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Wave functions for high-symmetry, thin microstrip antennas, and two-dimensional quantum boxes
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For a spinless quantum particle in a one-dimensional box or an electromagnetic wave in a one-dimensional
cavity, the respective Dirichlet and Neumann boundary conditions both lead to nondegenerate wave functions.
However, in two dimensions, the symmetry of the box or microstrip antenna is an important feature, the details
of which have often been overlooked in the literature. In the high-symmetry cases of a disk, square, or equilateral
triangle, the wave functions for both boundary conditions are grouped into two distinct classes, which are
one- and two-dimensional representations of the respective point groups, C∞v , C4v , and C3v . Here we present
visualizations of representative wave functions for both boundary conditions and both one- and two-dimensional
representations of those point groups. For the nondegenerate or doubly degenerate one-dimensional represen-
tation wave functions, color contour plots are presented. The nominally doubly degenerate two-dimensional
representation wave functions are presented as common nodal points and/or lines, the patterns of which are
invariant under all operations of the respective point group. The wave functions with the Neumann boundary
conditions have important consequences for the coherent terahertz emission from the intrinsic Josephson
junctions in the high-temperature superconductor Bi2Sr2CaCu2O8+δ: the enhancement of the output power from
electromagnetic cavity resonances is strong only for nondegenerate wave functions.

DOI: 10.1103/PhysRevA.104.062205

I. INTRODUCTION

The study of wave functions obtained from various ge-
ometries with Dirichlet and Neumann boundary conditions
has been a useful educational resource and has numerous
applications in the construction of various devices. A quan-
tum particle in a one-dimensional (1D) infinite square well
potential, or “box,” for which the boundary is a set of two
points, is often the first problem studied by undergraduate
students early in their first course on quantum mechanics [1].
Although three graduate texts contain two problems on the de-
generacies of the lowest energies of a square two-dimensional
(2D) box and of the 2D and three-dimensional (3D) simple
harmonic oscillators (SHOs) [2–6], the solutions manuals for
the first three texts and the 3D SHO in the fourth text did not
mention that the doubly degenerate first excited state of the
square box and of the 2D SHO and the sixfold degenerate
first excited state of the 3D SHO were doubly or multiply
degenerate, 2D representations of the appropriate point group,
each component of which can be represented by an infinite
number of spatial forms. Hence, there could be considerable
confusion on this issue. Weinberger also included 2D box
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and antenna problems with a variety of different or mixed
boundary conditions [6].

Here we focus upon high-symmetry 2D shapes and will
return to the 2D and 3D SHO in the summary and conclu-
sions section. For a spinless quantum particle of mass M in
a 2D infinite square well potential or box, the wave function
ψ (x, y, t ) satisfies the Schrödinger equation,

− h̄2

2M
∇2ψ + V ψ = ih̄

∂ψ

∂t
, (1)

where h̄ = h
2π

and h is Planck’s constant, for which the po-
tential V (x, y) = 0 inside the box and V (x, y) = ∞ outside it.
Hence, ψ (x, y, t ) = 0 outside the box and on its boundary, the
simplest example of Dirichlet boundary conditions. Here we
consider only closed 1D boundaries, and focus upon the 2D
shapes with the highest point-group symmetries, C∞v , C4v ,
and C3v , corresponding to cylindrical, square, or equilateral
triangular boxes [7–10].

For a thin (nearly 2D) microstrip antenna (MSA), the mag-
netic vector potential Az(x, y, t ) normal to the antenna satisfies
the electromagnetic (EM) wave equation

∇2Az − 1

v2

∂2Az

∂t2
= 0, (2)

where v is the wave velocity that depends upon the index of
refraction in the antenna, and for transverse magnetic (TM)
modes, its normal derivative vanishes on the boundary, the
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simplest example of Neumann boundary conditions. Due to
the oscillatory time dependence of a light wave, Eq. (2) is
usually rewritten as ∇2Az + (k′)2Az = 0, where k′ is the wave
vector in the material of interest.

In particular, determining the symmetries and energy states
of wave functions with Neumann boundary conditions is of
great practical importance in the development of a high-power
terahertz (THz) laser, which has many potential applications,
such as for the detection of skin or colon cancer in humans
and in secure communications. This is due to the ac Josephson
effect, in which a dc voltage V is applied across a single junc-
tion, leading to an ac current I and the emission of photons at
the frequency fJ = 2eV/h, where e is the charge of an electron
[11]. Now there exist many layered superconductors [12],
a number of which exhibit Josephson effects, but the most
interesting one for the construction of a THz laser is the high
transition temperature Tc superconductor Bi2Sr2CaCu2O8+δ

(Bi2212). This material consists of a uniform stack of intrinsic
Josephson junctions (IJJs) [13–16]. The output power P1 of a
single IJJ is about 1 pW, too small for most practical applica-
tions that require the actual power P to be at least 1 mW. But
since each IJJ is 1.533 nm thick, a single crystal of Bi2212 of
thickness 1 μm contains N ≈ 650 IJJs, reducing fJ to

fJ = (2e/h)(V/N ), (3)

and when most of the N junctions emit coherently, ideally,
PN = P1N2 ≈ 0.4 μW. Moreover, in a thin mesa cut from a
single crystal of Bi2212, the shape of the mesa acts as an
electromagnetic cavity or MSA, which can enhance the output
power an additional one to two orders of magnitude [16–20].
The emission frequency has to be larger than the Josephson
plasma resonance frequency fp ≈ 0.25 THz [21]. In principle,
the maximum emission frequency is the low temperature T
value of the superconducting gap 2�, which is about 15 THz
[22–24].

However, a major issue affecting the reliability and the
upper limit of the emission frequency has been the Joule heat-
ing of the mesas [25–27], especially when they have Bi2212
substrates, since Bi2212 is a very poor thermal conductor.
But this problem has been mostly removed by fabricating
stand-alone mesas, in which the Bi2212 sample is doubly
cleaved to a thickness of 1–2 μm from a single crystal, and the
top and bottom surfaces are each coated with a thin layer of
gold [18–20,28–32]. These issues are discussed in Sec. VIII.
When different parts of a small stand-alone Bi2212 single
crystal were used both as the emitter and as the detector,
emission up to 11 THz was observed [23]. An array of three
stand-alone rectangular mesas was reported to emit coherently
with the combined P ≈ 0.61 mW [33], although an array of
two rectangular mesas did not behave coherently [34], so the
main concern for further development is the design of arrays
to increase that number.

For low-symmetry rectangular boxes or MSAs, the wave
functions are all nondegenerate, 1D representations (1DRs) of
the point group C2v . However, for the higher symmetry square
[35–38], equilateral triangular [39–45], isosceles and right
triangular [46,47], regular pentagonal [48], cylindrical, disk
[49,50], annular [51], or singly slitted annular shapes [52],
the situation can be considerably more complicated. Although
some of the wave functions are nondegenerate 1DRs of the

respective point groups C∞v , C4v , and C3v under consideration
here, a large fraction of the wave functions are nominally
doubly degenerate 2D representations (2DRs) of those point
groups, each component of which can be represented by an
infinite number of real space forms [7–10]. In addition, for
square and equilateral triangular boxes and MSAs, many ad-
ditional wave functions are doubly degenerate 1DRs, each
component of which can be represented only by a single
spatial form. Previous works have calculated the dimension-
ality of the symmetry groups for the stationary states of the
various wave functions, but there have not been thorough
investigations of the features of the 2DRs of all three of these
cases. Although for 2D boxes, such considerations are experi-
mentally relevant only for deep quantum wells, for nearly 2D
MSAs, the experimental consequences are very important, but
have not been clearly described in the literature.

We note that circularly polarized coherent THz emission
can be obtained by breaking the symmetry of square or disk
MSAs [53–55], Bi2212 MSAs can be used both as emitters
and as detectors [23,56], and commercial cryocoolers can be
used in cooling Bi2212 MSAs for many potential applications
[57,58]. Six review articles on Bi2212 IJJ-THz emitters have
been published [59–64].

Here we present detailed studies of the wave functions
for the three highest-symmetry 2D shapes: cylindrical boxes
and disk MSAs, square boxes and MSAs, and equilateral
triangular boxes and MSAs, in which either the wave function
or its normal derivative vanishes on the boundary. Character
tables of the respective point groups C∞v , C4v , and C3v are
given in textbooks on group theory [7–10], but there are some
minor differences in the wave function tables with Dirich-
let and Neumann boundary conditions we present here, and
some additions for the 2DR wave functions. In Sec. II we
analyze the square box. In Sec. III we describe the thin square
MSA. In Sec. IV we analyze the equilateral triangular box.
In Sec. V we present the results for thin equilateral triangular
MSA wave functions. In Sec. VI we show the cylindrical box
wave functions. In Sec. VII we describe the disk MSA wave
functions. In Sec. VIII we compare our results for square,
equilateral triangular, and disk MSAs with published exper-
imental results. Finally in Sec. IX we summarize our results
for these high-symmetry boxes and MSAs, and discuss the
possible relevance of the wave functions to degenerate per-
turbation theory in quantum mechanics and in Bose-Einstein
condensates [65,66].

II. THE SQUARE BOX

For a spinless quantum particle of mass M in a square
box of side a, the normalized wave functions are solutions of
the Schrödinger equation with V (x, y) = 0 for 0 < x, y < a,
V (x, y) = ∞ for x, y � 0 and x, y � a, which are

�n,m(x, y) = 2

a
sin(nπx/a) sin(mπy/a), (4)

for integral n, m � 1, all of which satisfy the Dirichlet bound-
ary conditions �n,m(x, y) = 0 for x = 0, a and y = 0, a. The
energy of that state is

En,m = h̄2(n2 + m2)π2

2Ma2
. (5)
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FIG. 1. Grid of color-coded plots of the normalized wave func-
tions �n,m(x, y) = 2

a sin(nπx/a) sin(mπy/a) for a square box of side
a with Dirichlet boundary conditions for (n, m) = 1, 2, 3, 4, each
with its lower left corner at (0,0). We set a = 1, and n and m are,
respectively, the column and row numbers. The color code bar, which
varies from −2.0 to +2.0, applies to each of these figures. The black
boundaries and internal straight lines are nodes.

Figure 1 displays color-coded plots of the wave functions
�n,m(x, y) for 1 � n, m � 4 of the square box.

According to the C4v point group symmetry class [7–10],
there are four mirror planes: the horizontal σh and vertical
σv mirror planes that bisect the sides, and the two diago-
nal mirror planes, σd1 and σd2, that bisect the corners. In
addition, two rotations (R4) by 2π/4 and one (R2) by π

about the centroid are also allowed [7–10]. The wave func-
tions fall into three basic classes. In the first class, n = m,
�n,n(x, y) is nondegenerate. But there are two subclasses of
these nondegenerate wave functions. For n odd, the �n,n(x, y)
are invariant under all of these operations, whereas for n even,
the �n,n(x, y) are even about σd1, σd2 and under R2, but are
odd about σh, σv and under R4. According to Table I, the odd
and even n �n,n(x, y) are, respectively, elements of C4v sym-
metry types A1 and B2. The C4v point group symmetry also
applies to the orbital symmetry of the pairing function and
of the distinct “pseudogap” (probably a charge density wave)
in the cuprate superconductors, at least when the structural
symmetry of the cuprate planes is not orthorhombic [67–69],
a subject of continued interest for nearly three decades to date
[22,24,67–71].

For m = n + 2p + 1, the pair of wave functions
�n,n+2p+1(x, y) and �n+2p+1,n(x, y) are odd under R2, and
have I = 2, the trace of the rank 2 identity matrix 1. The full

TABLE I. Square box representation types, symmetries, allowed
1DRs �n,n(x, y) and �

(±)
n,n+2p(x, y) [Eq. (12)] for odd or even n � 1,

2DRs �
(θ,±)
n,n+2p+1(x, y) [Eq. (6)] of the square box, and operations of

the C4v point group. σh, σv , σd1, and σd2 are the mirror planes along
the horizonal and vertical axes and the two diagonals, Rn represents
rotations by 2π/n about the centroid, and I , usually written as E
[10]), which could be confused with the energy, is the trace of the
identity matrix for the appropriate group dimension. For the 2DR
wave functions, the listed elements are the traces of the rank-2
matrices that describe the operations [10]. *Note that for the 2DR
wave functions with only odd R2 symmetry, their sets of common
point nodes and square nodes all appear to have A1 symmetry. †Under
special conditions. See Figs. 3 and 4.

σh, σd1,
Type Symmetry ψ (±)

n,m (x, y) n I R2 2 R4 σv σd2

A1 x2 + y2 �n,n, �
(+)
n,n+2p o 1 +1 +1 +1 +1

A2 xy(x2 − y2) �
(−)
n,n+2p e 1 +1 +1 −1 −1

B1 x2 − y2 �
(−)
n,n+2p o 1 +1 −1 +1 −1

B2 xy �n,n, �
(+)
n,n+2p e 1 +1 −1 −1 +1

A1* Point nodes �
(θ,±)
n,n+2p+1 e, o 2 −2 0 0 0

A1* Nodal squares† �
(θ,±)
n,n+2p+1 e, o 2 −2 0 0 0

degeneracy can be represented by

�
(θ,+)
n,n+2p+1(x, y) = cos θ�n,n+2p+1(x, y)

+ eiφ sin θ�n+2p+1,n(x, y),

�
(θ,−)
n,n+2p+1(x, y) = − sin θ�n,n+2p+1(x, y)

+ eiφ cos θ�n+2p+1,n(x, y), (6)

which are the two orthonormal subsets of the degenerate
�n,n+2p+1(x, y) and �n+2p+1,n(x, y) wave functions, as shown
explicitly in the Appendix [36]. However, since 0 � θ < 2π ,
θ can be any real mixing angle, this double degeneracy has an
infinite number of possible real space forms. For simplicity,
we could assume that φ = 0, so that the wave functions would
all be real. This is entirely analogous to a spin 1

2 system in
the absence of a magnetic field, which is doubly degenerate
from an infinite number of possible measurement directions
[3]. In Fig. 2(a) this degeneracy is displayed for �

(−θ,+)
1,2 (x, y)

for φ = 0 at the three mixing angles θ = 60◦, 45◦, and 30◦,
each of which is degenerate with its respective �

(−θ,−)
1,2 (x, y).

In Fig. 2(b) the fact that such wave functions are odd under R2

is evident for �2,1(x, y) by adding �2,1(x, y) + R2�2,1(x, y),
which vanishes. The only points at which such wave functions
are invariant under all of the operations of C4v are their com-
mon nodal points. These wave functions are thus displayed for
1 � n, m � 4 as the appropriate sets of nodal points in Fig. 3.
We note that in each of these cases, the complete set of nodal
points is invariant under each of the operations of C4v (all four
mirror planes and both rotations).

Writing these 2DR wave functions in the Nambu represen-
tation,

�θ
n,n+2p+1(x, y) =

(
�

(θ,+)
n,n+2p+1(x, y)

�
(θ,−)
n,n+2p+1(x, y)

)
, (7)
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FIG. 2. (a) Color-coded plots of one component of the dou-
bly degenerate 2DR square box wave function, each component
of which can be presented in an infinite number of spatial
forms, �

(−θ,+)
1,2 (x, y) = cos θ�1,2(x, y) − sin θ�2,1(x, y), for φ = 0,

θ = 60◦ (left), 45◦ (center), and 30◦ (right). (b) Color-coded illustra-
tion of the oddness of �2,1(x, y) under rotations about its centroid at
( a

2 , a
2 ) by π .

where the �
(θ,±)
n,n+2p+1(x, y) are given by Eq. (6) and the op-

erations of C4v upon them are rank-2 matrices. It is easy
to show that R2 = −1, the trace of which is −2. The
other operations can be written in terms of the Pauli ma-
trices σx, σy, and σz. In particular, the two R4 matrices are

FIG. 3. Grid of color-coded plots of the 1DR square box
wave functions �n,m(x, y) with 1 � n, m � 4. The nondegener-
ate �n,n(x, y) are along the table diagonal, the doubly degenerate
�+

n,n+2p(x, y) and �−
n,n+2p(x, y) are displayed in the regions above and

below the diagonal, respectively, and the nominally doubly degener-
ate 2DR �n,n+2p+1(x, y) given by Eqs. (8)–(11) are represented by
their common nodal points. Each such set of common nodal points is
a 1D representation of C4v with symmetry type A1 that is even under
each of its symmetry operations: σh, σv, σd1, σd2, R4, and R2. The
constant contours of the 1DR wave functions nearest to the boundary
are parallel to it, due to the Dirichlet boundary conditions.

±iσy, σh = σv = σz cos(2θ ) − σx sin(2θ ), and σd1 = −σd2 =
σz sin(2θ ) + σx cos(2θ ). Since the Pauli matrices are trace-
less, the traces of the two R4, σv , σh, σd1, and σd2 all vanish
for any value of θ .

More generally, one can write these 2DR wave functions
for n′ = n + 2p + 1 as

�n,n′ (x, y) =
(

�
(1)
n,n′ (x, y)

�
(2)
n,n′ (x, y)

)
, (8)

where for i = 1, 2,

�
(i)
n,n′ (x, y) =

∫ 2π

0
P(θ )dθ

[
Ai�

(θ,+)
n,n′ (x, y) + Bi�

(θ,−)
n,n′ (x, y)

]
,

(9)

where P(θ ) �= C, and where C is a constant. P(θ ) is an
arbitrary function whose only other restriction is that the
generated wave functions are finite inside the box, and the Ai

and Bi are chosen so that the �
(i)
n,n′ (x, y) form an orthonormal

set. For the perfectly random θ case, P(θ ) = C, the �
(i)
n,n′ (x, y)

for i = 1, 2 both vanish everywhere inside the box and cannot
form an orthonormal pair. This perfectly random θ case thus
implies complete wave function breakdown. Thus, P(θ ) �= C
implies the θ values are correlated. We have assumed the
square box to be perfect, without any imperfections such as
cracks, distorted corners, or a spatially dependent potential
V (x, y) inside it. Hence, P(θ ) describes a particular selection
of the infinite number of degenerate spatial forms of the par-
ticular 2DR wave function.

As shown in more detail in the Appendix, orthonormaliza-
tion with P(θ ) �= C leads for both i = 1, 2 to

|Ai|2 + |Bi|2 = [
I2
e + I2

o

]−1
, A1A∗

2 + B1B∗
2 = 0, (10)

where

Ie =
∫ 2π

0
P(θ ) cos θ dθ, Io =

∫ 2π

0
P(θ ) sin θ dθ. (11)

For m = n + 2p, there are again two classes. For n odd,
�n,n+2p(x, y) is even under reflections about σh, σv and under
R2, but shows no symmetry under R4 and about σd1, σd2. For
n even, �n,n+2p(x, y) is odd under reflections about σh, σv

and under R2, but shows no symmetry under R4 and about
σd1, σd2. However, we note that for both n odd or even,
R4�n,n+2p(x, y) = �n+2p,n(x, y). This implies that there are
two orthonormal members of each subgroup,

�±
n,n+2p(x, y) = 1√

2
[�n,n+2p(x, y) ± �n+2p,n(x, y)], (12)

which are doubly degenerate 1DRs of C4v , each component of
which has a single real space form. These wave functions for
n = 1, 2 and p = 1 are also displayed in Fig. 3. �+

1,3(x, y),
which is shown in the top (first) row and third column of
Fig. 3, is even under all of the operations of C4v , and is
therefore a 1DR of symmetry type A1. �−

1,3(x, y), which is
shown in the third row and first column of Fig. 3, is even
under σh and σv , odd under σd1, σd2, and both R4 operations
(rotations by ±2π/4), and even under R2, is therefore a 1DR
of C4v symmetry type B1. Similarly, �+

2,4(x, y), shown in the
second row and fourth column of Fig. 3, is a 1DR of C4v

symmetry type B2, and �−
2,4(x, y), shown in the fourth row and

second column of Fig. 3, is a 1DR of C4v symmetry type A2.
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FIG. 4. Presentations of selected 2DRs with dots and
squares. (a) �3,6(x, y), �6,3(x, y). (b) �3,12(x, y), �12,3(x, y).
(c) �9,12(x, y), �12,9(x, y).

More generally, �+
n,n+2p(x, y) for n odd is invariant under

all C4v operations, as seen in Fig. 3 for �+
1,3(x, y). Hence, such

wave functions have C4v symmetry type A1 and are listed as
such in Table I. For n even, �+

n,n+2p(x, y) is even under reflec-
tions about σd1, σd2 and under R2, but is odd under reflections
about σh, σv and under the two R4, so has symmetry type B2.
For n odd, �−

n,n+2p(x, y) is even under reflections about σh, σv

and R2, but odd under reflections about σd1, σd2 and under R4,
so it has symmetry type B1. Finally, for n even, �−

n,n+2p(x, y)
is odd under reflections about all four mirror planes and under
R4, but is even under R2, so it has symmetry type A2. These
classifications are all listed in Table I.

In addition to the common nodal point structure of each of
the doubly degenerate 2DR wave functions, each component
of which has an infinite number of real space forms, some
higher index 2DR wave functions have mutual nodal squares,
a few of which are shown in Fig. 4. For such common nodal
squares to appear in the common nodal set of 2DRs, the lower
quantum number n � 3 must be odd. The lowest energy case
is therefore the (3,6) case pictured in Fig. 4(a). In Fig. 4(b) the
(3,12) case is shown. In addition, a more complicated nodal
pattern is obtained for the (9,12) case pictured in Fig. 4(c).
In this case, both numbers factor into three times an odd or
an even number, and this factorization allows for the square
common nodal structure, each of which encloses a finite set
of common nodal dots. Obviously as the lower odd number
increases, the common nodal patterns become increasingly
complicated. But it is noteworthy that in every set of common
nodal dots and/or squares that we found, that set is invariant
under all operations of C4v , and hence has the A1 symmetry
type. We have not tried to prove the generality of these obser-
vations.

III. THE SQUARE MICROSTRIP ANTENNA

For a thin square microstrip antenna of the same geometry
as for the square box, with its origin at the lower left corner,
but satisfying the EM wave equation for Az(x, y, t ), the nor-
malized transverse magnetic wave functions at a fixed time
with the appropriate Neumann boundary conditions,

∂�n,m(x, y)

∂x

∣∣∣
x=0,a

= ∂�n,m(x, y)

∂y

∣∣∣
y=0,a

= 0, (13)

have the form

�n,m(x, y) =

⎧⎪⎨
⎪⎩

2
a cos(nπx/a) cos(mπy/a), m, n � 1√

2
a cos(nπx/a), m = 0, n � 1√
2

a cos(mπy/a), n = 0, m � 1

.

(14)

FIG. 5. Color-coded plots of the square MSA �n,m(x, y) given by
Eq. (14) for 0 � n, m � 3, which are the nominal representations of
the lowest-frequency wave functions of a square microstrip antenna
with Neumann boundary conditions that are indicated by the green
boundaries. n and m are, respectively, the column and row numbers.
�0,0 = 1/a shown in blue corresponds to frequency f0,0 = 0, so it
is excluded. The color code bar, which varies from −2.0 to +2.0,
otherwise applies to each of these figures.

The enhanced emission frequencies fn,m from the square thin
MSA are

fn,m = c0

√
n2 + m2

2anr
, (15)

where c0 is the vacuum speed of light and nr is the index of
refraction, which for Bi2212 IJJ-THz emitter devices that are
on the order of 1 μm thick, is about 4.2. The case n = m = 0
must be excluded, since light must have a finite frequency. In
this case, the color-coded lowest-frequency square MSA wave
functions are shown in Fig. 5.

As for the square box wave functions, the n = m MSA
wave functions are all nondegenerate 1DRs of the C4v point
group, and the m = n + 2p + 1 MSA wave functions are
doubly degenerate 2DRs of C4v , having the �

(i)
n,n+2p+1(x, y)

component forms of Eqs. (8)–(11), which can be presented
by an infinite number of spatial forms, except that the wave
function components are given by Eq. (14) instead of Eq. (4).
This second point is illustrated in Fig. 6. In addition, since the
MSA wave functions satisfy �n,n+2p(x, y) = R4�n+2p,n(x, y),
exactly as for the square box, these wave functions are dou-
bly degenerate 1DRs, each component of which has a single
spatial form, and satisfy Eq. (12), although again with the
wave function components given by Eq. (14). The symmetry
table of the square MSA wave functions is therefore shown in
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FIG. 6. (a) Color-coded plots of the square MSA 2DR
�

(−θ,+)
0,1 (x, y) for θ = 30◦, 45◦, and 60◦ from left to right. (b) Plot

of �0,1(x, y) + R2�0,1(x, y), which equals 0.

Table II. The only differences between Table II and Table I
for the square box is that the oddness or evenness of the
quantum number n is precisely the opposite, and there are no
nodal squares for the square MSA 2DR wave functions. The
matrices that describe the symmetry operations upon the 2DR
MSA wave functions are identical to those presented for the
square quantum box wave functions following Eq. (7).

We then redisplay those and additional MSA wave func-
tions in the array shown in Fig. 7. As for the square box,
the diagonal n = m square MSA wave functions are all non-
degenerate 1DRs of C4v , and are displayed in color-coded
contour plots. The doubly degenerate 2DR m = n + 2p + 1
cases, each component of which has an infinite number of
spatial forms, are again displayed as a set of mutually common
nodal points, but in this MSA case, as discussed in more detail
in the following, there are no mutual nodal lines for any index
number. Furthermore, the m = n + 2p cases are doubly de-
generate 1DRs, with the �±

n,n+2p(x, y) given by Eq. (12) with
the appropriate MSA wave functions, and with the �+

n,n+2p

displayed above the diagonal, and the �−
n,n+2p displayed below

the array diagonal, exactly as in Fig. 3 for the box. Note

TABLE II. Square MSA representation types, symmetries,
allowed 1DRs �n,n(x, y) and �

(±)
n,n+2p(x, y) = [�n,n+2p(x, y) ±

�n+2p,n(x, y)]/
√

2 for odd or even n � 1, 2DRs �
(θ,±)
n,n+2p+1(x, y),

which have the forms of Eqs. (6)–(11), except that their components
satisfy Eqs. (13) and (14), and the same operations of the C4v point
group as in Table I. For the 2DR wave functions, the listed values are
the traces of the rank-2 matrices that describe the operations [10].
*Note that the 2DR wave functions have only odd R2 symmetry, but
each of their sets of common fixed point nodes appears to have A1

symmetry. See Ref. [36].

σh, σd1,
Type Symmetry ψ

(±)
n,n′ (x, y) n I R2 2 R4 σv σd2

A1 x2 + y2 �n,n, �
(+)
n,n+2p e 1 +1 +1 +1 +1

A2 xy(x2 − y2) �
(−)
n,n+2p o 1 +1 +1 −1 −1

B1 x2 − y2 �
(−)
n,n+2p e 1 +1 −1 +1 −1

B2 xy �n,n, �
(+)
n,n+2p o 1 +1 −1 −1 +1

A1 Point nodes* �
(θ,±)
n,n+2p+1 e, o 2 −2 0 0 0

FIG. 7. Shown are plots of the array of square MSA wave func-
tions �n,m(x, y) with Neumann boundary conditions for 0 � n, m �
3. 1DR wave functions of nondegenerate �n,n (for n � 1) and doubly
degenerate 1DR wave functions �±

n,n+2p, each component can be
shown only in a single spatial form, are shown in color-coded plots
along the array diagonal and in the appropriate positions above (be-
low) that diagonal. Plots of the nominally doubly degenerate 2DRs
�

(θ,±)
n,n+2p+1, each component of which can be presented in an infinite

number of ways, are represented as arrays of black mutual nodal
points, all appearing to be invariant under all C4v operations. The
constant contours nearest to a boundary intersect it normally due to
the Neumann boundary conditions.

that in Fig. 7, �+
0,2(x, y) and �−

0,2(x, y) have respective C4v

symmetry types A1 and B1, and �+
1,3(x, y) and �−

1,4(x, y) have
respective C4v symmetry types B2 and A2. The symmetry types
of �n,n(x, y) and �

(±)
n,n+2p(x, y) for n even or odd are given in

Table II, and are opposite to those of the analogous square box
functions listed in Table I.

For the square box 2DR wave functions with n, m >

0 without any line nodes, the number of point nodes is
N (n, m) = (n − 1)2 + (m − 1)2. Similarly, for n, m � 0, the
number of square MSA point nodes in a 2DR is N (n, m) =
n2 + m2. However, as argued in the following, no nodal lines
or squares appear in the square MSA 2DRs. But as for the
square box, the set of common nodal points for each 2DR is
invariant under all operations of C4v , and hence obeys the A1

symmetry table.
A nodal line could occur along the x direction if

cos(nπx/a) = 0 for 0 < x < a and along the y direction if
cos(mπy/a) = 0 for 0 < y < a. These require x/a = (2p +
1)/(2n) and y/a = (2q + 1)/(2m) for integer p and q. For
them to occur together and the pattern to be invariant under
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FIG. 8. Array of color-coded plots of the lowest-energy, normal-
ized equilateral triangular box wave functions with n, m = 1, 2, 3, 4
from Eqs. (17), (18), and (21). The array diagonal consists of 1DR
wave functions that are invariant under all C3v operations. The figures
above and below the diagonal are, respectively, even and odd about
the horizontal axis. The color code bar that varies from −2.0 to +2.0
applies to each of these figures.

the operations of C4v , including R4, which interchanges x and
y, we then require

2p + 1

2n
= 2q + 1

2m
. (16)

As noted from Table II, if n = m, �n,n(x, y) is a nonde-
generate 1DR, and if n and m are either both odd or both
even, then �±

n,n+2p(x, y) is a doubly degenerate combination
of two 1DRs. But if either n or m is odd and the other is even,
then the �n,n+2p+1(x, y) wave functions are doubly degener-
ate 2DRs, each component of which can be presented in an
infinite number of spatial forms, and the corresponding box
wave functions can have additional nodal boxes. However,
for the square MSA, by rewriting Eq. (16) as (2p + 1)m =
(2q + 1)n, it is easy to see that this criterion for additional
nodal boxes cannot be satisfied with either n or m odd and the
other even.

IV. THE EQUILATERAL TRIANGULAR BOX

Previous studies have focused on the 1DR wave functions
of equilateral triangular MSAs [45]. Here we calculate the
quantum wave functions and normalization constants for the
equilateral triangle of side a in an infinite potential well.
The Schrödinger equation admits even and odd wave function
solutions about any of the symmetry axes. Here we choose the
horizontal axis as the axis of symmetry from which the wave

functions can be generated. The equilateral triangular box wave functions even and odd about that axis can be written as

�e
�,m,n(x, y) = Ae

m,n

{
sin

[(
2πx√

3a
+ 2π

3

)
�

]
cos

[
2π (m − n)y

3a

]
+ sin

[(
2πx√

3a
+ 2π

3

)
m

]
cos

[
2π (n − �)y

3a

]

+ sin

[(
2πx√

3a
+ 2π

3

)
n

]
cos

[
2π (� − m)y

3a

]}
(17)

and

�o
�,m,n(x, y) = Ao

m,n

{
sin

[(
2πx√

3a
+ 2π

3

)
�

]
sin

[
2π (m − n)y

3a

]
+ sin

[(
2πx√

3a
+ 2π

3

)
m

]
sin

[
2π (n − �)y

3a

]

+ sin

[(
2πx√

3a
+ 2π

3

)
n

]
sin

[
2π (� − m)y

3a

]}
. (18)

Since each of the three terms for the even and odd wave
functions must satisfy the Schrödinger equation − h̄2

2M ∇2� =
E� = h̄2k2

2M � = 0, this is equivalent to the EM wave equation,
∇2� + k2� = 0. Since for each wave function form, each
term must separately satisfy that wave equation, we find

(n − m)(� + n + m) = 0, (19)

as for the equilateral MSA [45]. As for the antenna, the
n = m cases can be shown to not produce any additional wave
functions, so we assume � = −n − m. However, in this case,

both the odd and even wave functions vanish on the entire
equilateral triangular boundary.

The energies for a quantum particle of mass M in an equi-
lateral triangular quantum box are then found to be

En,m = (4π h̄)2

2M(3a)2
(m2 + n2 + mn), (20)

which is ∝k2 for the equilateral triangular MSA. The
corresponding normalization coefficients are obtained by in-
tegrating |�o,e

�,m,n|2 with � = −n − m over the area of the
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equilateral triangle, and dividing by that area. We find

Ae
m,n =

{ 4
33/4a , m > n �= 0, n > m �= 0

2
√

2
33/4a , m = n,

Ao
m,n = 4

33/4a
, m > n �= 0, n > m �= 0. (21)

These equilateral triangular box normalization constants are
remarkably similar to those obtained for the equilateral tri-
angular MSA [45], as shown in Sec. IV. The normalized
equilateral triangular box wave functions � (e,o)

n,m (x, y) are pic-
tured for n, m = 1, 2, 3, 4 in Fig. 8.

To illustrate examples of the equilateral triangular box
wave functions that are even or odd about only one vertex,
we show pictorially for 2DR equilateral triangular box wave
functions that∣∣� (e,o)

2,3 (x, y)
〉+R3

∣∣� (e,o)
2,3 (x, y)

〉+R2
3

∣∣� (e,o)
2,3 (x, y)

〉=0, (22)

where we have used the Dirac ket notation.
These equations show that only two of the wave functions

even or odd about only one vertex are linearly independent,
demonstrating that these wave functions are 2DR wave func-
tions. Thus, we could choose as the general basis |� (e,o)

n,m (x, y)〉
and R3|� (e,o)

n,m (x, y)〉, where m �= n + 3p.
But since these wave functions are not orthonormal, we set∣∣� (e,o,1)

n,m (x, y)
〉 = A

∣∣� (e,o)
n,m (x, y)

〉 + BR3

∣∣� (e,o)
n,m (x, y)

〉
,∣∣� (e,o,2)

n,m (x, y)
〉 = C

∣∣� (e,o)
n,m (x, y)

〉+DR3

∣∣� (e,o)
n,m (x, y)

〉
, (23)

for constants A, B,C, and D, and force them to form an or-
thonormal set.

To do so, we first take the inner product of Eq. (22) with
〈� (e,o)

n,m (x, y)|R†
3, and it is easily seen that

〈
� (e,o)

n,m (x, y)
∣∣R†

3

∣∣� (e,o)
n,m (x, y)

〉 = − 1
2 . (24)

Although complex coefficients are possible, especially for
|A| > 2√

3
, under the assumption that all coefficients are real,

it is then easy to show that the orthonormal set can be written
as

∣∣� (e,o,1,θ,±)
n,m �=n+3p (x, y)

〉 = 2√
3

cos θ
∣∣� (e,o)

n,m (x, y)
〉

+
(

1√
3

cos θ ± sin θ

)
R3

∣∣� (e,o)
n,m (x, y)

〉
,

∣∣� (e,o,2,θ,±)
n,m �=n+3p (x, y)

〉 = − 2√
3

sin θ
∣∣� (e,o)

n,m (x, y)
〉

−
(

1√
3

sin θ ∓ cos θ

)
R3

∣∣� (e,o)
n,m (x, y)

〉
,

(25)

where 0 � θ < 2π is arbitrary. These wave functions can be
represented with either the two upper signs or the two lower
signs, but not both, so that they are doubly degenerate 2DR
wave functions that can be pictured in an infinite number of
spatial forms.

TABLE III. Representation types, symmetries, allowed 1DRs
�e,o

n,n+3p(x, y) and 2DRs �
(o,e,θ )
n,m �=n+3p(x, y) of the equilateral triangular

box, and operations of the C3v point group. For 1DR wave func-
tions, there are three mirror planes σv that bisect each angle, two
rotations R3 by ±2π/3 about the centroid, and I is the trace of the
identity matrix for the appropriate group dimension [10]. The 2DR
wave functions have only one σv . *Common nodal structure. See
Figs. 9–11.

Type Symmetry ψ (e,o)
n,m (x, y) I 2 R3 3 σv

A1 x2 + y2 �e
n,n+3p(x, y) 1 +1 +1

A2 y(3x2 − y2) �o
n,n+3p(x, y) 1 +1 −1

A1∗ Nodal points �
(o,e,θ )
n,m �=n+3p, 2 −1 0

n, m not both even

A1∗ Nodal points �
(o,e,θ )
n,m �=n+3p, n, m both even 2 −1 0

and triangles

When acting on the Nambu form of these 2DR wave func-
tions analogous to that in Eq. (7) for the square box,

|� (e,o,θ,±)
n,m �=n+3p(x, y)〉 =

⎛
⎝|� (e,o,1,θ,±)

n,m �=n+3p (x, y)〉

|� (e,o,2,θ,±)
n,m �=n+3p (x, y)〉

⎞
⎠,

(26)

the matrices R3 and R†
3 are

R3 = −1

2
1 ± i

√
3

2
σy, (27)

and its Hermitian conjugate, both traces of which are −1, as
indicated in Table III.

With regard to the mirror symmetry operations of a 2DR
wave function about a single vertex, the even wave functions
satisfy σ (e)

v |� (e,θ )
n,m 〉 = |� (e,θ )

n,m 〉, σ (e)
v R3|� (e,θ )

n,m 〉 = R2
3|� (e,θ )

n,m 〉 and
σ (e)

v R2
3|� (e,θ )

n,m 〉 = R3|� (e,θ )
n,m 〉, as evidenced from Fig. 9(a).

Combining these equations with Eq. (22), it is then straight-
forward to show that the mirror plane matrix σ (e)

v when acting
on the Nambu form of Eq. (26) can be written for the even
functions as

σ (e)
v = σz

2
[cos(2θ ) ∓

√
3 sin(2θ )]

FIG. 9. Even (a) and odd (b) examples of 2DR equilateral tri-
angular box wave functions pictured in Fig. 8, each satisfying
the picture equation |�〉 + R3|�〉 + R2

3|�〉 = 0. In these examples,
(n, m) = (2, 3).
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− σx

2
[sin(2θ ) ±

√
3 cos(2θ )], (28)

which is traceless, as indicated in Table III. On the other
hand, the 2DR wave functions odd about one vertex
satisfy σ (o)

v |� (o,θ )
n,m 〉 = −|� (o,θ )

n,m 〉, σ (o)
v R3|� (o,θ )

n,m 〉 = −R2
3|� (o,θ )

n,m 〉
and σ (o)

v R2
3|� (o,θ )

n,m 〉 = −R3|� (o,θ )
n,m 〉, as sketched in Fig. 9(b).

Again, combining these equations with Eq. (22), when acting
upon the odd Nambu form of Eq. (25), σ (o)

v = −σ (e)
v , which is

given by Eq. (28), so that both traces of σ (e)
v and σ (o)

v vanish,
as indicated in Table III.

But in generalizing to an arbitrary function P(θ ) �= C,
which is further restricted only to require the wave functions
to be finite in magnitude inside the equilateral triangular
box, as was done in Eqs. (8)–(11) for the 2DR square
box wave functions and the square MSA, we then can
write

|�(e,o,±)
n,m (x, y)〉 =

⎛
⎝|�(e,o,1,±)

n,m (x, y)〉

|�(e,o,2,±)
n,m (x, y)〉

⎞
⎠, (29)

for m �= n + 3p, where

∣∣�(e,o,i,±)
n,m (x, y)

〉 =
∫ 2π

0
dθP(θ )

[
Ai

∣∣� (e,o,1,θ,±)
n,m (x, y)

〉
+ Bi

∣∣� (e,o,2,θ,±)
n,m (x, y)

〉]
, (30)

which is a linear combination of the two types of ± wave func-
tions. The wave functions form an orthonormal set, provided
that the Ai and Bi satisfy Eqs. (10) and (11), as for the square
box and MSA.

As for the square box, we then redraw the 2DR equilateral
triangular box wave functions in terms of their common sets
of nodes. This results in the array pictured in Fig. 10. We
note that �e

1,4(x, y) and �o
4,1(x, y) pictured in the top right and

bottom left array positions are doubly degenerate 1DRs, as are
all four of the �e

n,n(x, y) along the array diagonal. In addition,
�e

2,4(x, y) and �o
2,4(x, y) are both 2DRs that contain an identi-

cal set of nodal points plus a single equilateral triangular nodal
figure in their center. Additional examples of nodal points and
equilateral triangles are pictured in Fig. 11. We note that both
with and without the equilateral triangular nodal lines inside
the box, the loci of points and lines in each 2DR is invariant
under all of the operations of C3v . Therefore, we classify those
nodal loci as having symmetry A1 in Table III. We note that
the common internal equilateral triangular nodal figures arise
only for (n, m �= n + 3p) both even.

V. THE EQUILATERAL TRIANGULAR
MICROSTRIP ANTENNA

Although the wave functions for the thin equilateral trian-
gular MSA were given previously [45], those authors plotted
only the 1DR wave functions and calculated the angular distri-
butions of the output power from those resonant cavity modes
and from the uniform Josephson current source at those mode
frequencies. Here we are primarily interested in contrasting
the pictorial representation of the 1DR and 2DR wave func-
tions. We have

�e
�,m,n(x, y) = Ae

m,n

{
cos

[(
2πx√

3a
+ 2π

3

)
�

]
cos

[
2π (m − n)y

3a

]
+ cos

[(
2πx√

3a
+ 2π

3

)
m

]
cos

[
2π (n − �)y

3a

]

+ cos

[(
2πx√

3a
+ 2π

3

)
n

]
cos

[
2π (� − m)y

3a

]}
(31)

and

�o
�,m,n(x, y) = Ao

m,n

{
cos

[(
2πx√

3a
+ 2π

3

)
�

]
sin

[
2π (m − n)y

3a

]
+ cos

[(
2πx√

3a
+ 2π

3

)
m

]
sin

[
2π (n − �)y

3a

]

+ cos

[(
2πx√

3a
+ 2π

3

)
n

]
sin

[
2π (� − m)y

3a

]}
. (32)

Each of the three terms for the even and odd wave functions
must satisfy the EM wave equation ∇2� + (k′)2� = 0, as for
the square MSA. These forms can be shown to also obey the
Neumann boundary conditions. As for the equilateral triangu-
lar box, we again have

(n − m)(� + n + m) = 0, (33)

and the same arguments for n = m in Sec. IV lead to the
conclusion � = −n − m [45].

The emission frequencies fn,m from an equilateral triangu-
lar MSA with index of refraction nr are then found to be

fn,m = 2c0

3anr

√
m2 + n2 + mn. (34)

The corresponding normalization coefficients are obtained
by integrating |�o,e

�,m,n|2 over the area of the equilateral trian-
gle, and dividing by that area. As was found previously [45],

Ae
m,n =

{
4

33/4a , m, n � 1, m �= n

2
√

2
33/4a , m > n = 0, n > m = 0, or m = n,

Ao
m,n =

{
4

33/4a , m, n � 1, m �= n,

2
√

2
33/4a , m > n = 0, or n > m = 0,

(35)

and all of the odd equilateral triangular MSA wave func-
tions with m = n vanish. As shown in the previous section,
these normalization constants are remarkably similar to those
obtained for the equilateral triangular box. The normalized
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FIG. 10. Plots of the same equilateral triangular box wave func-
tions pictured in Fig. 8, but displaying the 2DR wave functions in
terms of their loci of common nodes. The upper right �e

1,4(x, y) and
lower left �o

4,1(x, y) are doubly degenerate 1DRs.

equilateral triangular MSA wave functions � (e,o)
n,m (x, y) are

pictured for n, m = 0, 1, 2, 3 in Fig. 12.
As for the 2DR wave functions for the equilateral triangular

box that satisfy Eq. (22), the 2DR wave functions for the thin
equilateral triangular MSA exhibit the same symmetries. For
example, in Fig. 13 we show pictorially that∣∣� (e,o)

3,4 (x, y)
〉 + R3

∣∣� (e,o)
3,4 (x, y)

〉 + R2
3

∣∣� (e,o)
3,4 (x, y)

〉=0, (36)

the only difference being the wave functions are not the box
wave functions with Dirichlet boundary conditions given by
Eqs. (17)–(21), but are instead given by Eqs. (31)–(35) for
the MSA, which satisfy the Neumann boundary conditions
with the normal derivative vanishing on each of the triangle’s
sides. Therefore, the 2DR wave functions can be constructed
exactly by analogy with Eqs. (22)–(25), also leading to the
analogous Nambu representation and to the rank 2 matrices
representing the identical symmetry operations R3 and σ (e,o)

v

given by Eqs. (27) and (28). These thin equilateral MSA wave
functions are also doubly degenerate 2DRs of the C3v point

FIG. 11. Shown are some examples of higher index equilateral
triangular box 2DR wave functions represented by both common
points and equilateral triangles. (a) �

(e,o)
2,4 ; (b) �

(e,o)
2,6 ; (c) �

(e,o)
4,6 ;

(d) �
(e,o)
4,8 .

FIG. 12. Array of color-coded plots of the lowest-frequency
equilateral triangular microstrip antenna wave functions, generated
from Eqs. (31), (32), and (35), with n, m = 0, 1, 2, 3. The upper left
solid red figure has f0,0 = 0, so it can be excluded. The diagonal
of the array represents �e

n,n(x, y), which for n > 0 are 1DRs. The
n �= m even and odd wave functions lie respectively above and below
the array diagonal. The green boundaries indicate the Neumann
conditions. The color code bar displayed in Fig. 8 applies to each
of these figures except the excluded (0,0) case.

group, as they also contain the arbitrary analogous mixing
angle θ and can be pictured in an infinite number of spatial
forms. The representation types, symmetries, and allowed
1DR and 2DR wave functions for the equilateral triangular
MSA are presented in Table IV. Pictorial representations of
equilateral triangular MSA wave functions corresponding to
those presented in Fig. 10 for the equilateral triangular box are
pictured in Fig. 14. Thus, of the equilateral triangular MSA
wave functions pictured, those in color are 1DRs, and those
along the array diagonal and in the upper right figure have A1

symmetry, and the figure in the lower left has A2 symmetry.

FIG. 13. (a) Even |�e
3,4(x, y)〉 and odd (b) |�o

3,4(x, y)〉 examples
of 2DR equilateral triangular MSA wave functions not pictured
in Fig. 12 that each satisfies the picture equation |�〉 + R3|�〉 +
R2

3|�〉 = 0.
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TABLE IV. Representation types, symmetries, allowed 1DRs
�e,o

n,n+3p(x, y) and 2DRs �
(o,e)
n,m �=n+3p(x, y) of the thin equilateral trian-

gular MSA, and operations of the C3v point group. For the 1DR wave
functions, there are three mirror planes σv that bisect each angle, two
rotations R3 by ±2π/3 about the centroid, and I is the trace of the
identity matrix for the appropriate group dimension. For the 2DR
wave functions, there are the same rotations, but only one σv [10].
*Common nodal points. See Fig. 13.

Type Symmetry |� (e,o)
n,m (x, y)〉 I 2 R3 3 σv

A1 x2 + y2 |�e
n,n+3p(x, y)〉 1 +1 +1

A2 y(3x2 − y2) |�o
n,n+3p(x, y)〉 1 +1 −1

A1∗ Fixed point nodes |� (o,e,θ )
n,m �=n+3p〉 2 −1 0

The rest of the figures are 2DRs, and the pattern of nodal
points has A1 symmetry that is invariant under all operations
of point group C3v . The matrices representing the 2 R3 and
single σv operations of the C3v point group acting upon the
2DR wave functions are identical to those described for the
equilateral triangular box, except that the spatial parts of the
wave functions are given by Eqs. (31) and (32).

As for the 2DR wave functions for the square box and
MSA, the 2DR wave functions for the equilateral triangular
MSA have the same forms as for the equilateral triangu-
lar box, obeying Eqs. (24)–(30), except that the bare wave
functions are given by Eqs. (31)–(35). Thus, the 2DR wave
functions for the equilateral triangular MSA also have two (±)
alternative ways of writing the components, each of which
can be presented by an infinite number of spatial forms, to
the corresponding doubly degenerate wave functions. The

FIG. 14. Plots of the same equilateral triangular MSA wave func-
tions pictured in Fig. 12, but displaying the 2DR wave functions in
terms of their loci of common nodes. The upper right �

(e)
1,4(x, y) and

lower left �
(o)
4,1(x, y) wave functions are doubly degenerate 1DRs.

TABLE V. χm,p = km,pa for the cylindrical box of radius a.
Missing entries correspond to higher energy states than pictured in
Fig. 15.

m χm,1 χm,2 χm,3 χm,4

0 2.4048 5.52007 8.65372 11.79153
1 3.8317 7.01558 10.1734 13.32369
2 5.13562 8.41724 11.61984 14.795981
3 6.38016 9.76102 13.01520 16.22346
4 7.58834 10.64709 14.3725
5 8.77148 12.3386 15.70017
6 9.936109 13.58929 17.0038
7 11.08637 14.821268
8 12.22509 16.03777

only difference between Tables III and IV for the equilateral
triangular box and the thin equilateral triangular MSA is that
some (with m and n both even) of the 2DR box wave functions
contain both common nodal points and internal equilateral
triangles (as well as on the boundary), but the 2DR MSA
wave functions contain only common nodal points. In both
cases, the loci of the sets of nodal points and/or triangles are
invariant under all operations of point group C3v .

VI. THE CYLINDRICAL BOX

For a quantum particle in a cylindrical box of radius a, the
Schrödinger equation is written in polar coordinates. V (ρ) =
0 for 0 � ρ < a, and V (ρ) = ∞ for ρ � a. Using separation
of variables and assuming �(ρ, φ + 2π ) = �(ρ, φ), one ob-
tains the Bessel equation with solutions of the first kind. Since
�(ρ, φ) must be finite inside the cylindrical box, we have
only the integer Bessel functions of the first kind, Jm(kmρ)
multiplied by sin(mφ) or cos(mφ). Therefore a general state
can be written

�m(ρ, φ) = [Bm cos(mφ) + Cm sin(mφ)]Jm(kmρ). (37)

For the cylindrical box of radius a, we require �m(a, φ) = 0,
or

Jm(kma) = 0. (38)

Since there are many possible zeros of Jm(x), we index them
with km,p values. Thus, we set

Jm(km,pa)=0, (39)

�m,p(ρ, φ)= [Bm,p cos(mφ) + Cm,p sin(mφ)]Jm(km,pρ). (40)

It is immediately obvious that the cases m = 0 and m � 1
are qualitatively different. For m = 0, the wave functions
�0,p(ρ) are 1DRs independent of φ. For m � 1, the wave
functions are all 2DRs. Since cos(mφ) and sin(mφ) are or-
thogonal when integrated over φ from 0 to 2π , we could
write either Bm,p = Am,p cos(mθ ) and Cm,p = Am,p sin(mθ ) or
Bm,p = −Am,p sin(mθ ) and Cm,p = Am,p cos(mθ ). Thus, the
wave functions that are 2DRs of the C∞v point group can be
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written in Nambu form as

�θ
m,p(φ, ρ) =

(
� (θ,1)

m,p (φ, ρ)

� (θ,2)
m,p (φ, ρ)

)

= Am,pJm(km,pρ)

(
cos[m(φ − θ )]
sin[m(φ − θ )]

)
, (41)

where θ satisfying 0 � θ < 2π is a 2DR wave function mix-
ing angle as for the 2DR wave functions of the square and
equilateral triangular boxes, and the Am,p are found by nor-
malization of both |� (θ,1)

m,p (ρ, φ)|2 and |� (θ,2)
m,p (ρ, φ)|2over the

cross-sectional area of the cylinder,

Am,p =
⎧⎨
⎩

1

a
√

π
∫ 1

0 xdxJ2
m (χm,px)

, m � 1

1

a
√

2π
∫ 1

0 xdxJ2
0 (χ0,px)

, m = 0
,

χm,p = km,pa. (42)

The energy of the (m, p) mode for a spinless quantum particle
of mass M in the cylindrical box is given by

Em,p = h̄2χ2
m,p

2Ma2
. (43)

A list of χm,p values for 0 � m � 8 and 1 � p � 4 is given
in Table V.

As for the 2DR wave functions for the square and equi-
lateral triangular boxes, we can also generalize Eq. (41) to
include an arbitrary distribution of θ values, rewriting it for
i = 1, 2 and m � 1 as

� (i)
m,p(φ, ρ) =

∫ 2π

0
P(θ )dθ

[
Ai�

(θ,1)
m,p (φ, ρ) + Bi�

(θ,2)
m,p (φ, ρ)

]
,

(44)

where again P(θ ) �= C is restricted to yield finite 2DR wave
functions inside the disk box. In this case, the orthonormaliza-
tion of the 2DR wave functions includes both Eq. (42) and

|Ai|2 + |Bi|2 = [
I2
m,e + I2

m,o

]−1
, A1A∗

2 + B1B∗
2 = 0 (45)

where

Im,e =
∫ 2π

0
dθP(θ ) cos(mθ ),

Im,o =
∫ 2π

0
dθP(θ ) sin(mθ ). (46)

In Fig. 15 we have presented an array of the 16 lowest-
energy wave functions for a quantum particle in a cylindrical
box. However, from Eq. (41), it is evident that the angle θ is
arbitrary. Since 0 � θ < 2π , it can take on an infinite number
of values, and hence cylindrical box eigenstates with m �= 0
are doubly degenerate 2DRs of the C∞v point group, each
component of which can be presented in an infinite number
of spatial forms. In Fig. 16 this arbitrary θ value is illustrated
by comparing �2,2(ρ, φ) with θ = 0 and with its orientation
with θ = 53◦. Hence, those cylindrical box wave functions
with straight line nodes passing through their centroids are
indeed 2DRs of the C∞v point group. Other than the circular
line nodes at fixed ρ, the straight line nodes that can be rotated

FIG. 15. Color-coded plots of the 16 lowest-energy cylindrical
box wave functions, all oriented with θ = 0 and ranked in order from
the top left to the bottom right array positions, listed as (m, p): Top
row: (0,1), (1,1), (2,1), (0,2). Second row: (3,1), (1,2), (4,1), (2,2).
Third row: (0,3), (5,1), (3,2), (6,1). Fourth row: (1,3), (4,2), (7,1),
(2,3). Each figure has a qualitatively similar but numerically distinct
color code bar. The color code bar that varies from −0.96 to +0.96 is
for the (2,2) mode. Colors for the (0,1) mode represent only different
wave function magnitudes.

have only the single node at their common origin, the centroid.
This is illustrated in Fig. 17.

In order to construct Table VI, the symmetry table for the
cylindrical box, we first note that for m � 1, Eq. (41) con-
tains two components, � (θ,1)

m,p (φ, ρ) and � (θ,2)
m,p (φ, ρ), which

form the orthonormal components of a 2DR wave function.
When the two rotation matrices R±mϕ for rotations by ±mϕ

about the z-axis normal to the centroid act on this Nambu
form for the 2DR wave function, they are easily found to
be R±mϕ = 1 cos(mϕ) ± iσy sin(mϕ), the traces of which are
2 cos(mϕ). This rotation matrix changes θ to θ ± ϕ in the

FIG. 16. Color-coded plots of �2,2(ρ, φ) with θ = 0◦ (left), and
θ = 53◦ (right).
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FIG. 17. Representing the cylindrical box wave functions in
Fig. 15 to emphasize the differences between the nondegenerate
�0,p(ρ, φ) and the infinitely degenerate �m,p(ρ, φ) for m � 1.

Nambu representation. Since the bottom of the box is not a
symmetry plane, there are no reflection planes.

VII. THE DISK MICROSTRIP ANTENNA

The thin disk microstrip antenna has been studied previ-
ously [19]. Here we include it for two reasons: to compare
the wave functions forms with those of the cylindrical box,
and to use the degeneracy of the low-energy wave functions
to correctly identify the experimentally measured resonant
cavity mode emitted from a disk Bi2212 IJJ-THz emitter,
which will be described in Sec. VIII.

For the disk MSA, the wave functions also have the form
of Eq. (37), but the boundary condition is different:

dJm(kmρ)

dρ

∣∣∣
ρ=a

= 0. (47)

As for the cylindrical box wave functions, there are an infinite
number of such wave functions, which have the same forms
as in Eqs. (40)–(42), but with the different χm,p values appro-
priate for the disk MSA. The emission frequencies fm,p from

TABLE VI. Representation types, symmetries, and operations of
the C∞v point group for the cylindrical box. The number of circular
nodes depends upon p. R±mϕ is a rotation about the centroid by the
angle ±mϕ and I is the trace of the identity matrix for the appropriate
group dimension [10]. See Fig. 17. *Common nodal pattern.

Circular
Type Symmetry m nodes I R±mϕ

A1 x2 + y2 0 p 1 1
A1* Centroid node �1 p 2 2 cos(mϕ)

TABLE VII. χm,p = km,pa for the disk microstrip antenna of
radius a. Missing entries correspond to higher energy states than
pictured in Fig. 18.

m χm,1 χm,2 χm,3 χm,4

0 3.8317 7.0156 10.1735 13.3237
1 1.8412 5.3314 8.5363 11.7060
2 3.0542 6.7061 9.9695
3 4.2012 8.0152 11.3459
4 5.3176 9.2824
5 6.4156 10.5199
6 7.5013 11.7349
7 8.5778
8 9.6474
9 10.7114
10 11.7709

the 1DR cavity modes (with m = 0) and nominally from the
2DR cavity modes (with m � 1) of the disk MSA are given
by [19]

fm,p = c0χm,p

2πanr
, (48)

where the lowest group of χm,p values are listed in Table VII.
With regard to the 2DR wave functions with m � 1, the

wave functions can be written in Nambu form or for a general
P(θ ) �= C mixing angle distribution, as in Eqs. (44)–(46).
Thus the 2DR disk MSA wave functions are all doubly de-
generate functions, each component of which can be presented
by an infinite number of spatial forms. Figures 18–20 for the
disk MSAs are analogous to Figs. 15–17 for the cylindrical
boxes. Table VIII presents listings of representation types,
symmetries, and C3v symmetry operations for the equilateral
triangular MSA wave functions.

In conclusion, for the cylindrical box and disk MSA, there
are only two types of wave functions: nondegenerate wave
functions with m = 0 that have no nodal lines passing through
the centroid, and a much larger class of wave functions with
m � 1 that have one or more nodal lines passing through the
centroid. When there is no experimental reason, such as by
symmetry-breaking hot spots in a cylindrical MSA, to prefer
a particular nodal line direction, there are an infinite number
of such possible nodal line directions. The rotation matri-
ces R±mϕ for the 2DR MSA wave functions are identical to
Eq. (41) for the 2D cylindrical box, with the MSA km,p values,
the lowest-energy values of which are given by Table VII.

TABLE VIII. Representation types, symmetries, and operations
of the C∞v point group for the disk MSA wave functions �m,p(φ, ρ ).
The number of circular nodes depends upon p. The R±mϕ are rota-
tions about the z axis normal to the centroid by ±mϕ and I is the
trace of the identity matrix for the appropriate group dimension [10].
See Fig. 20. *Common nodal pattern.

Circular
Type Symmetry m nodes I R±mϕ

A1 x2 + y2 0 p 1 1
A1* Centroid node �1 p − 1 2 2 cos(mϕ)
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FIG. 18. Lowest frequency wave functions for the disk MSA
[19]. fm,p values increase from the top left to the bottom right.
Top row, left to right: (1,1), (2,1), (0,1), (3,1). Second row: (4,1),
(1,2), (5,1), (2,2). Third row: (0,2), (6,1), (3,2), (1,3). Fourth row:
(7,1),(4,2),(8,1),(2,3). The green boundaries indicate the Neumann
condition. The color code bars are qualitatively similar but numer-
ically distinct for each of these figures. The color code that varies
from −0.92 to +0.92 is for the (2,1) mode.

The only difference in symmetry Tables VI and VIII for the
cylindrical box and the thin disk MSA is in the number of
circular nodes for their 2DR wave functions, which is one
more for the box due to the boundary condition. Thus, we
conclude that for the thin MSAs, the only modes that can build
up a cavity resonance are those of the 1DR wave functions
with m = 0.

VIII. COMPARISON WITH EXPERIMENTS

Since the original discovery of coherent THz emission
from the IJJs in Bi2212 [16], a variety of experimental groups
in many countries have been working on the topic, trying to

FIG. 19. Comparison of �2,2(ρ, φ) of the disk MSA with θ = 0◦

(left) and θ = 31◦ (right).

FIG. 20. Plots of the same disk MSA wave functions as in
Fig. 18, but with the straight nodal lines passing though the centroid
represented by a dot at the centroid for all of the 2DR wave functions.

understand its properties and to increase the output power.
There have so far been six review articles on the subject
[59–64]. In the early work, the first type of Bi2212 mesas were
formed by subjecting a cleaved single crystal of Bi2212 to
an Ar beam with a mask, that cut into the unmasked region
of the crystal, leaving a standing mesa with the remainder
of the Bi2212 crystal as the substrate. A second type was a
groove mesa, obtained by simply cutting a groove into the
top of a cleaved Bi2212 crystal, which was first done for
groove rectangular, square, and disk mesas [49], and sub-
sequently for a groove equilateral triangular mesa [42]. In
those experiments, the emission frequencies for three groove
disk mesas, the rectangular, the square, and three groove
equilateral triangular mesas were all consistent with their
respectively lowest-frequency TM(1,1) and TM(0,1) modes
[42,49]. For the rectangular mesa, the TM(0,1) mode with a
nodal line bisecting the mesa length is nondegenerate and, as
expected, was the first shape to be shown to build up a cavity
resonance [16]. However, as discussed in Secs. II, V, and VII,
the wave functions of those lowest-frequency TM(0,1) square
and equilateral triangular modes and the lowest-frequency
TM(1,1) disk modes are all doubly degenerate 2DR wave
functions of their respective point groups, each component
of which can be presented by an infinite number of real
space forms. Therefore, if the groove mesas were sufficiently
accurately constructed for those symmetries to be relevant,
they shouldn’t build up cavity resonances at those frequencies
[18,19]. The fact that the lowest frequency, doubly degenerate
2DR wave function cavity modes, each component of which
can be presented by an infinite number of spatial forms, were
observed in those experiments is therefore most likely due
to the breaking of the square, equilateral triangular, or disk
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FIG. 21. Frequency dependence of the emission from a stand-
alone Bi2212 disk mesa [50]. Reprinted with permission from T.
Kashiwagi, K. Sakamoto, H. Kubo, Y. Shibano, T. Enomoto, T.
Kitamura, K. Asanuma, T. Yasui, C. Watanabe, K. Nakade, Y. Sai-
wai, T. Katsuragawa, M. Tsujimoto, R. Yoshizaki, T. Yamamoto,
H. Minami, R. A. Klemm, and K. Kadowaki, A high-Tc intrinsic
Josephson junction emitter tunable from 0.5 to 2.4 terahertz, Appl.
Phys. Lett. 107, 082601 (2015). ©2015 AIP Publishing LLC.

symmetry due to some phenomenon that was not understood
at the time of those early experiments.

The problem turned out to be that the introduction of a
dc V and current I across the stack of IJJs in Bi2212 leads
to severe Joule heating effects, resulting in hot spots, spa-
tial regions in which T > Tc [25–27,32]. For a rectangular
Bi2212 mesa, these hot spots were observed by laser scanning
[25,26], SiC photoluminescence [27], and thermoreflectance
microscopy [32], and when a hot spot develops away from
the center of a square, equilateral triangular, or disk mesa, it
breaks the symmetry and allows for the emission of photons
at the lowest frequency from the respective doubly degenerate
2DR wave function modes, each component of which can be
presented by an infinite number of real space forms. But it was
suggested that removing the mesa from its superconducting
substrate and coating the top and bottom with a perfect electric
conductor such as Au, the output power could be enhanced
[18,19]. After doubly cleaving a Bi2212 sample from a single
crystal, the top and bottom surfaces are first covered with
about 50–100 nm of Ag, followed by about 50–100 nm of
Au. These mesas with thin Au layers on their top and bot-
tom surfaces are presently known as either as “stand-alone”
mesas [30], or as “GBG” for “gold-Bi2212-gold” mesas [37].
Since Au is a superior thermal conductor, as long as the
stand-alone mesas are not much thicker than 1–2 μm, it is
usually possible to avoid most of the heating problems, in-
cluding the development of hot spots. An efficient procedure
to manufacture the stand-alone Bi2212 mesas was published
[30]. In such mesas, the amount of Joule heating was greatly
reduced, and it became possible to investigate experimentally
the effects of mesa symmetry upon the cavity resonances
observed.

In Fig. 21 the frequency dependence of the emission from a
Bi2212 stand-alone disk mesa is shown. Unlike the emission
data from three groove disk mesas studied earlier [49], the

FIG. 22. Frequency dependence of the emission from a square
stand-alone Bi2212 mesa [37]. Reprinted with permission from H.
Sun, R. Wieland, Z. Xu, Z. Qi, Y. Lv, Y. Huang, H. Zhang, X. Zhou,
J. Li, Y. Wang, F. Rudau, J. S. Hampp, D. Koelle, S. Ishida, H.
Eisaki, Y. Yoshida, B. Jin, V. P. Koshelets, R. Kleiner, H. Wang, and
P. Wu, Compact high-Tc superconducting terahertz emitter operating
up to 86 K, Phys. Rev. Appl. 10, 024041 (2018). ©2018 American
Physical Society.

stand-alone disk mesa did not build up a cavity resonance at
the doubly degenerate, 2DR TM(1,1) disk MSA mode, each
component of which can be presented by an infinite number of
real space forms. Instead, a strong cavity resonance appeared
at 1.0 THz, between the predicted resonance frequencies of
the TM(0,1) and TM(2,1) modes. However, since the stand-
alone Bi2212 disk mesa was sandwiched in-between two
sapphire substrates, the substrates might cause a slight shift in
the cavity resonance frequency. Although we are not aware of
calculations for a MSA sandwiched between two substrates,
when a MSA is sitting atop a sapphire substrate, there is
a slight downward shift in the emission frequency [72]. In
addition, since the doubly degenerate, 2DR TM(1,1) mode,
each component of which can be presented by an infinite
number of spatial forms, was not excited, it seems reasonable
to assume that the doubly degenerate, 2DR TM(2,1) mode,
each component of which can be presented by an infinite
number of real space forms, would also not be excited. For
those two reasons, we assign the strong emission at 1 THz
to the nondegenerate TM(0,1) disk MSA mode. From the
data, it appears that the downward frequency shift due to the
two sapphire substrates is approximately 3% for emission at
1.0 THz.

We note that the nondegenerate TM(0,2) mode was not
excited to form a resonance. Although not pictured in Fig. 21,
the authors of that work noted that a small but very narrow
resonance-like peak was observed at 2.4 THz. This is about
10%–11% lower that the predicted resonant frequency of the
nondegenerate TM(0,3), so if that downward frequency shift
were to be due to the sapphire substrate, the substrate shift
would have to be rather nonlinear in frequency.

More recently, the emissions from a stand-alone square
Bi2212 mesa with a = 200 μm sandwiched between sapphire
substrates was studied [37], and the frequency dependence
of the emission from that mesa is shown in Fig. 22. From
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TABLE IX. Predicted cavity mode frequencies fn,m from
Eq. (10), the estimated f ′

n,m = 0.97 fn,m due to the substrate in THz,
the degeneracy g of the (n, m) mode for a square stand-alone Bi2212
mesa of side 200 μm and nr = 4.2. *At or below the Josephson
plasma frequency fp ≈ 0.250 THz [21]. †This mode has an acciden-
tal degeneracy with the doubly degenerate (1,7) and (7,1) modes, all
three of which are 1DR wave functions. See the discussion.

(n, m) g fn,m (THz) f ′
n,m (THz)

(1,0) ∞ 0.179* 0.174*
(1,1) 1 0.253* 0.245*
(2,0) 2 0.357 0.346
(1,2) ∞ 0.399 0.387
(2,2) 1 0.505 0.490
(3,0) ∞ 0.536 0.520
(3,1) 2 0.564 0.547
(3,2) ∞ 0.644 0.625
(4,0) 2 0.714 0.693
(4,1) ∞ 0.736 0.714
(3,3) 1 0.758 0.735
(4,2) 2 0.799 0.775
(4,3) ∞ 0.892 0.865
(5,0) ∞ 0.892 0.865
(5,1) 2 0.910 0.883
(5,2) ∞ 0.962 0.933
(4,4) 1 1.010 0.980
(5,3) 2 1.04 1.01
(5,4) ∞ 1.146 1.116
(5,5) 3† 1.266 1.228

Eq. (11), it is possible to analyze the emission spectrum in
terms of the possible mode frequencies. We note that the
authors originally misidentified the cavity resonance mode
indices, but corrected them in an erratum [37]. A table of
mode indices, the degeneracies, and calculated frequencies
without and with a 3% substrate effect is given in Table IX. We
note that the lowest two frequencies are at or below the low-
temperature Josephson plasma frequency fp ≈ 0.250 THz
[21], and are screened out by the Josephson plasma.

It is not clear that one should assume the substrate re-
duction factor to be the same percentage for each frequency
measured. But the resonances near to 1.0 THz are likely to
have nearly the same shift in the two experiments. Hence,
a strong case can be made that the resonances are mostly
associated with the nondegenerate (n, n) modes. It is certainly
true that the doubly degenerate (n, n + 2p) modes have or-
thogonal 1DR symmetries, so on some time scale, it would
be difficult for the system to stick with one symmetry and to
ignore the other one. That is, if the system oscillates between
the two symmetries on a time scale inverse to the common
mode frequency, there would be no cavity resonance. The data
are consistent with this notion [37].

But an interesting question arises about the nonobserva-
tion of the 1DR (5,5) mode. Since its emission frequency is
predicted to be identical to the doubly degenerate (1,7) and
(7,1) modes, this triple degeneracy is “accidental.” In the case
of the “accidental” degeneracy between the (0,5), (5,0), (4,3),
and (3,4) modes, the unobserved excitation was not predicted
to be seen, because each of the four wave functions is a doubly

degenerate 2DR of the C4v point group, each component of
which can be presented by an infinite number of real space
forms. But the three 1DR MSA wave functions �5,5(x, y), and
�+

1,7(x, y), �−
1,7(x, y) respectively have C4v symmetry types

A1, B2, and A2, as indicated in Table II. However, we note
that the nondegenerate (6,6) mode was also not observed,
and this weakening of the resonant modes with increasing
frequency was also seen for the disk stand-alone mesa, some
of the emission data from which are shown in Fig. 21. So it
would be interesting for future experiments to study square
stand-alone mesas both smaller and larger in lateral size, in
order to respectively examine the resonances from the (1,1)
and (6,6) modes, and to verify experimentally the predicted
absence of a resonance from the accidentally triply degenerate
�5,5(x, y) and �±

1,7(x, y) modes.

IX. SUMMARY AND CONCLUSIONS

We studied the wave functions of high-symmetry 2D
quantum boxes and electromagnetic microstrip antennas (or
cavities). The symmetries studied are those of a square, an
equilateral triangle, and a disk. Each of these symmetries
has 1D and 2D representations of its wave functions. The
two-dimensional representations are doubly degenerate wave
functions, each component of which can be presented by an
infinite number of spatial forms [10]. The only C4v point
group symmetry operation common to these wave functions is
their oddness under R2, rotations by π about their centroids.
In addition, for square boxes and microstrip antennas, there
are also doubly degenerate 1D representation wave functions,
each component of which can be presented by a single spatial
form, the wave functions of which can be written in terms
of two orthogonal 1D representations of the C4v point group,
differently satisfying all of its symmetry operations.

Although the 2D quantum box might have some approx-
imate experimental relevance to quantum wells, the main
interest from the experimental side is for thin microstrip an-
tennas. This is particularly of importance for the coherent
THz emission from the intrinsic Josephson junctions in the
layered high-temperature superconductor, Bi2Sr2CaCu2O8+δ ,
or Bi2212. To date, six review articles have been written on
the THz emission from Bi2212 single crystals [59–64]. In
the early days of the coherent THz emission from Bi2212,
there were severe heating effects that interfered with accurate
comparisons of theory with experiment. Now that thermally
managed stand-alone Bi2212 (or Au-Bi2212-Au) mesas are
the primary devices under study, the effect of the degeneracies
of the modes is important to consider. The comparison of
the experimental outputs from stand-alone Bi2212 disk and
square mesas provide experimental evidence that the non-
degenerate modes are the ones that can be excited in order
to increase the output power. This suggests that the experi-
menters should either use stand-alone mesas that have only or
predominantly nondegenerate modes, or use a low-symmetry
external resonator [38].

The simplest example is that of a rectangle in which the
ratio of length to width is not that of two integers, stand-alone
mesas of which showed excitations at many frequencies [31].
A singly slitted annulus has been suggested as another pos-
sibility [64], and our independent analysis has shown that the
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FIG. 23. (a) Sketch of an annular stand-alone mesa with a single
slit. (b) Sketch of an array of 84 stand-alone mesas. Seven stand-
alone disk mesas are fixed in a hexagonal close packed array, and
are equally cut circularly with either a laser or an atomic beam into
smaller disks and annulli. Then, with straight line slits, the original
disks are each cut into 12 mesas, and the entire array of 84 mesas
could be close enough to one another to emit coherently [64].

modes odd and even about the slit are not degenerate [52]. But
another possibility is a disk that is cut into 12 pieces of two
different types: The disk is first cut into a smaller disk and an
annulus by a He or Ar beam or a laser, and those two objects
are cut with three straight cuts at angles 60◦ apart, dividing the
smaller disk and annulus into six equivalent pie-shaped wedge
mesas and six equivalent hexaslitted annuli. These would all
fit closely together, allowing for the possibility of coherent
emission from a much larger number of intrinsic Josephson
junctions, increasing the output power well above 1 mW. Our
studies showed that all of the modes for both mesa shapes are
nondegenerate [52].

Such a device has been proposed recently [64], and is
redrawn in Fig. 23. In order to maximize the probability of
matching the resonant frequencies of the inner pie-shaped
wedge mesas with the outer hexaslitted annular mesas, the
ratio of ρi/ρo is varied, and the resonant frequencies can be
calculated to find if at least two frequencies from both shapes
will match in the 1–2 THz range for which the output power
of compact continuous wave coherent sources that to date has
been generally less than the 1 mW necessary for practical
applications [64].

Since the only equilateral triangular microstrip antennas of
Bi2212 were made prior to the construction of stand-alone
mesas [42,43], they most likely exhibited hot spots, breaking
the symmetry and allowing the ideal doubly degenerate, 2DR
TM(0,1) mode, each component of which can be presented
in an infinite number of ways, to be observed. We therefore
encourage experiments on stand-alone equilateral triangular
Bi2212 mesas to compare with our predictions that the lowest
observable frequency from a perfect stand-alone equilateral
triangular microstrip antenna should be the nondegenerate
1DR TM(0,3) mode, as was done with stand-alone disk and
square mesas [37,50].

In addition, we noted in the beginning of the introduction
that there has been some confusion regarding the degeneracies
in the elementary quantum mechanical 2D box (or infinite
square well potential) and in the 2D and 3D simple harmonic
oscillator [2–5]. The solutions manuals to the first three texts
state that the degeneracy of the first excited state of the 2D box
and of the 2D SHO is 2 [2–4], and in Gottfried, the degeneracy

of the first excited state of the 3D SHO was listed as 6 [5].
Although those degeneracies are technically correct, there is
a big difference between doubly degenerate 1DR and doubly
degenerate 2DR wave functions. The former have only a finite
number of possible spatial forms, but each component of the
nominally doubly degenerate 2DR wave functions for those
particular quantum systems can be presented in an infinite
number of spatial forms. This can be shown to be true by
including arbitrary mixing angles, such as in Eqs. (6)–(11).

It is interesting to consider perturbation theory that breaks
the symmetry of either an infinitely degenerate state or a
doubly degenerate 2DR eigenstate with an infinite number
of real space forms. That is given in past and current texts
for the low-lying states of the 2D box and 2D SHO [2–4],
although as stated above, those authors did not appear to
recognize the full implications of the degeneracies of those
first excited states. This problem is central to many problems
in quantum mechanics and for the breaking of the degeneracy
of the infinitely degenerate ground state of a Bose-Einstein
condensate [65,66]

As noted in Secs. II and III on the square box and square
microstrip antenna, there is a distinct difference between a
double degeneracy, the wave functions of which obey all of
the operations of the relevant point group, in which case the
degeneracy is 2, and each of those doubly degenerate wave
functions is a 1D representation of the C4v point group, each
component of which can be presented by a single spatial form,
as shown in Figs. 3 and 7, and those wave functions that are
doubly degenerate, 2D representations of that point group,
each component of which can be presented in an infinite num-
ber of ways, and should properly be pictured only by either
just sets of nodal points or sets of nodal points and square
boxes, all of which appear to be invariant under all of the
operations of C4v . For the equilateral triangular box, the wave
functions that are 2D representations of the relevant point
group C3v can be represented by either their common nodal
points or their common nodal points and equilateral triangular
boxes. No such common square or equilateral triangular boxes
occur for the square and equilateral triangular microstrip an-
tennas. For the cylindrical box and disk microstrip antenna,
there are only nondegenerate, rotationally invariant 1D rep-
resentations of the point group C∞v , or doubly degenerate,
2D representation wave functions of that point group, each
component of which can be presented by an infinite number
of real space forms.

For all three box shapes we studied, the ground state is
nondegenerate, but the first excited state is a doubly degen-
erate, 2D representation of its respective point group, each
component of which can be presented in an infinite number
of ways. For all three thin microstrip antennas we studied,
the ground state is a doubly degenerate, 2D representation of
the appropriate point group, each component of which can
be presented by an infinite number of spatial forms. This
has strong experimental consequences, which were shown
for the square and disk microstrip antennas. For the square
microstrip antenna, the doubly degenerate, 1D representation
wave functions, each component of which can be presented
only in a single spatial form, did not generate a strong cavity
resonance. We emphasize that emission experiments on stand-
alone equilateral triangular microstrip antennas have not yet
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been made, and should be made, in order to test our predic-
tions that neither the doubly degenerate 1DR wave functions,
each component of which can only be presented in a single
spatial form, nor the nominally doubly degenerate 2DR wave
functions, each component of which can be presented in an
infinite number of spatial forms, should generate strong cavity
resonances.

Finally, the C4v point group has long been considered to be
relevant to the classes of the orbital symmetry of the super-
conducting order parameter in the cuprates, which includes
Bi2212 [22,24,67–71]. Since in the transition metal dichalco-
genide 2H-TaS2, the hexagonal symmetry with two or more
unit cells normal to the layers gives rise to a nodal charge
density wave with an onset at TCDW = 77 K [73,74], well
above the superconducting Tc ≈ 0.6 K [12], it seems that such
nodal charge density waves could complicate the analysis of
many of the existing experiments on Bi2212, particularly if
the so-called nodal “pseudogap” that occurs in nanodomains
of a monolayer of CuO2 on top of a freshly cleaved under-
doped Bi2212 crystal that survives well above Tc [24], is in
fact primarily a charge density wave state, for which the C4v

point group would also apply in the absence of orthorhombic
splitting of the CuO2 planes. However, since the pseudogap
does not appear in overdoped Bi2212 [71], such experiments
should definitely be performed on overdoped samples that
are free of the charge-density wave, as was first done by
Li et al. [67].
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APPENDIX

Here we demonstrate that the 2DR wave functions for all
three 2D boxes and thin MSAs considered here are orthogonal
for any mixing angle θ . First, for both the cylindrical box
and thin disk MSA, the components of the upper and lower
elements of the Nambu form are for m � 1 proportional to
cos[m(φ − θ )] and sin[m(φ − θ )], as in Eq. (35). Obviously,
the inner product 〈� (θ,1)

m,p (φ, ρ)|� (θ,2)
m,p (φ, ρ)〉 is proportional to

I =
∫ 2π

0
dφ sin[m(φ − θ )] cos[m(φ − θ )]

= 1

2

∫ 2π

0
dφ sin[2m(φ − θ )]

= 1

2

∫ 2π

0
dφ sin(2mφ)

= 0, (A1)

so these wave functions are orthogonal for any mixing angle
θ . For the square box or square microstrip antenna, the 2DR

wave functions are given by Eq. (6) with �n,n+2p+1(x, y) and
�n+2p+1,n(x, y), respectively, given by Eqs. (4) and (10) for
the square box and MSA. To treat the square box and MSA
together, it is useful to define

�n,m(x, y) = Fn(x)Fm(y), (A2)

where for the box Fn(x) = √
2/a sin(nπx/a) for n, m � 1

while for the square MSA, Fn(x) = √
2/a cos(nπx/a) and

n � 0, except that both the x and y functions cannot have
F0(x)F0(y). Then the inner product in Dirac notation is I =
〈� (θ,+)

n,n+2p+1|� (θ,−)
n,n+2p+1〉, where

I =
∫ a

0
dx

∫ a

0
dy� (θ,+)∗

n,n+2p+1(x, y)� (θ,−)
n,n+2p+1(x, y)

=
∫ a

0
dx

∫ a

0
dy[cos θFn(x)Fn+2p+1(y)

+ e−iφ sin θFn+2p+1(x)Fn(y)]

× [− sin θFn(x)Fn+2p+1(y) + eiφ cos θFn+2p+1(x)Fn(y)]

= (cos2 θeiφ − sin2 θe−iφ )

×
∫ a

0
dxFn(x)Fn+2p+1(x)

∫ a

0
dyFn(y)Fn+2p+1(y)

− 1

2
sin(2θ )

(∫ a

0
dxF 2

n (x)
∫ a

0
dyF 2

n+2p+1(y)

−
∫ a

0
dyF 2

n (y)
∫ a

0
dxF 2

n+2p+1(x)

)
. (A3)

The last line proportional to sin(2θ ) is easily seen to vanish
by interchanging the integration variables x and y. So we have
to evaluate the remaining term (cos2 θeiφ − sin2 θe−iφ )K2,
where

K =
∫ a

0
dxFn(x)Fn+2p+1(x)

=
∫ a

0

dx

2
(cos[(2p + 1)πx/a] ± cos[(2n + 2p + 1)πx/a])

= 1

2

a

π (2p + 1)
sin[(2p + 1)πx/a]|a0

±1

2

a

π (2n + 2p + 1)
sin[(2n + 2p + 1)πx/a]|a0

= 0, (A4)

where the ± refers, respectively, to the MSA (+) and box
(−) wave functions. The same conclusion also applies for
one of the MSA wave functions independent of position (with
n = 0), as is easily seen by setting n = 0 in the last equation.
Hence, all of these 2DR wave functions are indeed orthogonal
and infinitely deformable by changing the arbitrary mixing
angle θ .

We now generalize this orthornomality to an arbitrary
mixing of the two 2DR wave functions �

(θ,±)
n,n′ (x, y), where

n′ = n + 2p + 1, defining

�
(1,2)
n,n′ (x, y) =

∫ π

−π

dθP(θ )
[
A1,2�

(θ,+)
n,n′ (x, y)

+ B1,2�
(θ,−)
n,n′ (x, y)

]
, (A5)
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where the only two restrictions upon P(θ ) are that P(θ ) �= C,
for which all of the 2DR wave functions would vanish, and
that the integrals in Eq. (11) are finite. Thus, for example, P(θ )
could in principle be an infinite set of Dirac δ functions, as
long as the sum of their integrated set was finite.

Using the orthonormality of the 2DR wave functions for
either the square box or the MSA, the orthogonality being
given in Eq. (A4) and the normality equation being given
in elementary textbooks, we can force the above �

(1,2)
n,n′ (x, y)

to form a much more general orthonormal set that spans the
infinite set of possible θ values. The orthonormality equations
are then easily seen for i = 1, 2 to be

1 =
∫ π

−π

dθ

∫ π

−π

dθ ′P(θ )P(θ ′)[(|Ai|2 + |Bi|2) cos(θ − θ ′)

+ (AiB
∗
i − BiA

∗
i ) sin(θ − θ ′)] (A6)

= (
J2

e + J2
o

)
(|Ai|2 + |Bi|2) (A7)

and

0 =
∫ π

−π

dθ

∫ π

−π

dθ ′P(θ )P(θ ′)[(A1A∗
2 + B1B∗

2 ) cos(θ − θ ′)

+ (A1B∗
2 − B1A∗

2 ) sin(θ − θ ′)] (A8)

= (
J2

e + J2
o

)
(A1A∗

2 + B1B∗
2 ). (A9)

By interchanging θ and θ ′, it is easily seen that the terms con-
taining sin(θ − θ ′) vanish. Hence, we have for a completely
arbitrary P(θ ), that

A1A∗
2 + B1B∗

2 = 0, (A10)

and for i = 1, 2, the two identical normalization conditions,

|Ai|2 + |Bi|2 = [
I2
e + I2

o

]−1
, (A11)

where Ie and Io are given by Eq. (11).
We now provide more details about the orthonormality of

the 2DR equilateral triangular box and MSA wave functions
from Eqs. (23) and (24). For simplicity of notation, we set
|�1〉 = |� (e,o,1)

n,m (x, y)〉 and |�2〉 = |� (e,o,2)
n,m (x, y)〉 for both the

equilateral triangular box and MSA with m �= n + 3p. Then,
forcing the two 2DR wave functions to be orthonormal, we
require

A2 + B2 − AB = 1, (A12)

C2 + D2 − CD = 1, (A13)

AC + BD − 1
2 (BC + AD) = 0. (A14)

Solving Eqs. (A12) and (A13) for B in terms of A and D in
terms of C, we have

B = A

2
±

√
1 − 3A2/4, (A15)

D = C

2
±

√
1 − 3C2/4. (A16)

These equations force the 2DR equilateral triangular wave
functions to be normalized. To force the orthogonality, we
have

AC + BD − 1
2 (BC + AD) = 0. (A17)

Then, substituting Eqs. (A15) and (A16) into Eq. (A17), we
obtain

3
4 AC +

√
(1 − 3A2/4)(1 − 3C2/4) = 0. (A18)

Subtracting the first term from both sides of Eq. (A18), squar-
ing both sides of that equation, and simplifying, we obtain

A2 + C2 = 4
3 . (A19)

We then choose

A = 2√
3

cos θ, (A20)

C = − 2√
3

sin θ, (A21)

which allows for the solutions of both Eqs. (A18) and (A19).
Then, from Eqs. (A15) and (A16), we have

B = 1√
3

cos θ ± sin θ, (A22)

D = − 1√
3

sin θ ± cos θ, (A23)

and the orthonormal set of 2DR wave equations for the
equilateral triangular box of the MSA both indeed form
two sets of orthorhombic wave functions, each of which is
infinitely deformable by changing the arbitrary mixing an-
gle θ . In the following, we show explictly that the wave
functions in Eq. (25) form an orthonormal set. For sim-
plicity of notation, we write |�1〉 = |� (e,o,1,θ,±)

n,m �=n+3p (x, y)〉 and

|�2〉 = |� (e,o,2,θ,±)
n,m �=n+3p (x, y)〉. From Eqs. (A12), (A13), and

(A14), we then have

〈�1|�1〉 = A2 + B2 − AB

= 4

3
cos2 θ +

(
1√
3

cos θ ± sin θ

)2

− 2√
3

cos θ

(
1√
3

cos θ ± sin θ

)

= cos2 θ

(
4

3
+ 1

3
− 2

3

)
+ sin2 θ

× sin θ cos θ

(
± 2√

3
∓ 2√

3

)
= 1, (A24)

〈�2|�2〉 = C2 + D2 − CD

= 4

3
sin2 θ +

(
− 1√

3
sin θ ± cos θ

)2

−
(

− 2√
3

sin θ

)(
− 1√

3
sin θ ± cos θ

)

= sin2 θ

(
4

3
+ 1

3
− 2

3

)
+ cos2 θ

+ sin θ cos θ

(
± 2√

3
∓ 2√

3

)
= 1, (A25)
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and

〈�1|�2〉 = AC + BD − 1

2
(BC + AD)

= −4

3
sin θ cos θ

+
(

1√
3

cos θ ± sin θ

)(
− 1√

3
sin θ ± cos θ

)

− 1

2

(
1√
3

cos θ ± sin θ

)(
− 2√

3
sin θ

)

− 1

2

2√
3

cos θ

(
− 1√

3
sin θ ± cos θ

)

= cos2 θ

(
± 1√

3
∓ 1√

3

)

+ sin2 θ

(
± 1√

3
∓ 1√

3

)

+ sin θ cos θ

(
− 4

3
− 1

3
+ 1 + 1

3
+ 1

3

)
= 0. (A26)

As shown in the main text, it is then elementary to show that
all of the 2DR wave functions for the square box and MSA, the
equilateral triangular box and MSA, and for the disk box and
MSA, are all doubly degenerate, each component of which
is infinitely degenerate. For the equilateral triangular box and
MSA, the 2DRs also have the ± extra degeneracy.
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