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In this paper, we study the exact dynamics of open quantum systems in the presence of dissipationless
localized bound states and periodic driving fields. We show that different from the static adjustment of the
system parameters to control the existence of localized bound states in open quantum systems, the periodic
driving can either modulate the dynamics of the existing localized bound states or make some of them disappear
due to the sideband generation from the driving that makes electrons transit between the localized bound states
and continuous states. This analysis is also different from the widely used Floquet theory in the study of the
driving effect on open system dynamics. We also find the conditions for the protection of the dissipationless
localized bound states from the driving and for the manipulation of quantum coherence between localized bound
states using the driving. The results for the dynamics of localized bound states have a potential application in
controlling the quantum state against decoherence for the sake of its sensitivity to the fundamental frequency of
the driving field and its strength.
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I. INTRODUCTION

Quantum decoherence, which is ubiquitous in all kinds of
physical systems, acts as a key obstacle in implementing novel
quantum information protocols. As a consequence, ever since
quantum information sciences were proposed, controlling
quantum decoherence has been a lasting and hard topic [1].
After decades of study, the understanding of decoherence is
now much deeper [2,3]. Physicists have gone far beyond the
Born-Markov master equation [4], the Gorini–Kossakowski–
Sudarshan (GKS)-Lindblad master equation [5,6], and the
truncated Nakajima-Zwanzig master equation [7–9], which
are either only applicable in the weak-coupling regime or
just an approximation to the practically unsolvable formal
equation. The exact master equations for quantum Brownian
motion [10,11], for electronic and photonic open quantum
systems [12–16], and for hybrid topological superconducting
systems [17,18], as well as those that are mathematically
equivalent to them, have been successfully derived.

In the past 10 years, we have systematically studied a
large class of open quantum systems incorporating quantum
transport (see the reviews [3,19] and the references therein)
and have obtained the exact master equations as well as their
solutions expressed in terms of the nonequilibrium Green’s
functions [12–16]. It has been proved that the existence
of dissipationless localized bound states (localized modes)
which are induced by the structured system-environment
interactions [15] offers deep understanding of how the de-
coherence of open quantum systems can be suppressed with
these localized bound states. They form a decoherence-free
subspace without the additional requirement of symmetries
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and therefore have potential applications in practical quantum
information storage and processing.

On the other hand, many methods to control decoherence,
ever since the proposal of spin echoes [20,21], have been
developed, such as the use of dynamical decoupling [22–27]
and the introduction of spatial periodicity [28–33]. In addi-
tion to the above protocols, it has also long been confirmed
that driving in the open systems can impose significant ef-
fects on decoherence [34–42]. It has been used to achieve
quantum control and decoherence-rate manipulation of su-
perconducting qubits [27,36,43,44] and quantum dots [40,45–
48]. Theoretic methods of dealing with this problem, such as
the spectral filtering theory [49–53] and those based on the
Floquet theory [54–56], have also been proposed. Considering
the possibility of localized bound states serving as quantum
memory [42], localized bound states under periodic driving
may also hold potential not only for quantum information
processing against decoherence but also for quantum memory
protocols.

In this paper, we shall focus on the quantum-dot-based
quantum protocols which have been recognized as the
earliest promising candidate for solid-state quantum com-
puting [57,58]. Quantum-dot-based quantum computing has
been developing quickly recently, and much progress has been
made in it [45–48,59]. For example, all-electric control with
high fidelity has been fulfilled by several groups [46,60–63],
making the electron charge- and spin-state controls feasible
in experiments. In this work, we shall extend our systematic
works [12–16] on open quantum systems to the case in which
time-periodic driving is exerted on the dissipationless local-
ized bound states in such systems. We analyze the influences
of the driving field on the dynamics of localized bound states
based on the theoretical analysis and also numerical calcu-
lations. The framework is based on the picture of electron
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transition and energy transfer between the localized bound
state and the continuous states induced by the driving in
the real-time domain. It is different from the Floquet the-
ory [41,54–56] and also different from the theory given in
Ref. [40] except for the sideband generation.

The rest of the paper is organized as follows. In Sec. II,
we introduce the system with which we are concerned and
the general framework we use for the study of decoherence
dynamics through the nonequilibrium Green’s functions that
was obtained in our exact master-equation formalism. We
analyze the major effects of the driving field applied to open
quantum systems in general and the dynamical influence on
the localized bound states of open quantum systems in par-
ticular in this section. It shows that the driving applied to the
system can induce multiple electron transitions between the
localized bound states and the scattering modes as a conse-
quence of sideband generation. In Sec. III, we numerically
study the decoherence dynamics of the open quantum sys-
tem under weak periodic driving and theoretically analyze
various possible changes to the decoherence dynamical prop-
erties induced by the driving. We show that periodic driving
can usually generate sidebands and then induce electrons in
the dissipationless localized bound state to dissipate as well.
However, by properly adjusting the frequencies of the periodic
driving field, such dissipation can be avoided, and quantum
coherence between localized bound states can be generated.
Section IV shows that when the driving field becomes strong,
the dynamical features demonstrated by the weak periodic
driving can be significantly enhanced. The conclusion and the
potential applications are given in Sec. V.

II. THE GENERAL FORMALISM

We shall focus on a class of electronic open quantum
systems driven by a periodic external field. An exemplary
schematic setup of such a device is demonstrated in Fig. 1(a).
For the sake of simplicity and without loss of generality, we
consider the system containing only a single energy level.
The general formulation dealing with the exact dynamics of
such systems can be found in our previous works [13,15]. The
corresponding total Hamiltonian can be modeled as

Htot (t ) = [εs + εd (t )]b†b +
∑
αk

εαkb†
αkbαk

+
∑
αk

(Vαkb†bαk + H.c.). (1)

The first term is the system Hamiltonian in which εs is the sys-
tem on-site energy; εd (t ) is an external periodic driving field
acting as the time-dependent potential of the central island
(quantum dot) with fundamental period T , εd (t + T ) = εd (t );
and b (b†) is the electron annihilation (creation) operator of
the system. The second term is the environment Hamiltonian,
where εαk is the single-particle energy of mode k in reservoir
α; in addition, bαk and b†

αk are the corresponding electron
annihilation and creation operators in the reservoir, respec-
tively. The last term is the system-reservoir coupling, with
Vαk standing for the coupling strength between the system
and mode k of reservoir α. Equation (1) is also a prototype
in mesoscopic physics that describes the quantum transport of

FIG. 1. (a) Schematic setup of the quantum-dot device described
by Eq. (1), with the two leads serving as the two reservoirs α = 1, 2.
The energy level of the quantum dot can be tuned through the dot
gate Vd . The coupling strengths between the quantum dot and leads
are also controllable through gates VG1 and VG2. The bias voltage VBS

to the two leads can tune the chemical potentials (Fermi surfaces)
of two leads. As we show, with the transformation of Eq. (4), the
dynamics of quantum-dot system with the driving field applied to the
leads or to the gates VG1 and VG2 is equivalent to the driving applied
to the dot gate described by Eq. (2). (b) Schematic plot of the spectral
densities (associated with the two leads and their couplings with the
central quantum dot) and the possibly present localized bound states.
When the two spectral densities overlap, the localized bound state εl2

cannot occur.

a single-level quantum dot coupled to several leads, and the
driving field εd (t ) can be conveniently implemented by exert-
ing a time-dependent gate voltage on the quantum dot [19,64].
As we shall show next, the driving field can also be applied
to the reservoirs or the tunneling barriers between the system
and the reservoirs, for which the resulting dynamics of the
quantum systems are equivalent.

Based on the exact master-equation formalism [12–16], the
decoherence dynamics of the system can be simply explored
by the damping behavior of the spectral Green’s function
u(t, t0) = 〈{b(t ), b†(t0)}〉, where b(t ) and b†(t0) are operators
in the Heisenberg picture and {·, ·} denotes the anticommuta-
tor. Following the equation of motion approach, it is easier to
find that u(t, t0) satisfies the integro-differential equation [12]

d

dt
u(t, t0) + i[εs + εd (t )]u(t, t0) +

∫ t

t0

dτg(t, τ )u(τ, t0) = 0,

(2)

subjected to the initial condition u(t0, t0) = 1. Here,
g(t, τ ) = ∫

dε
2π

J (ε)e−iε(t−τ ) is the time correlation func-
tion between the system and the reservoirs, and J (ε) =
2π

∑
α=1,2;k |Vαk|2δ(ε − εαk ) → J1(ω) + J2(ω) specifies the

corresponding spectral densities shown in Fig. 1(b). In our
exact master-equation formalism [3,12–15], it is shown that
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the dissipation dynamics (or the relaxation dynamics) is fully
determined by the time-dependent dissipative rate:

γ (t, t0) = −Re

[
d

dt
ln u(t, t0)

]
. (3)

Thus, how the decoherence dynamics is controlled by the driv-
ing is completely described by the time evolution of u(t, t0).

Furthermore, if we make a transformation,

u(t, t0) = u′(t, t0) exp

{
−i

∫ t

t0

dt ′εd (t ′)
}
, (4)

then one can find from Eq. (2) that

d

dt
u′(t, t0) + iεsu

′(t, t0) +
∫ t

t0

dτg′(t, τ )u′(τ, t0) = 0, (5)

where g′(t, τ ) = g(t, τ ) exp{i ∫ t
τ

dt ′εd (t ′)}. Equation (5) de-
scribes the decoherence dynamics of the same system,
but the driving field is now applied to the leads directly,
i.e., εαk → εαk − εd (t ) [13], which has often been used
in the manipulation of electron charge and spin states in
quantum-dot-based quantum computing devices [45–48,59–
63]. Meanwhile, Eq. (5) with the above two-time correlation
function g′(t, τ ) between the system and the reservoirs also
corresponds to a special driving field (such as periodic kick
pulses) being applied directly to the tunneling barriers be-
tween the system and the reservoirs for the electron transport
manipulation in the experiments [65–68]. This shows that the
Green’s function of Eq. (2) with a simple driving field pos-
sesses the universality for several different control manners of
decoherence dynamics in electronic open systems.

The periodic driving field εd (t ) can be separated into two
parts. One is of average strength, and the other is time depen-
dent and of zero-average in a period T, i.e.,

εd (t ) = εd + δεd (t ), (6)

with εd = 1
T

∫ t+T
t dτεd (τ ). Actually, the first part εd can

be simply counted as the system on-site energy modulation.
Without the δεd (t ) part, the tuning of εd can make the open
system generate localized bound states [15]. Explicitly, for
vanishing δεd (t ), the spectral Green’s function is denoted as
u0(t, t0), which satisfies the equation

d

dt
u0(t, t0) + i[εs + εd ]u0(t, t0) +

∫ t

t0

dτg(t, τ )u0(τ, t0) = 0.

(7)

The exact solution of u0(t, t0) has the analytic form [15]

u0(t, t0) =
∫

dε

2π
D(ε)e−iε(t−t0 ), (8)

where D(ε) is the modification of the system energy level as a
combined contribution from the coupling to the reservoir and
from the static part εd of the driving field. The form of D(ε)
is given explicitly by

D(ε) = 2π
∑

i

Zi(ε)δ(ε − εli )

+ J (ε)

[ε − (εs + εd ) − 	(ε)]2 + J2(ε)/4
, (9)

where 	(ε) = P[
∫

dε′
2π

J (ε′ )
ε−ε′ ] is the self-energy correction to

the system, with P denoting the principal value of the integral,

(ε) = ∫

dε′
2π

J (ε′ )
ε−ε′+i0+ = 	(ε) − i

2 J (ε) being the self-energy
correction of the system, and Zi(ε) = [1 − 
′(ε)]−1.

Obviously, Eq. (8) contains two contributions, the dissipa-
tionless oscillations arising from the localized bound states
with energies εli and the nonexponential decays arising from
the energy-level broadening [15]. The localized bound state
arises from the energy shift contributed by the coupling be-
tween the system and the environment as well as the static
part εd of the driving field. The total energy shift pushes the
renormalized energy of the system to allocate in the band
gaps or in the vanishing frequency regimes of the spectral
density such that the renormalized energy obeys the following
condition [15]:

εli − (εs + εd ) − 	(εli ) = 0, J (εli ) = 0. (10)

Such renormalized energy states become effectively decou-
pled from the environment and therefore become dissipation-
less or decoherence free; see the schematic plot of the spectral
densities and the possible localized bound states in Fig. 1(b).

The existence of localized bound states can be manipu-
lated by the modulation of the system on-site energy through
the static part εd of the driving field to satisfy Eq. (10). In
other words, one can control the static part of the driving
field to generate localized bound states and thereby suppress
decoherence. Also note that if the system couples to multi-
ple reservoirs, the above concept of dissipationless localized
bound states can be directly applied to the case of a system
coupled to multiple reservoirs. This is because the total spec-
tral density is just the summation of the spectral densities of
all reservoirs, as shown after Eq. (2).

In the following sections, we shall demonstrate that the
time-dependent part δεd (t ) plays an intrinsically different role
in modulating the system dynamics in comparison with that
given by the static part εd . To illustrate the effect of δεd (t ) in
the driving field more clearly, we transform the total Hamil-
tonian to a new basis. Formally, the time-independent part
of the total Hamiltonian can be diagonalized. Without loss
of generality, we may consider only one reservoir, namely,
a dot system coupled to a single lead [69,70], so that the
index α in Eq. (1) can be dropped. The relation between
the diagonalized eigenmodes and the original modes of the
Hamiltonian reads [42,71,72]

c†
l = √

Zl b
† + √

Zl

∑
k

Vk

εl − εk
b†

k, (11a)

c†
k = b†

k + VkU (εk )

[
b† +

∑
k′

Vk′

εk − εk′ + i0
b†

k′

]
, (11b)

where c†
l and c†

k are the creation operators of the lth localized
bound state and scattering mode k, respectively, and U (εk ) =
1/[εk − (εs + εd ) − 
(εk )] is the spectral Green’s function
in the energy domain. The above solution shows that the
localized bound state is a superposition of the original system
state with all the reservoir states. In this new basis, the total
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Hamiltonian under driving can be written as

Htot (t ) =
∑

l

εl c
†
l cl +

∑
k

ε′
kc†

kck + δεd (t )

[∑
ll ′

λll ′c
†
l cl ′

+
∑

lk

[λlkc†
l ck + H.c.] +

∑
kk′

λkk′c†
kck′

]
, (12)

where the coefficients λll ′ , λlk , and λkk′ are determined by the
transformation in Eq. (11) and can be explicitly written as

λll ′ = √
ZlZl ′ , (13a)

λlk = √
ZlVkU (εk ), (13b)

λkk′ = V ∗
k Vk′U ∗(εk )U (εk′ ). (13c)

As a short summary of this section, we show that the static
component of the driving field can enhance or weaken the
localized bound-state effect in controlling the decoherence.
However, the time-dependent part δεd (t ) plays an intrinsically
different role in manipulating the decoherence dynamics.
Equation (12) shows explicitly that after the diagonalization,
the localized bound state and the continuous states are de-
coupled so that the localized bound states are dissipationless,
which is alternative proof of the dissipationlessness of the
localized bound states. However, the driving δεd (t ) applied
to the system induces the transitions between the localized
bound states and the scattering modes in the total system, as
shown explicitly by Eq. (12). This mechanism leads to the
formation of sidebands [13,40,73,74]. Naturally, the form of
δεd (t ) can heavily influence the dynamics of the localized
bound states in the open quantum system. In the following
two sections, we shall discuss these effects in the real-time
domain. One section is focused on the weak-driving case,
while the other is focused on the case of strong driving.

III. WEAK DRIVING FIELD

In the following, we shall illustrate that the behavior of
u(t, t0) is mainly determined by the characteristics of u0(t, t0)
and the spectrum of the driving field for the weak-driving
case. The periodic driving field can always be decomposed
as oscillations of different frequencies, i.e.,

δεd (t ) =
∞∑

n=1

[An sin(ωnt ) + Bn cos(ωnt )], (14)

where ωn = 2nπ/T and An and Bn are the amplitudes of the
oscillations. When the driving is weak, i.e., all the coefficients
An and Bn are small, the effects of many terms in the time-
dependent part

δεd (t )

[∑
ll ′

λll ′c
†
l cl ′ +

∑
lk

[λlkc†
l ck + H.c.] +

∑
kk′

λkk′c†
kck′

]

(15)

are negligible because of the energy conservation, which is
similar to the case of atom-photon interactions in quantum
optics. To be explicit, generally speaking, the terms involving
e−iωnt c†

mcm′ or its Hermitian conjugate, with energy values
satisfying h̄ωn = εm − εm′ , play a dominate role in the driving

FIG. 2. The possible dominate processes involved when the
driving is weak; they include (a) the first-order, (b) second-order,
(c) third-order, and (d) higher-order processes with energy exchanges
of a single quantum, two quanta, three quanta, and more quanta,
respectively.

field. These terms represent the process of electron transi-
tion between modes m and m′ by absorbing energy from
or emitting energy to the driving field [see Fig. 2(a)], and
m (m′) stands for either the localized bound state l or the
scattering state k of the reservoir. If no term in Eq. (15)
satisfies the above condition, the processes, which are first or-
der, are forbidden. In this case, higher-order processes should
be taken into account. For instance, when the driving field
εd (t ) has a single frequency ω and the terms e−iωt c†

mcm′ and
eiωt c†

m′cm, with εm − εm′ = nh̄ω (n 	= 1), exist in the series in
Eq. (15), higher-order processes in Figs. 2(b)–2(d) play an
important role and determine the main properties of the deco-
herence dynamics. All these processes in the real-time domain
correspond to the formation of sidebands, which effectively
modifies the electron tunnelings between the quantum dot and
the reservoirs through the driving [13,40,73,74].

In order to demonstrate the above picture of electron tran-
sitions between the localized bound states and the scattering
states in the reservoir that are induced by the driving, we
numerically discuss in the following three different scenarios:
(i) no localized bound states, (ii) one localized bound state,
and (iii) multiple localized bound states in u0(t, t0). Without
loss of generality, we use a typical example in which the
system-environment interaction is described by the spectral
density function [75]

J (ε) =
{

η2
√

(2V0)2 − (ε − ε0)2 |ε − ε0| � 2V0,

0 otherwise.
(16)

This spectral density describes the quantum dot coupling to a
reservoir made of a one-dimensional tight-binding chain, with
ε0 standing for the on-site electron energy in the chain, V0

quantifying the electron hopping rate between different sites,
and ηV0 characterizing the system-reservoir coupling strength.
Due to the vanishing of the spectral density for |ε − ε0| > 2V0,
there may be zero, one, or two localized bound states in
u0(t, t0) [15]. In the following, we set t0 = 0 and ε0 = 0, and
V0 is taken as the basic unit. If not otherwise specified, the
pulse shape of the driving field δεd (t ) is set as the sinusoidal
wave

δεd (t ) = A sin(2πt/T ), (17)

where A denotes the driving-field amplitude and T stands for
its fundamental period.

If there is no localized bound state in u0(t, t0), no time-
dependent localized bound state can be generated by means
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FIG. 3. Plots of |u0(t, t0)| and |u(t, t0)| under periodic driving
with different fundamental periods, (a) T = 1h̄/V0 and (b) T =
10h̄/V0, in the system-reservoir coupling region in which no lo-
calized bound state can exist. The driving fields are both of the
sinusoidal type with amplitude A = 0.5V0.

of the periodic drive. In Fig. 3, we set η = 0.8 and εd = V0 so
that no localized bound state exists in u0(t, t0). In Figs. 3(a)
and 3(b), the driving field is the sine wave in Eq. (17), with
the amplitudes being the same but the fundamental periods
varying greatly. When T is short, the influence of the driving
is quite limited, such that the evolution of u(t, t0) is simi-
lar to that of u0(t, t0) [see Fig. 3(a)]. When T is long, the
fundamental frequency ω = 2π/T is much smaller than the
bandwidth of the spectral density. As a consequence, many
more transitions among the modes in the energy band (in
comparison with the short-T case) happen, which makes the
driving field exert more influence on the open system dy-
namics. That is, it induces non-negligible oscillations around
u0(t, t0) [see Fig. 3(b)]. These oscillations result in positive
and negative damping rates in time as a manifestation of the
non-Markovian memory effect [15].

In Fig. 4, we set η = 1 and εd = 2.5V0, which guarantees
one single localized bound state in u0(t, t0) (see the solid
red lines denoting the localized bound-state energy in the
right panels). In Figs. 4(a)–4(d), the pulse shapes are sinu-
soidal [see Eq. (17)], while in Fig. 4(e), the pulse is a square
wave [see Eq. (18)]. From Figs. 4(a)–4(d), the frequency of
δεd (t ) increases. In Fig. 4(a), the sideband frequency εl +
nh̄ω (where n is an integer) is not formed [has no overlap
with the spectral density function J (ε)]; thus, no electron
transition can happen between the localized bound state and
the continuous band. As a result, the localized bound state
is not influenced much by the periodic field, and the dis-
sipationless feature is maintained; that is, u(t, t0) does not
dissipate to zero. In Fig. 4(b), the sideband frequency εl − h̄ω

is formed at the edge of J (ε), which makes the electron in
the localized bound state emit an energy h̄ω and jump to
the continuous energy band. As a result, the driving field
generates a dissipation channel, making u(t, t0) finally decay
to zero. However, because the value of the spectral density
is small near the band edge, |u(t, t0)| decays slowly to zero.
In Fig. 4(c), the sideband frequency εl − h̄ω locates in the
middle of the reservoir energy band, where the value of the
spectral density is large, so that the corresponding dissipation
(tunneling) becomes strong. As a result, the electron transits
quickly from the localized bound state into the continuous
band, and u(t, t0) decays to zero very quickly, as shown in
Fig. 4(c). In Fig. 4(d), the sideband frequency εl − h̄ω is not
in the range of J (ε), but the higher-order sideband frequencies
εl − 2h̄ω, . . . , εl − 7h̄ω are formed within the original reser-

FIG. 4. Plots of |u0(t, t0 )| and |u(t, t0)| under a weak sinusoidal-
wave driving field with different fundamental periods, (a) T =
1.25h̄/V0, (b) T = 1.32h̄/V0, (c) T = 2h̄/V0, and (d) T = 10h̄/V0 ),
and (e) the weak square-wave driving field with T = 10h̄/V0. We
also choose the system-reservoir coupling region with only a single
localized bound state in the system. The left panels demonstrate the
evolution of |u0(t, t0 )| and |u(t, t0)|, while the right ones are illustra-
tions of the spectra, with the green curve standing for the plot of J (ε)
in units of V0 and the red solid line and red dashed lines being plots
of ε = εl and the sideband frequency ε = εl + nh̄ω, respectively.
(a)–(d) demonstrate typical cases with no sideband, εl + nh̄ω; one
sideband, εl − h̄ω, at the edge; the strong sideband, εl − h̄ω; and
higher-order sideband frequencies, respectively. In all the plots, the
weak-driving-field amplitude A = 0.5V0.

voir spectral density. Consequently, the electron can transit
from the localized bound state into the continuous band by
emitting subsequently two, three, and four energy quanta and
so on due to the driving. This case involves several high-order
processes, so |u(t, t0)| decays gradually with smaller transi-
tion rates compared to the case in Fig. 4(c). This picture can
be further supported by comparing Fig. 4(e) with Fig. 4(d).
In these two plots, parameters A and T are the same, but the
driving wave forms are different. In Fig. 4(e), we take δεd (t )
to be a square wave,

δεd (t ) =
{

A nT � t �
(
n + 1

2

)
T,

−A
(
n + 1

2

)
T � t � (n + 1)T .

(18)
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FIG. 5. Plots of |u0(t, t0)| and |u(t, t0)| under a weak driving
field with different fundamental periods: (a) T = 1.25h̄/V0, (b) T =
1.32h̄/V0, (c) T = 2h̄/V0, and (d) T = 2π h̄/(εl1 − εl2 ) in the cou-
pling region with multiple localized bound states in the system. The
conventions of the plots are the same as those in Fig. 4, except
that there are two localized bound states in this case and in the
right panels the series of plots ε = εl1 + nh̄ω and ε = εl2 + nh̄ω are
colored red (light gray) and blue (dark gray), respectively. From (a) to
(c), the fundamental period increases such that in these cases, no
sideband frequency, εli + nh̄ω; a single sideband frequency; and two
sideband frequencies formed. In (d), the fundamental frequency is
chosen so that ω is exactly the energy difference of the two localized
bound states.

Even though the fundamental frequencies are the same, the
driving in Eq. (18) possesses sideband frequency components
2ω, 3ω, . . . , which induces first-order transitions directly. As
a result, the decay is much faster than that in Fig. 4(d).

When there are multiple localized bound states in u0(t, t0),
the phenomena are more abundant. If the localized bound state
li exists to form sidebands εli ± nh̄ω, dissipation induced by
the driving must happen. In Fig. 5, we set the parameters
εd = 0.5V0 and η = 2.5 to generate two localized bound states
in u0(t, t0), with the energy configuration shown in the right
panels. The wave forms of the driving field are all chosen
to be sinusoidal. In Fig. 5(a), sideband εli + nh̄ω (n can be
both positive and negative integers) is not formed. As a result,
the localized bound states cannot exchange energy with the
continuous reservoir spectrum, making them both isolated,
and dissipation does not happen. In other words, the local-
ized bound states can be protected by properly selecting the
fundamental frequency of the driving field. In Fig. 5(b), the
sideband spectrum series of l1 are formed; therefore, only l2
would survive in the long-time limit of u(t, t0). In Fig. 5(c), the
sideband frequencies are valid for both localized bound states.

As a consequence, both localized bound states become dissi-
pative due to the driving, and u(t, t0) decays quickly to zero.
In the special but particularly interesting case in Fig. 5(a),
the fundamental frequency of the driving exactly matches
the energy difference of the localized bound states, and no
sideband is generated. The corresponding dynamics is plotted
in Fig. 5(d). As one can see, not only are both the localized
bound states protected like those in Fig. 5(a), but an obvious
beating character is revealed in the evolution of u(t, t0). In
fact, this could be considered a realization of Rabi oscillation
between the two dissipationless localized bound states. It may
show a different approach for controlling quantum coherence
with the decoherence-free subspace made of localized bound
states for quantum information processing.

As a summary of this section, we show that the time-
dependent (zero-averaged) part of a weak driving field cannot
generate new localized bound states, but it can usually destroy
the dissipationlessness of the existing localized bound states.
This destructive process is mediated by the energy exchanges
between the localized bound state and the continuous energy
states of the reservoir through the formation of sidebands
so that the localized bound state is no longer isolated. The
periodic driving generates sidebands and makes the electrons
in the localized bound state absorb or emit energy from the
driving field and transit to the continuous states so that dis-
sipative channels are forced to open for the localized bound
states as well. However, through proper adjustment of the
frequencies of the periodic driving field, the driving field will
not cause electron transition to occur between the localized
bound state and the continuous energy states. On the contrary,
the electrons can periodically oscillate among localized bound
state(s) through the driving-field control. This could generate
quantum coherence among dissipationless localized bound
states and could provide a practically reliable approach for
decoherence-free quantum information processing.

IV. STRONG DRIVING FIELD

When the driving field is strong, the dynamical picture of
energy transfer seen in the weak driving field is modified.
This is clearly revealed by the phenomena shown in Fig. 6.
To demonstrate the difference between the dynamics for weak
and strong driving fields, we adopt the parameter settings
η = 1 and εd = 2.5V0 (which are the same as those in Fig. 4)
such that only one single localized bound state exists when the
driving δεd (t ) is absent.

In Fig. 6, the fields are all in the sine shape with the ampli-
tude set at A = 5V0, which is much larger than those in Fig. 4.
The fundamental frequencies in the top two plots are the same
as those in Fig. 4. Note that for T = 1.25h̄/V0, the sidebands
εl + nh̄ω are not formed, so no dissipation channel is opened
to the localized bound state, regardless of whether the driving
is strong or weak [see Fig. 6(a)]. Although the modulation of
the localized bound state is obvious when compared with the
dynamics in the weak-driving case, the dissipationless local-
ized bound state is protected. Furthermore, when the sideband
εl − h̄ω forms at the band edge of the reservoir spectrum, the
dynamics of the localized bound state is not very different
from the case without overlaps with the continuous energy
band [compare Figs. 6(a) and 6(b)].
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FIG. 6. Plots of |u0(t, t0 )| and |u(t, t0 )| under a strong driving
field with different fundamental periods, (a) T = 1.25h̄/V0, (b) T =
1.32h̄/V0, and (c) T = 1.405h̄/V0, in the coupling region with only
one localized bound state in the system. The strong-driving ampli-
tude A = 5V0. The driving field is a sinusoidal wave, and the results
demonstrate the cases in which the energy value εl − h̄ω is around
the spectral band edge of the reservoir.

On the other hand, the dynamics of the localized bound
state given in Fig. 6(b) is significantly different from the
dynamics for the weak driving [compare with Fig. 4(b)]. This
shows that for strong driving, even though electrons can transit
from the localized bound state to the spectral edge state of
the reservoir, no dissipation happens, and the dissipationless
localized bound state is well protected, as shown in Fig. 6(b).
This is because the dissipation of the spectral edge state of
the reservoir is weak (the value of the spectral density is
small for the edge states) but the driving field is very strong;
as a result, electron transitions between the localized bound
state and the reservoir spectral edge state are so fast that
electrons do not have enough time to respond to the dis-
sipation into the reservoir with such weak dissipation. This
decoherence suppression effect from the strong-driving effect
plays a role similar to that in dynamical decoupling proto-
cols [22–27]. This result shows that the picture of electron
transitions induced by the driving can be significantly differ-
ent for the weak and strong driving fields. For strong driving,
the dissipationless localized bound state can be protected
better.

When the fundamental frequency increases further such
that sideband effect with frequency εl − h̄ω becomes strong
[see Fig. 6(c)], the corresponding dissipation for these
reservoir states increases significantly. As a result, the dissipa-
tionlessness of the localized bound state breaks down because
the dissipation time becomes shorter in comparison with the
transition time of electrons between the localized bound state
and the reservoir states. Then the strong driving field can
also result in dissipation. The above results show that strong
driving is more feasible for protecting the dissipationlessness

of the localized bound states with the proper selection of the
driving-field frequency.

V. DISCUSSION AND CONCLUSION

In this work, we studied the dynamics of dissipationless
localized bound states in open quantum systems with periodic
driving-field controls. We presented a general picture of elec-
tron transitions in the system induced by the driving field and
the subsequent decoherence dynamics, which corresponds to
sideband generation from the driving. The driving field can
be decomposed into the static part and the zero-averaged
oscillating part. The static part of the driving can be properly
set to manipulate the existence of the dissipationless localized
bound states against decoherence, while the zero-averaged
part can have totally different effects on the dissipationless lo-
calized bound states depending on the formation of sidebands.
Specifically, the periodic driving field would usually make the
localized bound states decay if sidebands overlapping with
the continuous spectra are generated from the driving. With
the proper selection of the periodic driving-field frequency,
sidebands would not be formed, and the dissipationless lo-
calized bound states not only can be protected but also can
be manipulated to generate further the quantum coherence
between different localized bound states.

The formation of sidebands from the (zero-averaged pe-
riodic) driving that induces dissipations is explained with
real-time electron transition processes between the localized
bound states and the continuous energy states. In the weak-
driving case, it shows that if the electron in a localized bound
state can absorb or release one or several energy quanta
(such as the high-order processes) from the driving field and
transits to the continuous energy band, the sidebands can be
formed. That is, if εl + nh̄ω ∈ B (n is an integer), where B
stands for the continuous spectrum of the reservoir, then the
localized bound states are stimulated to decay. Otherwise,
by properly choosing the frequency of the periodic driving
field such that εl + nh̄ω /∈ B, namely, no sideband is formed,
the dissipationlessness of the localized bound state can be
well protected from the driving. Moreover, if one chooses
the driving frequency to match the energy difference between
the different localized bound states, it can generate quan-
tum coherence between these localized bound states in open
quantum systems. This provides a practically reliable scheme
for the decoherence-free manipulation of quantum states. For
the strong-driving case, such protection and manipulation are
even enhanced, as we have demonstrated in the paper.

In the literature, we found that sideband generation could
also suppress decoherence; see, for example, the spin deco-
herence in the quantum-dot system [40]. As we have shown
in this work, the dissipation induced by the sidebands can
be weakened by making the driving strong and the side-
bands overlap with only the edge of the original reservoir
energy bands. In spin systems, the spin decoherence given by
the dissipation through the original noise channels would be
dominated by the dissipation due to the sidebands, which is
weak compared to the original spin decoherence and can be
considered a decoherence suppression effect. But for local-
ized bound states, which are already dissipationless, there is
nothing to suppress. Thus, the aim of the driving control on the
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dynamics of localized bound states is to avoid the formation of
sidebands from the driving to protect the dissipationlessness
of localized bound states and then to generate the quantum
coherence between the localized bound states.

The localized bound state of open quantum systems is
decoherence free, offering a potential application as a quan-
tum memory protocol, as we showed in a recent work [42].
Using the driving control in nanoelectronic devices, our study
reveals that the dissipationlessness of the localized bound
states in open quantum systems is sensitively related to the
frequency of the periodic driving field and also to the driving
strength as well as the structure of the reservoir spectrum
(noise spectrum). In particular, with the proper choice of the
fundamental frequency ω to avoid sideband generation from
the driving, the driving control offers us a different avenue
for using dissipationless localized bound states for quantum

information storage and manipulation. As a rapidly devel-
oping field of solid-state quantum computation, the scheme
based on all-electric control of electron charge and spin states
in semiconductors is considered promising. The dynamics of
dissipationless localized bound states in open quantum sys-
tems with periodic driving studied in this work is a simple,
but general, solution to the electronic dynamics under control.
It could shed light on further experimental developments in
related phenomena in the future.
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