ô]),

with 〈Ô〉ρ̂t = Tr(ρ̂t Ô).
Notice that our way to express the rate of change of the von

Neumann entropy, Eq. (22), differs from the usual decompo-
sition

dS[ρ̂t ]

dt
= �t − �̇t (25)

given in terms of the rate �t = d�t
dt � 0 of the entropy pro-

duction �t , and the rate �̇t = d�t
dt of the entropy flux �t

[22]. This decomposition is one way to write the second law
of thermodynamics. Although there is a general proposal for
the form of the entropy production �t and the entropy flux
�t , for a general system-environment evolution (see Ref. [22]
and references herein), the entropy production, in general,
depends on the evolved reduced state of the environment,
which is not available in open quantum systems. However,
for QDSs this problem was overcome long time ago by Spohn
[25], but only in the cases when these semigroups have an
invariant state ρ̂s, i.e., ρ̂s = etLρ̂s,∀t � 0. In this situation the
entropy production rate is �t = − dS[ρ̂t ‖ρ̂s]

dt � 0.
The decomposition in Eq. (25) is useful to study station-

ary states, not necessarily thermal equilibrium ones, arising
when �t = �̇t . Furthermore, these states, ρ̂s, are thermal
equilibrium states if and only if �t = �̇t = 0. In the case
of QDSs, �t is also a monotonic convex function of time as
a consequence of −S[ρ̂t‖ρ̂s] being an increasing function of
time. This determines also how the approach to the stationary
state is.

Our decomposition (22), that it is still valid for QDSs
without a stationary state, is also useful to study stationarity
in this type of open systems but on a different perspective
from that given by Eq. (25). In our framework, stationarity,
associated with thermal states or not, arises when �t balances

t , since each DQFI in Eq. (24) is always positive. As we have
already established, our decomposition (22) is a fluctuation-
dissipation relation; therefore, the balance between 
t and �t

can be interpreted as a fluctuation-dissipation equilibrium. We
will confirm this point of view in Sec. V D for quantum Gaus-
sian channels that admit a QDS description [3] that we call
Gaussian dynamical semigroups (GDSs). This is the quantum
counterpart of the fluctuation-dissipation equilibrium balance
we found in the classical de Bruijn equation in Sec. II B.

V. RATE OF VON NEUMANN ENTROPY FOR GAUSSIAN
DYNAMICAL SEMIGROUPS

A. Gaussian dynamical semigroups

In what follows, we focus on GDSs, which are the most
general form of one-parameter Gaussian channels [3]. The
attenuator, amplifier, and additive Gaussian noise channels are
relevant examples of GDSs [3,71,72]. GDSs are also useful to
describe damped collective modes in deep inelastic collisions
[73]. Also, GDSs appear in all processes which can formally
be described as decomposition and production of noninteract-
ing particles or quasiparticles which can be treated at least
approximately as bosons [60]. In this context GDSs are known
as quasifree completely positive semigroups.
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The kinematics of a quantum Gaussian channel of
n bosonic modes is described by a (2n)-dimensional
vector of canonically conjugate operators, x̂ =
(q̂1, . . . , q̂n, p̂1, . . . , p̂n)ᵀ, such that [x̂ j, x̂k] = ı h̄J jk 1̂, with

J = ( 0 1n
−1n 0 ) the 2n × 2n real symplectic matrix where

1n is the n × n identity matrix, with J−1 = −J = Jᵀ. The
dynamics of a GDS is given by LME (12) with a Hamiltonian
up to quadratic order in x̂ and linear Lindblad operators,

Ĥ = 1

2
x̂ᵀBx̂ + x̂ᵀJξ and L̂k = lᵀk Jx̂, (26)

respectively, where B � 0 (Hessian matrix), ξ is an arbitrary
(2n)-dimensional real vector, and the lks are (2n)-dimensional
complex vectors. Usually master equations of this type are
called linear LMEs [74].

In the Weyl-Wigner representation, the symbol
of ρ̂t is the Wigner function W (x, t ), where x =
(q1, . . . , qn, p1, . . . , pn)ᵀ are phase-space coordinates [75].
The time evolution of W is given by a Fokker-Planck equation
of the Ornstein-Uhlenbeck form (3), with drift A and diffusion
D matrices given by

A = JB − CJ, D = h̄Re(Γ), (27)

Γ = ∑K
k=1 lkl†

k is the matrix that establishes the connection
with the Lindblad operators given Eq. (26), and C = Im(Γ)
is the dissipation matrix. By definition, Γ � 0 so that

h̄Γ = D + ı h̄C � 0, (28)

which can be interpreted as a generalized fluctuation-
dissipation relation [74]. This matrix inequality implies that
D � 0, because D and C are symmetric and antisymmetric real
matrices, respectively.

A few observations and remarks are in order here. First,
defining the real vectors

�k =
√

h̄Re(lk ), �̄k =
√

h̄Im(lk ), (29)

the diffusion matrix can be expressed as

D =
K∑

k=1

(
�k�

ᵀ
k + �̄k�̄

ᵀ
k

)
. (30)

If we compare Eqs. (6) and (30), we immediately recognize in
the set {�k , �̄k}k=1,...,K Langevin forces. However, all these
forces are not necessarily linearly independent like those in
Eq. (6). Because the complex vectors lk are usually linearly
independent (with K � 2n), K is the rank of the matrix Γ. But
the rank of the matrix D expressed in Eq. (30) could range
from K � rank(D) = M � min{2n, 2K} being K for example
when all pairs �k, �̄k are composed with vectors proportional
to each other, and being M = 2K � 2n for example when
all these vectors are linearly independent. Conversely, the
rank of the dissipation matrix C = Im(Γ) could range from
0 � rank(C) � min{2n, 2K}. Therefore, it is not possible in
GDSs to have a dynamics without diffusion while it is possible
to have a dynamics without dissipation as it is the case of a
quantum diffusion process. The latter is a particular case of a
GDS where D = 1

21 and C = 0, which is precisely the GDS
considered in the context of the quantum de Bruijn identity in
Ref. [30].

Recall that in GDSs the Fokker-Plank equation, Eq. (3),
propagates the Wigner function W (x, t ), that is a quasiproba-
bility distribution that describes completely the quantum state
of the system. However, in the classical mechanics context
the same Fokker-Plank equation (3), with the drift A and
diffusion D matrices given in Eq. (27), is also used, for
example, to describe the Brownian motion in a harmonic
potential. In this case the drift force in phase space can be split
into Fdr (x) = FS (x) + FAS (x), where FAS (x) = JBx − ξ and
FS (x) = −CJx are the conservative and dissipative forces,
respectively. Note that, in this case, as commented below
Eq. (8), ∂FAS (x)

∂xᵀ = tr(AAS ) = tr(JB) = 0 because J is antisym-
metric and B is symmetric, and ∂FS (x)

∂xᵀ = tr(AS ) = −tr(CJ).
Finally, using successively (i) the expression for the

drift matrix A = JB − CJ in Eq. (27) so that − ∂ (Ax−ξ)
∂xᵀ =

−tr(A) = tr(CJ), (ii) the quadratic classical Hamiltonian
H (x) = 1

2 xᵀBx + xᵀJξ—the Weyl symbol of the quantum
Hamiltonian Eq. (26)—together with J−1 = −J = Jᵀ so
that (Ax − ξ)ᵀ = − ∂H (x)

∂xᵀ J − (CJx)ᵀ and (judiciously) aᵀb =
bᵀa = tr(baᵀ) for any vector, the Fokker-Planck equation (3)
for the Wigner function W (x, t ) of the system can be rewritten
under the form

dW (x, t )

dt
= [H (x),W (x, t )]cl + 1

2
tr(DH[W (x, t )])

+ tr(CJ)W (x, t ) + tr

(
CJ x

∂W (x, t )

∂xᵀ

)
, (31)

where the first term is the Poisson bracket, tr(J ∂W (x,t )
∂x

∂H
∂xT ),

between the Wigner function and the quadratic classical
Hamiltonian.

Let us now write the corresponding LME of a GDS in
terms of the decomposition of the infinitesimal generator
given Eq. (15). More precisely, in Appendix C, we show that

L1[Ô] = 1

2
tr(DĤ[Ô]), (32a)

L2[Ô] = 1

2
tr(JC)Ô, (32b)

L3[Ô] = tr(CJM̂[Ô]) + L2[Ô], (32c)

where we define the superoperator matrices

Ĥ[Ô] = − 1

h̄2 [Jx̂, [(Jx̂)ᵀ, Ô]] = ∂

∂ x̂
∂

∂ x̂ᵀ , (33a)

M̂[Ô] = ı

h̄
x̂[(Jx̂)ᵀ, Ô] = x̂

∂

∂ x̂ᵀ , (33b)

with the matrix notation ([x̂, [ŷᵀ, Ô]])i j = [xi, [y j, Ô]], and
(x̂ [ŷᵀ, Ô])i j = xi[y j, Ô]. The last equalities in Eqs. (33) fol-
low from the identity (ı/h̄)[(Jx̂)ᵀ, Ô(x̂)] = ∂Ô(x̂)/∂ x̂ᵀ given
in Ref. [76]. Then, the linear LME is

d ρ̂t

dt
= 1

ı h̄
[Ĥ , ρ̂t ] + 1

2
tr
(
DĤ[ρ̂t ]

)
+ tr(CJ)ρ̂t + tr(CJM̂[ρ̂t ]). (34)

For one mode (n = 1), this expression reduces to that given in
Ref. [73].

062207-7



TOSCANO, BOSYK, ZOZOR, AND PORTESI PHYSICAL REVIEW A 104, 062207 (2021)

Notice that Eq. (31) is nothing but the Weyl-Wigner repre-
sentation of Eq. (34). Moreover, a direct comparison of both
evolution equations follows from the correspondences

ρ̂t ↔ W (x, t ), (35a)

x̂ ↔ x, (35b)

(ı/h̄)[(Jx̂)ᵀ , · ] = ∂/∂ x̂ᵀ ↔ ∂/∂xᵀ (35c)

(1/ı h̄)[· , ·] ↔ [· , ·]cl , (35d)

Tr(·) ↔
∫
RN

· d2nx. (35e)

In this way, we can go back and forth between both
Eqs. (31) and (34). In the next section, we will see that these
correspondences also allow to go back and forth between the
generalized classical de Bruijn identity (4) and the quantum
de Bruijn identity for the von Neumann entropy rate in GDS
[see Eq. (36) below].

B. Quantum de Bruijn identity for Gaussian
dynamical semigroups

As we have seen, decomposition (15) for a GDS splits the
dynamics into diffusive and dissipative contributions, given
by the corresponding superoperators L1 [Eq. (32a)], and L2

and L3 given in Eqs. (32b) and (32c), respectively. From
this decomposition, we obtain the quantum version of the
generalized de Bruijn identity for GDSs,

dS[ρ̂t ]

dt
= 
t − �t = 1

2
tr(DJq[ρ̂t ]) − tr(CJM[ρ̂t ]), (36)

where

Jq[ρ̂t ] = −Tr(ρ̂t Ĥ[ln ρ̂t ]) (37)

is the DQFI matrix, a quantum version of the Fisher informa-
tion matrix (5), and

M[ρ̂t ] = −Tr(ρ̂t M̂[ln ρ̂t ]). (38)

We observe that the result (Eq. (82) of Ref. [30]) obtained for
the quantum diffusion process (for which D = 1

21 and C = 0)
is recovered from Eq. (36) evaluated at t = 0 and performing
the trace operation. This is the quantum analog of the classical
de Bruijn identity (1). As with its classical counterpart, this
result is used in the derivation of quantum entropy power
inequalities [31,32].

The diffusion contribution 
t in Eq. (36) can also be ex-
pressed as Eq. (24) with Âk = 1√

h̄
�

ᵀ
k Jx̂ and B̂k = 1√

h̄
�̄

ᵀ
k Jx̂,

where �k = Re(lk ) and �̄k = Im(lk ). Therefore, the family of
density operators in Eq. (24), i.e.,

ρ̂θ,Ĉ = Ûδθ ρ̂t Û †
δθ = T̂η ρ̂t T̂ †

η , (39)

with Ĉ = �
ᵀ
k Jx̂ or �̄

ᵀ
k Jx̂, is generated by phase-space trans-

lation operators [75], T̂η, with η = �kδθ or �̄kδθ . These
translations in the phase space can be directly related to the
Langevin forces Ok = �k, �̄k . Indeed, if we consider the
classical counterpart of the Hamiltonian generator Ĉ, i.e.,
C = Oᵀ

k Jx, from the Hamilton equation of motion we have

dx
dt = J ∂C

∂x = Ok . Following the discussion below Eq. (24), we
conclude that in this case the diffusion term 
t in Eq. (36)
is a measure of the noise produced by these Langevin forces,
�k = Re(lk ) and �̄k = Im(lk ), in the quantum evolution.

Finally, from the correspondences (35) and replacing the
von Neumann entropy by the Shannon entropy into the quan-
tum de Bruijn identity (36), we can recover the classical de
Bruijn equation (4), and conversely we can obtain Eq. (36)
from Eq. (4). Moreover, the correspondences in Eqs. (35)
imply Jq[ρ̂t ] ↔ J[pt ] for the quantum and classical infor-
mation matrices given in Eqs. (37) and (5), respectively, and
M[ρ̂t ] ↔ − ∫

RN W (x, t ) x ∂ ln W (x,t )
∂xᵀ d2nx = 1 [see Eq. (10)],

as well. Therefore, we conclude that the dissipation term �t

in Eq. (36) measures the total amount of change of the density
operator due to the dissipative force F̂S (x) = −CJx̂.

In the next section we focus on evolutions in GDSs starting
with initial Gaussian states.

C. Gaussian states

The Fokker-Planck equation (3) associated with a linear
LME propagates any initial Wigner function that describes the
initial quantum state of the system [77]. Generally, these are
quasiprobability distributions; i.e., they can take negative val-
ues but still

∫
RN W (x, t ) d2nx = 1. Here, we discuss Eq. (36)

specialized to Gaussian states σ̂t , which are quantum states
whose Wigner functions are probability distributions. Indeed,
the Wigner function of a Gaussian state σ̂t is a multivariate
Gaussian distribution with mean 〈x̂〉t = Tr(ρ̂t x̂) and covari-
ance matrix Vt = 1

2h̄ Tr(ρ̂t (x̂ − 〈x̂〉t )(x̂ − 〈x̂〉t )ᵀ),

WG(x, t ) = e− 1
2h̄ (x−〈x̂〉t )ᵀV−1

t (x−〈x̂〉t )/Wt , (40)

where Wt = (2π h̄)n
√

det(Vt ). Moreover, the density operator
of a Gaussian state can be expressed as [1,78]

σ̂t = e− 1
2h̄ (x̂−〈x̂〉t )ᵀUt (x̂−〈x̂〉t )/Zt , (41)

with Zt = √
det(Vt + ı

2 J) and Ut = 2ıJ coth−1(2ıVt J). No-
tice that matrices Vt and Ut satisfy

UtVt J = JVtUt . (42)

The main reason to focus on Gaussian states is that they
represent the universe of stationary states (thermal or not) in
GDSs [58].

The evolution of the covariance matrix and first moments
of any state in linear LME is then determined by the differen-
tial equations

1

2

dVt

dt
= D

2h̄
+ 1

2
(VtA

ᵀ + A,Vt ), (43)

and

d〈x̂〉t

dt
= A〈x̂〉t − ξ, (44)

respectively, with A and D given by Eq. (27) and ξ as in
Eq. (26). These equations completely determine the evolution
of Gaussian states in GDSs.

The Shannon entropy of a Gaussian state σ̂t is well defined
(since WG is a probability distribution) and given by h[WG] =
1
2 ln det(Vt ) + n ln(2πe). Therefore, the rate of change of the
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Shannon entropy is given by

dh[WG]

dt
= 1

2
tr

(
D

V−1
t

h̄

)
− tr(JC), (45)

which is directly obtained from Eq. (4) with J[WG] = V−1
t
h̄ and

tr(A) = −tr(JC). As in Eq. (36), there is no contribution in
Eq. (45) of the Hamiltonian evolution.

We emphasize here that Eq. (45) is simply the classical
Bruijn identity (4) for a probability distribution that corre-
sponds to the Wigner function of a Gaussian quantum state.

In Sec. II B we showed that the first term in the classical
de Bruijn identity (4) can be rewritten as in Eq. (7). However,
in this case it is more interesting to rewrite the first term in
Eq. (45) using the expression for D in Eq. (30) that contains
the Langevin forces Ok = �k, �̄k , i.e.,

1

2
tr

(
D

V−1
t

h̄

)
= 1

2

K∑
k=1

(
J
[
W (θ,�k )

G ; θ
] + J

[
W (θ,�̄k )

G ; θ
])∣∣

θ=t .

(46)
Here, Oᵀ

k J[WG]Ok = J[W (θ,Ok )
G ; θ ]|θ=t , where J[WG; θ ] =∫

R2n WG ( ∂ ln WG
∂θ

)2d2nx is the Fisher information of the Wigner

function of the translated state given by Eq. (39), W (θ,Ok )
G =

WG(x − δθOk, t ).
Finally, for Gaussian states, we obtain that the quantum de

Bruijn identity (36) reduces to

dS[σ̂t ]

dt
= 1

2
tr

(
D

Ut

h̄

)
− tr(JCUtVt ), (47)

where we used that (i) Ĥ[ln σ̂t ] = − 1
h̄Ut 1̂ and M̂[ln σ̂t ] =

1
h̄ x̂(x̂ − 〈x̂〉t )ᵀUt , so that M[σ̂t ] = −VtUt − ı

2 JUt , and that, in
general, Tr(ρ̂t x̂x̂ᵀ) − 〈x̂〉t 〈x̂〉ᵀt = Vt + ı

2 J, that (ii) tr(Ut J) =
0, because Ut is symmetric and J antisymmetric, and (iii)
relation (42).

In the next section we analyze the stationary situations in
GDSs.

D. Stationary states in Gaussian dynamical semigroups

In GDSs if there exists a stationary state, σ̂ S , this one
is unique and for any initial state ρ̂0 we have ρ̂t →

t→+∞ σ̂ S

[58,79,80]. In particular, starting with an initial Gaussian
state, the evolved states remain Gaussian. Therefore, station-
ary states are necessarily Gaussian. A stationary Gaussian
state corresponds to a thermal equilibrium situation when its
density operator, σ̂ S = σ̂ th in Eq. (41), is a Gibbs state of the
Hamiltonian Ĥ of the QDS in Eq. (26) or of a Hamiltonian
that commutes with this.

Remarkably, the quantum de Bruijn identity given by ex-
pression (36), for whatever initial state, together with the
one given by Eq. (47) for an initial Gaussian state, allows
a description of stationary situations. Indeed, from our ap-
proach we observe that the stationary state arises when the
environment, described by D and C, allows the balance be-
tween the diffusion term 
t > 0 and the dissipative term �t

i.e., dS[ρ̂t ]
dt →

t→+∞ 0. While 
t describes the increase in noise

due to Langevin forces, �t represents the contribution due
to the dissipative forces. Particularly for any initial Gaussian
state, the convergence σ̂t →

t→+∞ σ̂ S happens in such a way that

dS[σ̂t ]
dt − dh[WG]

dt →
t→+∞ 0. This is a consequence of

dS[σ̂t ]

dt
= dh[WG]

dt
+ 1

2
tr

(
Θt

dVt

dt

)
, (48)

and dVt
dt →

t→+∞ 0 in Eq. (43) when σ̂t →
t→+∞ σ̂ S . Relation (48)

between von Neumann and Shannon entropy rates results
from

dS[σ̂t ]

dt
= 1

2
tr

(
Ut

dVt

dt

)
, (49a)

dh[WG]

dt
= 1

2
tr

(
V−1

t

dVt

dt

)
, (49b)

and the expansion Ut = V−1
t + Θt , where Θt =∑+∞

m=1
2ıJ

2m+1 ( ıJV−1
t

2 )2m+1. To recover de Bruijn identity (47)
from the time derivative of S[σ̂t ] given Eq. (49a), we use
Eq. (43), tr(UtAVt ) = tr(UtVtAᵀ), tr(JCUtVt ) = tr(CJVtUt ),
and tr(JBVtUt ) = 0. The time derivative of h[WG] in Eq. (49b)
directly follows from d (ln det(Vt ))

dt = tr(V−1
t

dVt
dt ) (see Chaps. 1

and 9 of Ref. [81]).
The covariance matrix VS of a stationary state σ̂ S is a

solution of a Lyapunov equation [82], i.e., setting dVt
dt = 0 in

Eq. (43), so

D

h̄
+ VS (−BJ − JC) + (JB − CJ)VS = 0. (50)

The solution of this Lyapunov equation gives VS as a function
of B, D, and C, and this dependency determines the type
of Gaussian state σ̂ S is. Notice that, according to Eq. (45),
dh[WG]

dt = 0 is equivalent to the trace of this Lyapunov equa-
tion, since tr(BJ) = 0. Therefore, there is a direct connection
between the Lyapunov equation that determines VS , and hence
σ̂ S , and the stationarity of the Shannon entropy for the Wigner
function of σ̂ S , i.e., dh[WG]

dt = 0. Besides, for a stationary state
we have 
t = �t in Eq. (47); therefore, dS[σ̂t ]

dt = 0. However,
let us see that, for a family of thermal states, there is another
way to establish the stationarity of the von Neumann entropy,
i.e., dS[σ̂t ]

dt = 0, which has a direct connection to the Lyapunov
equation for VS . Indeed, rewriting Eq. (47) as

dS[σ̂t ]

dt
= tr

(
UtVt

(
1

2h̄
V−1

t D − JC

))
, (51)

we obtain a solution of dS[σ̂t ]
dt = 0 solving the Lyapunov equa-

tion
1

2h̄
(VS )−1D − JC = 0. (52)

Let us see that this equation is a particular instance of Eq. (50)
whose solution corresponds to the covariance matrix, as a
function of D and C, of a family of thermal states. Indeed,
the solution is given by VS = − 1

2h̄DC−1J, with the condition
DJC = CJD for VS to be symmetric. This covariance matrix

VS = Vth is indeed that of the thermal state σ̂ th = e−βĤ

Z th , where

Z th = Tr(e−βĤ ), with β the inverse temperature, and Ĥ given
by Eq. (26) where ξ must be zero [83]. This is because
the Lyapunov equation (50) for this thermal state reduces
to Eq. (52), using that Uth/h̄ = βB [with Uth the matrix in
Eq. (41)] together with UthVthJ = JVthUth and DJC = CJD.
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An example of an equilibrium state of this type is that appear-
ing in the quantum optical master equation, for which D = γ1
and JC = α1, where γ � 0 and α is a real number [84].

VI. CONCLUSIONS

For memoryless continuous-in-time quantum channels,
whose dynamics is described by one-parameter quantum dy-
namical semigroups, we have provided a decomposition given
in Eq. (15) of the infinitesimal generator of the nonunitary
evolution. This extends the concepts of diffusion and dissi-
pation in these kind of open quantum systems and allows
us to obtain a compact formula for the rate of change of
the von Neumann entropy for quantum states, Eq. (22). We
emphasize that this constitutes one of the main results of our
contribution. The first term 
t of that formula clarifies that
L1 in Eq. (15) is the infinitesimal generator of diffusion in
the dynamics, and the second term �t indicates that L2+3 is
the infinitesimal generator of dissipation. Indeed, while the
positive contribution 
t , rewritten as in Eq. (24), corresponds
to the increase of noise measured by the divergence-based
quantum Fisher information, the term �t measures the con-
tribution of dissipative forces to the rate of change of von
Neumann entropy. We highlight that an analogous approach,
using L1 and L2+3, can be done to separate the fluctuation
from the dissipation contribution in the rate of change of the
mean value of any time-independent observable of a quantum
system that follows a one-parameter QDS dynamics.

We have then focused on channels that form Gaussian
dynamical semigroups, paramount in the description of the
most useful quantum channels in the data-transmission and
data-processing systems in modern quantum information the-
ory. For these channels, we have first obtained the expression
(32) for the infinitesimal generators of the dynamics from
our decomposition, where the dependence with the diffusion
and dissipative matrices appears explicitly. Besides, from this
decomposition, we have provided a series of correspondences
(35) that maps the Lindblad master equation for the evolution
of the density operator (34) into the Fokker-Planck equation
for the evolution of the Wigner function (31), and vice versa.
Finally, we obtained the rate of change of the von Neumann
entropy for Gaussian dynamical semigroups (36), where the
first term of our identity quantifies the contributions of diffu-
sion due to Langevin forces, whereas the second one is the
contribution due to dissipative forces. Identity (36) is nothing
but the quantum counterpart of the generalized classical de
Bruijn identity (4), which can also be obtained from the latter
from the series of correspondences (35) (and vice versa).

In addition, we have provided an alternative perspective
to study the stationarity of quantum dynamical semigroups
and in particular for Gaussian dynamical semigroups. Such a
study is usually addressed from the balance of the rates of the
entropy production and entropy flux, whereas we considered
here the balance between diffusion and dissipation in such
quantum channels.

Finally, we highlight that Eq. (22) [with 
t given by
Eq. (24)] is a quantum de Bruijn identity valid for any quan-
tum dynamical semigroup. It is remarkable that this identity
has a very similar structure to that of the classical generalized
de Bruijn identity in Eq. (11), even in the case of finite-

dimensional quantum systems. Thus, we believe that, like the
quantum de Bruijn identity in Eq. (36), without dissipation, is
a key ingredient in the derivation of entropy power inequalities
in continuous variable systems, Eq. (22) with null dissipative
term, i.e., �t = 0, could be useful to define and prove entropy
power inequalities in finite-dimensional systems. Besides, the
quantum de Bruijn identity (22) reveals the central role played
by the divergence-based quantum Fisher information in the
quantification of the amount of noise produced by the random
effects into the dynamics suffered by systems that imple-
ment quantum communication channels. In this respect, our
framework opens an avenue in the study of time evolution in
quantum channels from a fluctuation-dissipation perspective
that allows to quantify the degradation induced by noise in
the information transmitted.
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APPENDIX A: UNITARY INVARIANCE IN EQ. (17)

Here we prove that the superoperators L1, L2, and L3 are
invariant under the unitary transformation of the Lindblad
operators in Eq. (17).

1. Invariance of L1

First, notice that the operators Âk = (L̂k + L̂†
k )/2, B̂k =

(L̂k − L̂†
k )/2ı, and equivalently definitions to Â′

k and B̂′
k , with

L̂′
k given in Eq. (17) and (L̂′

k )† = ∑
j W ∗

k, j L̂
†
j , transform as

Âk → Â′
k = ∑K

j=1(Re(Wk, j ) Â j − Im(Wk, j ) B̂ j ),

B̂k → B̂′
k = ∑K

j=1(Im(Wk, j ) Â j + Re(Wk, j ) B̂ j ).

Second, using the identities Re(zw∗) = Re(z)Re(w) +
Im(z)Im(w) and Im(zw∗) = Im(z)Re(w) − Re(z)Im(w) and
some algebra, we arrive at

[Â′
k, [Â′

k, Ô]] + [B̂′
k, [B̂′

k, Ô]]

=
K∑

j,l=1

Re(Wk, jW
∗

k,l )[Âl , [Â j, Ô]]

+
K∑

j,l=1

Im(Wk, jW
∗

k,l )[B̂l , [Â j, Ô]]
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+
K∑

j,l=1

Im(Wk, jW
∗

k,l )[Âl , [B̂ j, Ô]]

+ Re(Wk, jW
∗

k,l )[B̂l , [B̂ j, Ô]].

Finally, we obtain

L′
1[Ô] = − 1

2h̄

K∑
k=1

[Â′
k, [Â′

k, Ô]] + [B̂′
k, [B̂′

k, Ô]]

= − 1

2h̄

⎛
⎝ K∑

j,l=1

Re(δ j,l )[Âl , [Â j, Ô]]

+
K∑

j,l=1

Im(δ j,l )[B̂l , [Â j, Ô]]

+
K∑

j,l=1

Im(δ j,l )[Âl , [B̂ j, Ô]]

+
K∑

j,l=1

Re(δ j,l )[B̂l , [B̂ j, Ô]]

⎞
⎠

= − 1

2h̄

K∑
j=1

[Â j, [Â j, Ô]] + [B̂ j, [B̂ j, Ô]]

=L1[Ô],

because
∑K

k=1 Wk, jW ∗
k,l = δ j,l , i.e., W is unitary.

2. Invariance of L2 and L3

On the one hand, we have

K∑
k=1

[L̂′
k, (L̂′

k )†] =
K∑

j,l=1

K∑
k=1

Wk, jW
∗

k,l L̂ j L̂
†
l

−
K∑

j,l=1

K∑
k=1

Wk, jW
∗

k,l L̂
†
l L̂ j

=
K∑

j=1

L̂ j L̂
†
j −

K∑
j=1

L̂†
j L̂ j

=
K∑

j=1

[L̂ j, (L̂ j )
†].

Therefore, we obtain

L′
2[Ô] = 1

2h̄

K∑
k=1

1

2
{[L̂′

k, (L̂′
k )†], Ô}

= 1

2h̄

K∑
k=1

1

2
{[L̂k, L̂†

k ], Ô} = L2[Ô].

On the other hand, we have

K∑
k=1

L̂′
kÔ(L̂′

k )† =
K∑

k=1

∑
j

Wk, j L̂ j Ô
∑

l

W ∗
k,l L̂

†
l

=
K∑

j,l=1

K∑
k=1

Wk, jW
∗

k,l L̂ j ÔL̂†
l

=
K∑

j=1

L̂ jÔL̂†
j .

A similar result is obtained for
∑K

k=1(L̂′
k )†ÔL̂′

k =∑K
k=1 L̂†

k ÔL̂k . Therefore, we obtain

L′
3[Ô] = 1

2h̄

K∑
k=1

(L̂′
kÔ(L̂′

k )† − (L̂′
k )†ÔL̂′

k )

= 1

2h̄

K∑
k=1

(L̂kÔL̂†
k − L̂†

k ÔL̂k ) = L3[Ô].

APPENDIX B: PROOF OF EQ. (21)

Let Ûδθ be a unitary operator describing the evolution of
the state of a system with respect to a parameter δθ = θ −
θ0, i.e., ρ̂θ = Ûδθ ρ̂θ0 Û †

δθ with Ûδθ Û †
δθ = Û †

δθ Ûδθ = 1̂ the unit
operator, Û0 = 1̂, and θ0 a fixed value.

Let us consider the quantum relative entropy of the state ρ̂θ

from ρ̂θ0 that serves as a reference,

S
[
ρ̂θ‖ρ̂θ0

] = Tr
(
ρ̂θ

(
ln ρ̂θ − ln ρ̂θ0

))
. (B1)

Notice that the quantum relative entropy is positive and zero,
its minimum with respect to θ , if and only if ρ̂θ = ρ̂θ0 . Thus,
both the relative entropy and its first derivative with respect to
θ vanishes at θ = θ0.

In order to obtain expression (21), we have to calculate the
second derivative of the quantum relative entropy at θ = θ0.

The first derivative of the relative entropy is given by

d

dθ
S
[
ρ̂θ‖ρ̂θ0

] = Tr

(
d ρ̂θ

dθ
(ln ρ̂θ − ln ρ̂θ0 )

)

+Tr

(
ρ̂θ

d

dθ
ln ρ̂θ

)
. (B2)

Because Ûδθ is unitary, ln ρ̂θ = Ûδθ ln ρ̂θ0 Û †
δθ . Thus,

d

dθ
ln ρ̂θ = dÛδθ

dθ
ln ρ̂θ0 Û †

δθ + Ûδθ ln ρ̂θ0

dÛ †
δθ

dθ
. (B3)

Now, tracing Eq. (B3) and using successively (i) both
ρ̂θ = Ûδθ ρ̂θ0Û

†
δθ and Û †

δθÛδθ = 1̂, (ii) Tr(AB) = Tr(BA) (judi-
ciously) together with ÛδθÛδθ = 1̂, (iii) the fact that ρ̂θ0 and
ln ρ̂θ0 commute, and (iv) ÛδθÛδθ = 1̂ so that its derivative
vanishes, we obtain

Tr

(
ρ̂θ

d

dθ
ln ρ̂θ

)
= Tr

(
Ûδθ ρ̂θ0 Û †

δθ

dÛ †
δθ

dθ
ln ρ̂θ0 Û †

δθ

)

+Tr

(
Ûδθ ρ̂θ0 ln ρ̂θ0

dÛ †
δθ

dθ

)

= Tr

(
ln ρ̂θ0 ρ̂θ0 Û †

δθ

dÛ †
δθ

dθ

)

+Tr

(
ρ̂θ0 ln ρ̂θ0

dÛ †
δθ

dθ
Ûδθ

)
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= Tr

(
ρ̂θ0 ln ρ̂θ0

d (Û †
δθÛδθ )

dθ

)
= 0. (B4)

Consequently, the second term of Eq. (B2) vanishes and thus
the first derivative of the relative entropy reduces to

d

dθ
S[ρ̂θ‖ρ̂θ0 ] = Tr

(
d ρ̂θ

dθ
(ln ρ̂θ − ln ρ̂θ0 )

)
, (B5)

which indeed vanishes at θ = θ0.
Now differentiating expression (B5), the second derivative

of the relative entropy is written

d2

dθ2
S[ρ̂θ‖ρ̂θ0 ] = Tr

(
d2ρ̂θ

dθ2
(ln ρ̂θ − ln ρ̂θ0 )

)

+Tr

(
d ρ̂θ

dθ

d

dθ
ln ρ̂θ

)
,

where the first term on the rhs vanishes at θ = θ0, so that

d2

dθ2
S[ρ̂θ‖ρ̂θ0 ]

∣∣∣∣
θ=θ0

= Tr

(
d ρ̂θ

dθ

d

dθ
ln ρ̂θ

)∣∣∣∣
θ=θ0

. (B6)

Let Ĉδθ be the Hermitian generator of the unitary transforma-
tion Ûδθ , that is,

Ĉδθ = −ı
dÛ †

δθ

dθ
Ûδθ = ı Û †

δθ

dÛδθ

dθ
. (B7)

Then, we use expression (B3) for d
dθ

ln ρ̂θ , and similarly for
d

dθ
ρ̂θ (just replace ln ρ̂θ by ρ̂θ ) so that, after some algebra

in the same line as previously (property of the trace, unitary
property of Ûδθ , commutativity of ln ρ̂θ0 and ρ̂θ0 , together with

dÛ †
δθ

dθ

dÛδθ

dθ
= dÛ †

δθ

dθ
Ûδθ Û †

δθ
dÛδθ

dθ
), one obtains

Tr

(
d ρ̂θ

dθ

d

dθ
ln ρ̂θ

)
= Tr(ρ̂θ0 [Ĉδθ , [Ĉδθ , ln ρ̂θ0 ]]).

(B8)
Taking Eq. (B8) at θ = θ0 where we define Ĉ0 = Ĉδθ |θ=θ0 and
plugging the expression into (B6), we finally achieve Eq. (21).

APPENDIX C: L1[Ô], L2[Ô], AND L3[Ô] IN GDSS

Let us start writing Âk = 1
2 (L̂k + L̂†

k ) = Re(l†
k )Jx̂ =

Re(ak )ᵀp̂ − Re(bk )ᵀq̂ and B̂ = 1
2ı

(L̂k − L̂†
k ) = Im(l†

k )Jx̂ =
Im(ak )ᵀp̂ − Im(bk )ᵀq̂ with L̂k in Eq. (26) and lᵀk = (aᵀ

k , bᵀ
k ).

Therefore, using these expressions in Eq. (16a) we obtain

L1[Ô] = − 1

2h̄

K∑
k=1

n∑
l, j=1

(Re((ak )l )Re((ak ) j )[ p̂l , [ p̂ j, Ô]]

− Re((bk )l )Re((ak ) j )[q̂l , [ p̂ j, Ô]]

− Re((ak )l )Re((bk ) j )[ p̂l , [q̂ j, Ô]]

+ Re((bk )l )Re((bk ) j )[q̂l , [q̂ j, Ô]]).

Now, using the identity Re(zw∗) = Re(z)Re(w) +
Im(z)Im(w) we get to the final result,

L1[Ô] = 1

2

2n∑
s=1

2n∑
m=1

(
h̄

K∑
k=1

Re((lk )∗s (lk )m)

)

× −1

h̄2 [(Jx̂)m, [(Jx̂)s, Ô]]

= 1

2

2n∑
s=1

2n∑
m=1

(h̄Re(Γ))s,m(Ĥ[Ô])m,s

= 1

2
tr(DĤ[Ô]). (C1)

Here, we used the definition in Eq. (33a), that D =
h̄Re(Γ), and we define the matrix notation: ([ŷ, [ŷᵀ, Ô]])sm =
[ŷs, [ŷm, Ô]].

In the following we will need the identity

x̂ᵀQÔx̂ =
n∑

j=1

n∑
l=1

Q jl x̂ j Ôx̂l =
n∑

j=1

n∑
l=1

Q jl (−[x̂l , [x̂ j, Ô]] + {x̂l x̂ j, Ô} − x̂l Ôx̂ j − ı h̄Jl j Ô)

= − h̄2tr(QJĤÔJ) + tr(Q{xxT , Ô}) − tr(QxÔxT ) − ı h̄tr(QJ)Ô

= − h̄2tr(QJĤ[Ô]J) + h̄tr(QV̂) Ô + h̄ Ô tr(QV̂) − tr(Qx̂Ôx̂ᵀ), (C2)

where we used the canonical commutation relation [x̂ j, x̂l ] =
ı h̄(J) j,l 1̂ and the identity

x̂x̂ᵀ = h̄
(
V̂ + ı

2
J1̂

)
, (C3)

with V̂ the operator matrix V̂ = (x̂x̂ᵀ + (x̂x̂ᵀ)ᵀ)/2. In the case
when Ô = 1̂ we have

x̂ᵀQx̂ = 2h̄tr(QV̂) − tr(Qx̂x̂ᵀ)

= h̄tr(QV̂) − ı h̄

2
tr(QJ)1̂, (C4)

using Eq. (C3). Identities in Eqs. (C2) and (C4) are valid for
arbitrary matrices Q, but the interesting case here is when Q
is antisymmetric. Indeed, when Q is antisymmetric, because
JĤ[Ô]J and V̂ are symmetric, we have

x̂ᵀQÔx̂ = −tr(Qx̂Ôx̂ᵀ), (C5)

x̂ᵀQx̂ = − ı h̄
2 tr(QJ)1̂. (C6)
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Using the definition for L2 in Eq. (16a), we have

L2[Ô] = 1

2h̄

K∑
k=1

1

2
{L̂kL̂†

k − L̂†
k L̂k, Ô}

= 1

2h̄

K∑
k=1

1

2
{−x̂ᵀJlkl†

kJx̂ + x̂ᵀJl∗k lᵀk Jx̂, Ô}

= 1

2h̄

{
x̂J

1

2

(
K∑

k=1

l∗k lᵀk −
K∑

k=1

lkl†
k

)
Jx̂ᵀ, Ô

}

= ı

2h̄

{
x̂J

(
Γ∗ − Γ

2ı

)
Jx̂ᵀ, Ô

}

− ı

2h̄
{x̂JCJx̂ᵀ, Ô}

= − ı

2h̄

{
−ı

h̄

2
tr(JCJ2)1̂, Ô

}
= 1

2
tr(JC)Ô, (C7)

where we used C = (Γ∗ − Γ)/2ı, that J2 = −1, and the iden-
tity in Eq. (C6).

For L3 in Eq. (16c) we can write

L3[Ô] = 1

2h̄

K∑
k=1

(L̂kÔL̂†
k − L̂†

k ÔL̂k )

= 1

2h̄

K∑
k=1

x̂ᵀJ(−lkl†
k + l∗k lᵀk )JÔx̂

= 1

2h̄
x̂ᵀJ(−Γ + Γ∗)JÔx̂ = − ı

h̄
x̂ᵀJCJÔx̂

= ı

h̄
tr(JCJxÔxᵀ). (C8)

But, x̂Ôx̂T = −x̂[x̂T , Ô] + x̂x̂T Ô where we define the matrix
notation: (ŷ, [ŷᵀ, Ô])sm = ŷs, [ŷm, Ô]. Therefore,

L3[Ô] = ı

h̄
tr(JCJxÔxT )

= − ı

h̄
tr(JCJx̂[x̂T , Ô]) + ıtr(JCJÔV̂) − 1

2
tr(JCJ2Ô)

= − ı

h̄
tr(CJx̂[x̂T , Ô]J) + ıÔtr(JCJV̂) + 1

2
tr(JC)Ô

= tr(CJM̂[Ô]) + L2[Ô], (C9)

where we define the superoperator matrix M̂[Ô] =
ı
h̄ (x)[(Jx)ᵀ, Ô] and we used Eq. (C7), that tr(JCJV̂) = 0,
J2 = −1, and

(Jx̂[x̂T , Ô]J)l j =
2n∑

r=1

2n∑
s=1

Jlr x̂r[x̂s, Ô]Js j

=
2n∑

r=1

2n∑
s=1

Jlr x̂r[Js j x̂s, Ô]

= −
2n∑

r=1

Jlr x̂r

[
2n∑

s=1

J jsx̂s, Ô

]

= − (Jx̂[(Jx̂)T , Ô])l j . (C10)
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