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Path-integral approach to the thermodynamics of bosons with memory:
Density and correlation functions
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Expanding upon previous work, using the path-integral formalism we derive expressions for the one-particle
reduced density matrix and the two-point correlation function for a quadratic system of bosons that interact
through a general class of memory kernels. The results are applied to study the density, condensate fraction, and
pair correlation function of trapped bosons harmonically coupled to external distinguishable masses.
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I. INTRODUCTION

Retardation potentials describe interactions that depend not
on the simultaneous positions of the interacting particles, but
on their positions at different times [1]. An example is the
phonon-mediated interaction between electrons in a polar or
ionic crystal. The phonons propagate slowly in comparison
to the electrons. When the phononic degrees of freedom are
integrated out, one is left with a retardation potential telling
us that an electron feels the effect of another electron at an
earlier time [2]. Retardation potentials are not restricted to
condensed matter systems: in electromagnetism, the Liénard-
Wiechert potential between charges results from integrating
out the photons. In theories of quantum dissipation, the effect
of a (bosonic) bath can often be integrated out, resulting in in-
fluence phases with retardation [3]. When the bath consists of
(an infinite number of) harmonic oscillators, also the retarded
potential is harmonic [4].

Applications of retardation potentials such as the path-
integral treatment of the polaron [2] consider only one particle
interacting with itself at an earlier time. In more advanced ap-
plications, one can consider more general forms of retardation
potentials for a single particle [5], or consider many-
body retardation effects such as encountered in variational

approaches for many-polaron systems [6—8]. More recently,
systems of distinguishable particles coupled to environments
that could be integrated out have also been the subject of
various studies in the context of the thermodynamics of open
quantum systems [9-13].

However, for a system of many identical particles, the
required symmetrization of the many-body density matrix
complicates analytic calculations. In the context of non-
retarded potentials, this symmetrization can be tackled by
reexpressing the sum over particle permutations as a sum over
cyclic decompositions of these permutations [1]. In the grand
canonical ensemble the sum over all cyclic decompositions
does not contain any constraint. However, in the canonical
ensemble the condition of a fixed particle number results in
a constraint on the sum over cyclic decompositions, inhibiting
direct computation of the sum. In the context of the path-
integral formalism, this problem has been studied for a system
of coupled bosonic oscillators by Brosens et al. [14,15], and
some applications and extensions of this approach can be
found in [6,16,17]. In a recent work of the present authors
[18], the work of Brosens et al. was extended to retardation
potentials. In particular, we considered a general class of
quadratic many-body systems with retardation, as described
by the action functional (in units of & = 1)

J
SYWIr, x, y, k] = — /l"i(‘l,') dt + — /dtf do x(t —o)rj(t) - rj(o)
2~Jo 2=~Jo 0

p B N B
+ %Z/ dff doly(t — o) —x(z —0)]ri(r)~rj(0)—m2/ drr(t) - k(7). (1)
ij 0 0 - 0

The action functional (1) describes N particles with mass m
at an inverse temperature B, driven by source functions Kk
and interacting between themselves through memory kernels
x and y. When the memory kernels are set equal to delta
functions, the action functional reduces to the case without
retardation, studied in [14,15], but more general choices can
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represent the effect of an environment that has been integrated
out [1]. We will treat the memory kernels as generally as
possible aside from the minimal assumptions of symmetry
x(t) = x(—7) and B periodicity x(8 — t) = x(7) for both of
the memory kernels, which allows to represent them as the

Fourier series x(t) = Y oo x,e™®, with v, = 2mwn/B the
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bosonic Matsubara frequency. In addition we will assume that
Xo and yg are strictly nonzero, although this restriction can be
omitted by introducing a finite system volume.

In our above-mentioned previous work [18], the partition
sum and some derived thermodynamic quantities such as
the internal energy and the specific heat were calculated. In
essence, we computed the trace of the density matrix. How-
ever, in order to use many-body systems with retardation as
variational model systems, it is necessary to also know the
one-and two-point correlation functions. These quantities give
access to expectation values of single-particle operators (such
as the density) and of two-body operators (such as the pair
correlation function). The goal of the current paper is to derive
the one-particle reduced density matrix and the two-point cor-
relation function. As an example, we then apply these results
to an open quantum system of bosons coupled to a model
environment of distinguishable masses.

In Sec. II, a short review of previously obtained results is
presented, and the path-integral definitions of the one-particle
reduced density matrix and the two-point correlation function
are given. We calculate expressions for the former in Sec. III,
and for the latter in Sec. IV. The obtained result for the
two-point correlation function provides a generalization of
expressions found in [15] to systems with memory. Our result
for the one-particle reduced density matrix allows for the
computation of the effective states and occupation numbers of

J

K[x, kl(rr, BIro, 0) = A% exp |:—%A (rr —1ro)* — 2

2 v,
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— < ) < 3 ) Bxi\ " (4)
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Note that we will also be using the shorthand notation K[x] =
K[x, 0] further on, corresponding to setting all «, to zero in
expression (3), which leaves just the first two terms in the
exponent. The two dimensionless functionals A, and A,(7)
appearing in the propagator are defined as

[ee]

B B
Ax_n—zoo n+18x (5)
Adr) = 2 n;,o T A (6)

‘We will use the shorthand notation A, = A,(0) and in general
we will assume A, > 0 and A, > 0 in this paper to restrict the
memory kernels to produce bounded propagators as a function
of the end points (3).

Let us write the partition function of a system of bosons
described by (1) as Z[k](N), where the dependence on the

the bosons. In Sec. V we apply these results to further explore
the simplified model of bosons in an environment introduced
in [18] and in particular focus on the behavior of density and
condensate fraction. Conclusions are drawn in Sec. VI.

II. QUADRATIC MANY-BODY SYSTEMS WITH MEMORY

In [18] the distinguishable particle propagator correspond-
ing to the action functional (1) was shown to be given by

K[y, VNK](+/NRz, B|/NRy, 0)
K[x, vVNKI(v/NRz, B]~/NRy, 0)

KN[X, Y, E](FT’ ﬁ'FOa 0) =

N
x [ TKLx, 117, Blrj0,0), (2)

j=1

where R = 1 3 r; is the center-of-mass coordinate and K =
ﬁ >". k; is the center-of-mass source term. The notation with
square brackets indicates the dependence of the propagator on
the system parameters, i.e., the memory kernels x and y and
the set of sources k¥ = {«;}. The sets of initial and final posi-
tions are denoted by Ty = {r; o} and r7 = {r; 1}, respectively.

The propagators on the right-hand side of (2),
K[x,k;l(rjr, Blrjo,0), are the single-particle propagators
corresponding to the N = 1 limit of (1), and only depend on
a single memory kernel:

m 1 :
(rr +r 0)2+?A(0)Zv3—tﬂxn.(”+r0)

2
2m 1 K, 2m [ B? Ky Ky
B A(0) (Z V2 + ﬁxn) + F(Z Z V2 + ﬁxn_):|,

3)

(

source functions is explicitly highlighted in the functional. In
[18] the partition function Z(N) = Z[0](N) for this system
without source terms, ¥ = 0, was calculated and applied to
study the specific heat of a model of an open quantum system.
The goal of this paper is to expand upon this calculation and
derive expressions for the one-particle reduced density matrix
(from which the one-point correlation function readily fol-
lows) and the two-point correlation function. The one-particle
reduced density matrix is computed in a similar way as the
partition function in [18], but now the integration variable r; is
removed from the integral resulting in an N — 1 dimensional
integral over ¥ = {r, ..., ry}, and in the boundary points of
the path integral ry is replaced by respectively r and r’:

p1(r'[r)

ryil B

D’ ¢SV %301

(7

For the computation of the two-point correlation function,
the structure of the path integral is somewhat simpler as all
variables ¥ = {ry, , ..., ry} are treated on the same footing,
but an additional weighing factor containing two different

.....
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(a) Z(N) cycles, N =5

0

h; hg (k)

(b) p1(r'|r) cycles, N =5
O3(k) ha(k)

FIG. 1. Depiction of the different types of cycles for N = 5, where the arrows represent the single-particle propagators (3). The cyclic
decomposition of the partition function in the absence of source terms [18] is illustrated in (a) where the closed cycles contribute a factor £, (k)
given by (13). The modified decomposition of the IRDM p; (r’|r) is shown in (b), where one cycle is now opened up contributing a factor
O,(k) in (12) while the remaining points are still partitioned in terms of closed cycles.

variables r; and r; (identical for any i # j) appears:

<eiQ-(r1(f)—rz(0))>[ — Z(N)N‘ Z/

PIFL.f
% / DY o r(o)=r;(@)] =SV [Fxy.0]
r,0

®)

In the next two sections, we perform the many-body path
integrations in expressions (7) and (8).

III. ONE-PARTICLE REDUCED DENSITY MATRIX

The derivation of the one-particle reduced density matrix
can be summarized as a modification of the derivation of the

J

partition function in [18] to account for the unequal treatment
of the variables r and r’ in comparison to the other variables
F = {r,, ..., ry}. The first step is to note that. for any fixed
permutation, the path integral in (7) is given by the prop-
agator (2), where the center of mass part is unaffected by
the permutations while the rest of the end points have to be
permuted accordingly. The center of mass can now be isolated
in the same spirit as in [14,18] using a modified variable
R= 1lv Z]jy:z r; that only contains integration variables. This
allows us to write

pi(r'|r) = dk PR(N,K)P,(N, k),  (9)

1
2m)! Z(N)/

where the center-of-mass contribution is the Gaussian integral

- KIyI(VNR + fr BIVNR + ', 0)
Pr(N, k) = /dR kR — (10)
K[x](VNR + —or, BIvVNR + 1, 0)
which is readily computed if we assume that A, > A,. The remaining factor contains the permutations:
1 - —ik-SN r;
PANK) = 20> / dFK [x](rp), BIEn, 0) - - KXI(X', Blr;, 0) - - K[x)(xpqr), BIr, 0)e ™ L=/, (11)
TP

where P(n) represents the element that ends up at the position
of n after the permutation on the ordered set {1,2,..., N}.
Expression (11) illustrates how the end point r’ of the one-
particle reduced density matrix is permuted to some position
J, while the initial point r remains in place and gets coupled
with element P(1).

We now follow the standard approach [1,14,18] to decom-
pose the summation of permutations in (11) in terms of its
cyclic decomposition, an argument which will require some
modification for the calculation of p;. It is easy to see that
most cycles will be completely unaffected by the presence of
r and r’ and will yield exactly the same contribution %, (k)
as computed for the partition function in [18]. In fact, there
will be only one modified permutation chain starting at r —
rp(y — --- that has to end at r’. As illustrated in Fig. 1,
this chain can be thought of as an open cycle with length ¢
the contribution of which we will call O, (k). The summation

(

in (11) can therefore be written as the summation over all
the possible open cycles Oy(k) multiplied with the cyclic
decomposition on the remaining N — £ points (and taking the
combinatorics into account):

Zozao Z ]‘[ZM“;;, (12)

Here, M,, is the number of cycles of length » in the decompo-
sition and ) " represents the constraint ), M,, = N — £. The
ordinary closed cycles &,(k) were computed in [18]:

1
{2| sinh ( arccosh[ f: ])|}d

3B
X exp _—SNZmAX , (13)

PN, k) =

he(k) = Q%
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with
1 1 4 12
O, = < ) , (14)
Mot (14 22) WAoo lAcA — 1]
and the open cycles are given by
0u(k) = / dr - / dry KI)(t. Iz, 0) -~ KxI(rs, Blra, OKLxl(ra, Blr, 0)e~ & Thar, (15)

This integral is computed in Appendix A and is shown to be equal to

dj2
-1

2
0u(k) = A" A exp{ P [ — JAA, tanh( arccosh({))]
Ue—1(2)

(-] 8N7m
ik -(r+1r)| VA A, tanh farccosh(g‘) —1(- m ﬁ tanh éarccosh(g‘) (r2 + r’2)
2N A 2 B\ A, 2

~ B\ A, sinh(€ arccosh(Z)) R

AN+
TANA -1

—
S

where
(17

and U, is a Chebyshev polynomial of the second kind defined in expression (A6) of Appendix A for || > 1.
The closed cycles A, (k) (13) can be now substituted in (12) after which the Fourier integral in (9) can be readily performed.
The final expression for the one particle reduced density matrix is found as

dj2
) 2\ 1 7N — o) 1
pi(rr) = (—) v 7
np N =1 (V) [,/ coth( arccosh({)) N(Ax— Ay)]
1 [A ¢
(A, — Ay),/ 3 tanh (5arccosh(¢)
1 m N ) A, (2 ) (r—}—r/)z

X exp| ——
|2 sinh (arccosh(Z)) ’d 28 4> coth (Farccosh(¢)) — (Ar — A)
-z éﬁth(é h( Ooﬂ+ﬂ% (18)
X exp B\ A, an 2arccos ¢
X ex m — Ao+ As 2 (r—r')? (19)
P 2/3 Ay sinh (€ arccosh(?)) '

Here, Z(N) can be found as the solution to the recurrence relation [with Z(0) = 1] studied in [18]:

1°& 1
ZN) =~ 3 Z(k) - 20)
N kXZ; |2 sinh (“>*arccosh(¢)) ]d

Note that by relabeling k = N — £ it follows from (20) that for any N

1 XN: Z(N — ) 1 -1 @h
N&TZO) ok (farccosh@)|

which guarantees that the one-particle reduced density matrix (19) is always normalized.
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The diagonal of p; in position space can be readily taken and yields the average boson density. Note that here and in the rest

of this paper the density will be normalized to 1 rather than to N:

4
1 1

2\ 1 L Z(N - ¢
n(r>=p1(r|r)=<£) > (Z(N))
=1
2m 1

[\/>coth( arccosh({)) %(Ax — Ay)]

|2 sinh ( arccosh(¢ )) |

X exp

We can now consider a specific choice of memory ker-
nels x(t — o) = w?8(t — o) and y(r — o) = Q*8(r — o), in
which case the action functional (1) reduces to that of a sys-
tem of harmonically trapped bosons all coupled by springs,
as studied in [15]. In this case the Matsubara summatlons
5) and (6) can be computed to find A, coth( “),

Ay = Q coth( £) and A, = ﬁ“’ coth( “). In add1t10n .=
cosh( ), which nicely cancels Wlth the arccosh function in

the argument of the hyperbolic sine. After substitution in (22),
the expression for the density in [15] is retrieved exactly.

IV. TWO-POINT CORRELATION FUNCTION

The goal of this section is to find an expression for the
partition function with two general nonzero source terms k¥, =
(K1, k2,0, ...):

PIrl.p N
Z[B1N) = N'Z/dr/ DE S nsEl (23

which after division by Z(N) and setting k;(r') = 48(r —
/) and ky(0’) = —%8(0 — ¢') yields exactly the two-point
correlation function (8). First, the propagator (2) is substituted
in (23) where two source terms are set nonzero. Contrary to
the approach in Sec. III, all of the variables r are integrated
out in (23). The center of mass can therefore be separated
using the complete center-of-mass variables R = %VZiv:l I;

and K, = %(K] + k), which allows us to write:
Zlk]J(N) = Qnyl / dk Zg[I2](N, K) Z,[K2](N, k),  (24)
where

K[y, VNKy](+/NR, B|/NR, 0)
K[x, vVNK;](+/NR, B|~/NR, 0)
(25)

Zpli2]J(N, k) = [dR

and

Z,[2]1(N, k)

N
1 i
=1 3 [ are PR [Tk piry. 0
P j=3

X K[x, k2](Prz, Blry, O)K[x, 1](Pry, BIry, 0).  (26)

In expression (26) all source functions are set to zero except
for the two sources k; and k, corresponding to the propagators

B \/j::coth (Sarccosh(¢)) —

r’|. (22)

1
N(Ax - Ay)

[
starting in initial points r; and r,. Making use of expression
(3) for the propagator, (26) can also be written as

— _ ¢ (1)
Zr[lCz](N, k) — S [x,%1](0,0)— S [x,k2](0,0)

« Z/dfef%-zyzlr_,eﬁl(PrlJrr])+I~31(Pr|7r|)

N

x M Prr)th(Proe) TT K x)(Pry, BIr;., 0),
j=1

27)

where the path-independent contribution of the propagators
was taken out of the integral by using the notation

2
2m 1 K,
B A (0><Xn: v,%+ﬁxn)
2m /32 Ky -K_,
_F(TZM) @

In addition we define the shorthand notation for the linear

terms in the exponent corresponding to the two source terms
s=1,2:

SPx, €1(0,0) =

» 2m 1 Ksn
*T 8 Ax<0);v,%+ﬂxn’

- 2m [ B v,
bs=——| = E —Ks, | 29
’ B (2#0 V,%+ﬂxn'cs’> 9

The approach to compute (27) is once again to decompose the
permutation in terms of cycles just as in [15,18] or Sec. III,
with some modifications.

Consider any general permutation on N points out of the
summation in (27). For 2 < £ < N there will be N — ¢ points
that form cycles that do not pass through either r; or r, and
yield the ordinary closed cycle contributions /4, (k) as given in
(13). To account for the cycle(s) on the remaining £ points, the
set of all permutations has to be partitioned into two classes.
In one class of permutations, the points r; or r, will lie in
two disjoint cycles of respectively length £ and ¢ — j with
1 < j < £ — 1. In this case the contribution of the two cycles
can therefore be written as a product H (l)(k) @ (k) In the
second class of permutations, those pomts will be in the same
cycle of length ¢ and yield a single contribution x,(k, j')
which also depends on the distance between the two points
J' within this cycle, with 1 < j/ < £ — 1. After taking the
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combinatorics into account, this reasoning is written down as

_ e SO0 el 00 [ &SN ) R A ot /
Z,[#6)(N. k) = N > Y HPKH? (k) Z Y ZZ xe(k, j)
=2 j=1 Mi,...My_; n=1 n ne =2 j'=1

x 2 H iM(lZM, } (30)
and after relabeling the integration variables we can write forn = 1, 2

H" (k) = f dry - / dry ST ETOR [y, B, 0) - KLx](ra, BIri0)e”H Xie T 31
and

Xé(k9 ]) — /drl . / dr( eﬁl(r2+r])+f)1(r2_rl)K[x](rl, ﬁ|rz’ 0) e K[_x](r27 ﬁ|r10)e_%'2f':l rje§2(rj+2+l‘,'+l)+f)2(l‘j+2—l'j+l). (32)

m

In Appendix B expressions for both types of cycles are derived. If the notation from Appendix B is used, a = %Ax, b=3 5 AL,
to keep the expressions compact, the cycles can be written as

1 k> k-4, @aZa—b2b 1 ¢ — b2
H" (k) =0 exp [— it W coth( arccosh(;)) ]

[2|sinh (%arccosh({))”d 16N%b  4Nb a—b 4./ab 4 a—b
(33)
and
1 —Ck? ik 1 o ~
xe(k, j) =0 (— - (8 +a2) + —(a] + b] + a3 +b3)Dy
[2|sinh (arccosh(¢)) |] 16N2b ~ 4Nb ( 2+b3)
| L. . & = Lo = =
+ Z(al — by +4a; - b2)D1 + 5(31 -4y + by -bz)Dj + Z(al —by) - (@2 +b2)Dj4y
U
+ Z(al—i-bl)'(az—bz)Djl), (34)
where
1 cosh|(5 — n)arccosh(¢)
Dy(n) = (G =) ] (35)

2/ab  sinh ( arccosh(¢ ))

All that remains now is to compute the Gaussian integral in the center-of-mass part (25), and then combine the resulting
expression with (30) to compute the Fourier integral in (24). Although a rather lengthy calculation, it is reliant only on basic
Gaussian integrals and goniometric identities, and we proceed to the final result:

S T Z S w0, Zl [%
X exp { 2/;" i [j[xl, ] coth (zarccosh(§)> + Tliea, 2] coth (g > J arccosh(;)>]}
+ exp { i M[j[’flv k1] + Jlk2, k2]l coth (—arecosh(€)>
et IO e el IO

Here the functionals of the two source terms (c, y = 1, 2) in the exponents of the cycle-dependent contributions are given by

___ bt LR B NI BN A w SEL I Y - o S
Tl 71 = AxAx—l[A‘(Xn:viJrﬂxn) (XH:V,%Jrﬂxn) AX<ZZV3+ﬁan“’"> (ZZV,%JrﬁanV’”)]’

n##0 n#0
(37)

1 K1,n ﬂ ivn K2 ﬂ ivn
X B = - - i S 5 nl| — — | = S, n 5 38
[k1, k2] A A, — 1 [; V2 + By (2 ; V2 + ,anlfz, ) ; V2 + By (2 ; V2 + ,anlfl, (38)
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and the argument of the cycle-independent exponent in front is given by

Slie] = —

(N - l)mﬂ Z Kl,n : ’Cl,—n + K> p - ’C2,—n mlB

Kl,n : 'Cl,—n + K2,n : ’C2,—n

2N

n

@ Z 2’Cl,n : K2,—n mﬁ
2N v2 + Bx, 2N

v2 + Bx,

2N ~ v2 + By,
i Koon 2N 7l ]+ Tl o)) (39)
—— — —(JlKy, K Ky, K2]).
2By, BT 2

Expression (36) is nothing else than (exp(m foﬂ drri(t)k(t)) +m foﬂ dtry(1)K2(12))) with the expectation value taken with
respect to the unsourced system. To obtain the two-point correlation function (8) we set the two source functions equal to

respectively fi(t) = 135(71 — 1) and f(np) = ——8(t2 — o), which leaves the general form of expression (36) unchanged
except for simplifying the functionals 7, X, and § to
q 2p? ) B ’
Jl 6] = zm[AxAx(f) —A (0)< 9: A (f)) ] (40)
_ B 2 B 2
Jlh, f] = Wm[AxAX(U) - Ax(0)<530Ax(U)> } (41)
B 1 B p
Tl f] = om 2m[AXAx(I)Ax(0) A (0)< 9: A (T))( 95 A (U))} (42)
7B 1 B B
Xf, 6] = Wm[A (r)( 05 A (o)) A (a)( 0; A (r))} (43)
~ q*B 2m
Slka] = AmN [(N = 1DA0)+ Ay(0)+ Ay(t —0) — Ay(t —0)] — 7(\7[& fi1+ Jlfs, 2D). (44)

Note that while so far the shorthand notation for A, = A,(0)
was used, in (40)—(44) the full time dependence of A,(t) as
defined in (6) is invoked. Although (36) has no closed form
expression, the numerical solution mainly requires knowing
the factor Z (N ), which is obtained by solving (20) as shown in
[18]. Finally, just as considered in Sec. (III) for the density, the
coupled harmonic oscillator limit of the two-point correlation
function can be checked for t = o0 = 0, and exactly agrees
with the results in [15].

V. EXAMPLE APPLICATION: DENSITY AND PAIR
CORRELATION FUNCTIONS IN AN OPEN QUANTUM
SYSTEM

In this section the expressions derived in Secs. III and IV
are applied to study the particle density, condensed fraction,
and two-point correlations of a system of bosons in a model
environment. We consider N noninteracting bosonic oscilla-
tors labeled by the coordinates ¥ = {r;, r», ..., Iy}, coupled
to a set of external distinguishable masses labeled by Q =

{Q1,Qa, ..., Qu}, where the total system is described by the
Lagrangian [18]
N 2
_ m 2 me2 ) w 2
Ltot—;<21+7r +—Q T(ri—Qi) .
(45)

The bosons with mass m are trapped in a harmonic potential
with frequency €2, whereas the external particles with mass M

(

are harmonically coupled to the bosons with a frequency W.
In the rest of this section only equal masses M = m will be
considered, and W/ will be used as the coupling parameter
to the environment. The external masses are easily integrated
out, which allows us to formulate the behavior of the bosons
at the level of action functional (1) where the memory kernels
are identified as [18]

MW?2[W? 4 Q2
x(t—o)=y(t —0)= - |: W2 §(t —o)
_ W cosh(W[lz — o —/3/2])}_ )
2sinh(WB/2)

Note that, contrary to the treatment in [18], every expression
studied in this section follows from expectation values, and
there is no necessity to explicitly define the external system
relative to which the energy would be measured. Having ob-
tained the memory kernels (46) for this system, expressions
for A;, Ay, Oy, and Z(N) can be computed and were discussed
in [18]. Since for the two-point correlation functions we will
restrict ourselves to equal times T = o = 0, this is sufficient
to compute any of the quantities from Secs. III and IV. Note
that for this particular system we have numerically checked
that AA, > 1 and hence { > 1, which restricts the use of all
inverse hyperbolic functions to their real domain and allows
us to drop the absolute value signs.

Before proceeding to the presentation of the results let
us consider the one-particle reduced density matrix which
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simplifies quite a bit in the x = y case as per (46):

dj2

2\ 1 L zZN -0 |A ¢ 1
(r'[r) = <—> —Y ———|,/-—tanh (—arccosh(g))
" B N ; Z(N) Ax 2 |2 sinh ($arccosh(¢)) |d

_m ﬂt h f h(¢)
X exp 5\ A, an 2arccos ¢

In general, expression (47) describes a mixed state at the
single-particle level due to entanglement with the rest of the
system and can be decomposed in terms of a classical ensem-
ble with occupation numbers. In Appendix C we show how
the spectral decomposition of (47) is obtained (in d = 3),
o0

PEIR) = Y At @)Y, (48)
with the effective eigenstates and occupancy numbers given
by

1ﬁn(l') = Nanx (\/Ex)Hm'(\/&y)an (\/az) CXp (—0{1‘2),
(49)
N
Ae = i Z Z(N — K)e,(%”ﬁnyﬂz)z arccosh({)’ (50)

N = Z(N)

where H, is a Hermite polynomial, N, is the normalization

In Fig. 2 the occupation numbers of the effective ground
state and first excited state are compared for respectively N =
100 bosons and for N = 1, of which the latter is equivalent to
the distinguishable particle case of the system. The results are
plotted as a function of the coupling W between the bosons
and the bath. For numerical purposes the temperature is taken
to be finite, T /T, = 0.01, where kzT. = AQ[N/¢(3)]'/3 for
N = 100. In practice this represents the T = 0O case as the
results have already converged as a function of temperature.
At W =0 and T = 0 each particle can be described by the

factor of the eigenstate, and o =

1

— N =1,X0,00

=== N = 17 3)\1‘010
0.8 N =100, Ao,0,0

N = 100,31 0,0
0.6 B
A

0.4 B
0.2 |

~.
..
'''''

50 60 70 80 90 100
w/Q

FIG. 2. The occupation numbers at 7/T. = 0.01 (7. defined as
the condensation temperature for N = 100 at W = 0) of the ground
state and the first excited state (counting degeneracy) for respectively
N =1 and N = 100, are shown as a function of W, the strength of
the coupling to the bath of distinguishable particles.

m
+rhH—-— =

Ay 1

_ )2
B\ Ax sinh (€ arccosh(¢)) (r—r) ) (47)

(

same pure A9 = 1 harmonic oscillator ground state y(r)
regardless of the particles being distinguishable or not. This
should not be surprising as in the 7 — 0 limit the ground state
of N distinguishable noninteracting particles also obeys the
bosonic permutation symmetry. However, as W is increased,
the N = 1 case rapidly loses its purity as the excited states of
the density matrix spike in their occupancy numbers. Bosons,
on the other hand, retain a macroscopic occupation of the
ground state up to far stronger coupling strengths, illustrating
how condensation could protect the system from entangle-
ment with the environment.

The ground state 1/y(r) gets more sharply peaked when W
is increased, as can be seen from (49), which combined with
the behavior of Ay leads to a peculiar behavior of the particle
density (22). As can be seen in Fig. 3(a), the central density
of the bosonic cloud obtains a nonmonotonic behavior as a
function of W at low temperatures. The origin of this behavior
isrevealed in Fig. 3(b): the initial increase in central density as
a function of W is due to the compression of the condensate
wave function, whereas the subsequent decrease when W is
further increased is due to the depletion of the condensate, as
depletion overtakes the compression effect on the condensate
wave function.

In the previous discussion we assume that the central den-
sity closely mirrors the condensate central density. This is a
qualitative argument that neglects the contribution from the
excited states compared to the ground state. In contrast to
the bosonic case, distinguishable particles do not retain a
macroscopic occupation of the ground state, and there the
central density is determined by the excited states. In this
case the above argument will no longer hold, which makes
the behavior in Fig. 3 uniquely bosonic. We can also con-
sider the radial profile of the density n(r) shown in Fig. 4(a),
where the nonmonotonic behavior is clearly visible.

Having obtained an expression for the two-point correla-
tion function (36), we can compute the radial pair correlation
function representing the average density around each particle
as [15]

N-1 , .

g(r) = (2? / dq(e'q [r1(0) rz(0)1>e iqr. (51)
The radial profile of this correlation function is shown in
Fig. 4(b) and qualitatively looks nearly identical to the average
density profiles. This is to be expected since g(r) is still a
measure for the particle density, only now conditional to a
boson being present at r = 0. The most noticeable difference
is that at strong coupling W the pair correlation exhibits a
sharp spike at small distances.

To understand this, it is illustrative to discuss the strong
coupling limit of this model. Since the external particles in
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™ W/Q
S 40 W =900

% 20 (b) T =0.01T, 2\/mQJRN=1/6 0 Ao = 0.24
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20 -0.5 0 0.5 Ao = 0.64
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Ao = 0.95
Ao = 1.00 0

[0 (r)?/[to.w

FIG. 3. Panel (a) presents the central density of N =

0 = 1. /\

100 bosons (normalized by its value in the absence of the environment) for a series

of low temperatures as a function of W. In panel (b) the spatial profile of the ground state is shown at zero temperature (normalized by its
maximum value in the absence of an environment) for a set of coupling strengths W. The height of the shaded region in the peak relative to
the peak height represents the occupation number Ay. This also indicates the central density of the ground state fraction as this quantity is

proportional to Xg.

(45) are distinguishable, taking W — oo effectively glues
them to the bosons, giving them a distinguishable label as
depicted in Fig. 5. As a reminder, we are considering the equal
masses case M = m, and hence in this limit we should be
able to describe the total system as a gas of distinguishable
noninteracting composite particles with mass 77 = 2m that are
harmonically trapped by a frequency € = Q/+/2. The density
of such a system is readily written down as the diagonal of the
normalized propagator of the harmonic oscillator with mass /7
and frequency :

dj2
V2mS2 tanh (%)
ar,T) =
b4

B2 ,

X exp —/2mQ tanh [ —— |r? ). (52)
232

1.2 1.2 -

L (a) — W =0.01Q (b) — W =0.010
= 1 - W =100 —~ 1k - W =100
= L W = 200 z AU P W = 209
S 08 W =200 | D - W = 2500
= o a(r,T) =
=06 =06
= 0.4 = 04t
=02 2N = 02 e

Fo g g N

0 - 0 -
0 02 04 06 08 1 0 02 04 06 08 1

mQ Ar—1/6 mQ \r-1/6
ht nt

r r

FIG. 4. The density radial profile (a) and the pair correlation
function (b) of N = 100 bosons for a series of coupling strengths W
at a temperature 7 = 0.47,. The square scatters indicate the asymp-
totic model results given by (52) and (53).

If the particles are distinguishable and non-interacting the
pair correlation function g of this asymptotic model can be
computed as:

8, T) = (N — 1)/dr’ﬁ(r/,T)ﬁ(r/+r,T)

m&2 tanh (2f)
o)

( Lt h('BQ)2> (53)
x exp | ——=mSQtanh { — |r” ).
P\ 23/2

These quantities are now plotted alongside the density and
pair correlation functions in Fig. 4. For the density an ex-
act agreement is seen which confirms that the single-particle
correlation functions lose all their bosonic properties. For the

pair correlation function at large distances an exact agreement
is found, but at small distances the pair correlation function

dn

(a) W~ Q (b) W — oo (c)
® © o §P
OF JO @0@ o)  ucowso

® ©® &% P

FIG. 5. A depiction of the asymptotic limit of the model. When
W is comparable to the trapping frequency €2, the bosons can con-
dense, largely remaining indistinguishable (a). When W is increased
the particles are glued together and the bosons effectively acquire a
distinguishable label (b). Finally, note that this picture is less accurate
for two-point correlations; even with the distinguishable labels the
bosonic nature is retained in the pair-correlation function at short
distances (c).
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exhibits a sharp kink which only disappears in the true W —
oo limit. Therefore we conclude that even when the bosons
acquire distinguishable labels, the bosonic properties remain
robustly hidden at short distances in the pair correlation func-
tions.

VI. CONCLUSION

In this paper we derive the one-particle reduced density
matrix, the density, and two-point correlation function for
a general class of quadratic bosonic systems with retarded
interactions in the canonical ensemble. As the bosons obtain
an effective memory in this description, the commonly used
composition properties of path integral propagators no longer
hold, and a more general approach to compute the contribu-
tion of the permutation cycles is presented.

This formalism is then applied to a model of an open quan-
tum system of identical oscillators coupled to external masses.
We show how as the coupling strength with the environment
is increased, distinguishable particles rapidly get entangled to
the external system becoming a highly mixed state, whereas
the bosonic case retains its macroscopic occupation of the
ground state up to far stronger coupling strengths. This gives
raise to uniquely bosonic nonmonotonic behavior of the par-
ticle density as a function of the coupling strength, where
at an intermediate coupling the bosons experience maximal
trapping strength. In the context of the density and pair cor-
relation function the strong coupling limit is discussed, where
we show how at sufficiently strong coupling strength even at

J

O, (k) = / dzy - - / dz K[x1(Z, Blze, 0) - - - K[x](z3, Blza, OK[x](z2, Blz, 0)e N Ti=2,

zero temperature the bosons become distinguishable, while
retaining a trace of the bosonic statistics in the short-range
part of the pair correlation function.

The presented results open up the semianalytic treatment
of an entirely different class of action functionals for a finite
number of identical particles in the path-integral formalism.
Retarded interactions have already proved to be a powerful
method in variational models for certain types of systems.
With the present work, all the prerequisites to formulate a
general variational model for identical particles are obtained,
which we believe to be a particularly interesting direction to
follow up with this approach.
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APPENDIX A: CALCULATION OF THE OPEN CYCLE

In this Appendix an expression for O;(k) given in (15) is
computed. Since O,(k) factorizes in terms of its dimensional
components it is sufficient to do the derivation in d = 1:

(AL)

After substituting the expressions for the propagators (2) and performing the Gaussian integral we can write

Oy(k) = A'exp[—(a + b)(Z* + )]

where precisely as in [18] we define the shorthand notations a = %Ax, b=
vectors in (A2): e’ = (2(a — b)z,0,...,0,2(a — b)),z = (2, z3, . ..

-1

det(7)

exp (;‘(cuT +a )T (cu+ oz)), (A2)

l .. 1
%A_X' In addition we define the following

,ze),andu” = (1,1, ..., 1)withc = —ik/N. The main

difference with the open cycles computed in [18] is that now the central object is the £ — 1 x ¢ — 1 dimensional tridiagonal

Toeplitz matrix:

2@+b)y (b—a)

(b—a) 2a+b)

T=| o0 b —a)
0

which clearly loses the cyclic symmetry of the cir-
culant matrices that appear in calculations of closed
cycles.

The j={1,...,¢— 1} eigenvalues of the matrix 7 are
similar to those of the corresponding circulant matrix, but
have a longer period in the cosine [19]:

)j = 2(a+b) +2(b — a)cos (%) (A4)

(b—a)

0 . 0
2(a+b) e 0 , (A3)
(b—a)
0 (b—a) 2a+b)
(
The determinant of this matrix is then given by [20]
b
det(7) = (@ — b)"'Uey (" * ) (AS5)
a—>b
where Uy_, (Z%“Z) is the Chebyshev polynomial of the second

kind. Here, we define ¢ = % and restrict ourselves to strictly
positive a and b with a #b. If a—b > 0 then ¢ > 1 and
Up—1(2) is strictly positive. If a — b < O then then ¢ < —1
and U,_;(¢) can become negative for odd ¢ — 1, which gets
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compensated by the additional negative sign from (a — b)¢~!.  Since we have assumed a@ > 0 and b > 0 we can use the
Therefore det(7) is always positive and well defined. results of [21] to write

For |¢] > 1 Chebyshev polynomials of the second kind can » 14+ (b —a)or;+01e0)
also be written as (with any choice of approaching the branch (T 11),- =S8 = m - : and

cut of the arccosh function):

Ty~ €= D+20—as

sinh[£ arccosh(¢)] 4b
sinh[arccosh(Z)] (A6) This can now be u§ed to compute all the necessary terms in
the quadratic form in the exponent of (A2):

(AT)

Ui_1(0) =

This yields the factor in front of (A2), which leaves to find — 1 a V4
the quadratic form of the inverse in the exponent. The inverse w7 u= b £ — A tanh EaICCOSh(g) , (A8)
elements of matrix 7 are given by [20,21] (where we have

taken out an additional minus sign out of the Chebyshev T a= |: \/? tanh (Earccosh(g)) _ 1](1 +7), (A9)
polynomials): b 2

T—1, _ _ L
1 Ui (§)Up—1-;(8) «T a_[4(a+b) 8@tanh<2arCC0Sh(§)>]

i e AT B 4a —b)
4= =l 2 2 a— N2
X (7+7°)— ——@2—72), (A10)
-1 _ b Ui @Ue-1-i(8) it ois Up—1(2)
N a—b Ue-1(5) where we have used the easily proven identity
J
U 1 b 24ab 14
=2¢) _ ¢ to Vab tanh <—arccosh(§)>. (A11)
Upsi(§)  Uei(§) a—b a-b 2

Substituting both (AS5) and (A8)—(A10) into expression (A2) finally yields

o i1 K2 \/E )
Ouk)y=A \/(a U Q) exp {— 16V |:€ V3 tanh Earccosh(g)

ik \/E h( h 1 /
- W[ Etan <§arccos (;))— :|(z+z)

—2+/abtanh (garccosh(g )> P+ - I(Jj__l(?) (z—2)? } (A12)

After substitution of a, b, and A and after generalization to d = 3 this yields exactly expression (16).

APPENDIX B: CALCULATION OF THE CLOSED CORRELATION CYCLES

Let us start this section by computing the two-point correlation cycle (32), which should also yield the one-point cycle (31)
for 1, = 0. Quite similarly to Appendix A the computation is done in d = 1:

xelk, j) = /dzl '--/de At @K (7, Blzr, 0) - - - K[x](z2, Blzi0)e ¥ L=
X eﬁ2(1j+2+2j+|)+};2(Z,'+2—Zj+l), (B1)

and will be generalized at the end. Note that for j = £ — 1 some care should be taken as z;,, loops back to z;. In the derivation
below we will implicitly assume 1 < j < £ — 1, but each step can be readily checked to hold for the boundary cases as well
and the obtained result holds for any 1 < j < £ — 1. We can use the same notation for ¢, u and A as in Appendix A (but in ¢
dimensions) and define the vector

ij = (511—l;],fll—i—El,O,...,le—52,5124-1;2,0,...), (B2)

which has zeros everywhere except for the positions 1,2, j + 1, j + 2. After substitution of the propagators, the Gaussian
integral in (B1) is readily performed:

-
det(C)

xelk, j) = A° exp (i(cuT + ij)C_l(cu + w,-)). (B3)
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The cycle considered here is closed and hence just like in [18] the central object appearing is the £ x £ dimensional three-
circulant matrix C that is defined by a periodic shifting of the first row:

C =circR(a+b),(b—a),0,...,(b—a))

2(a+b) (b—a) 0 (b—a)
b—a) 2a+b) ((Bb—a) :
= 0 (b—a) 2a+b) - o |. (B4)
(b —a)
b—a) 0 (b—a) 2a+>b)

where the same shorthand notation for a and b is used as in Appendix A. The properties of this matrix are discussed in [22] and
the determinant is given by [18]

2
det(C) = 4(a — b)z sinh [éarccosh(a + b):| . (BS)
2 a—>b

To find y,(k, j) therefore only the quadratic form of the inverse matrix in the exponent (B3) has to be computed. Using circulant
matrix properties [22] we can write C~! = OD~'Q*. Here, D is the diagonal matrix of eigenvalues Aj=2(a+Db)+2(b—

a) cos (—2’;’) and Q is the matrix that has the the eigenvectors y; = (07, pI', ..., p/“=D) as columns, where p = exp('). For
expressions appearing in the first three terms of the quadratic form in (B3) this readily yields
4 1
T -1 T -1 S -
CClu=— d CTlu= — . B6
u u=_ an w;C 'u 2b(al + az) (B6)

The computation of the last part w! C~'w; = w! QD~'Q*w is slightly more involved. First we start by explicitly writin
p p i j i j ghtly Y €xXp y g

(W] Q) = (Q*w));, = ar — b))+ p" (@ + b1) + o™ (@2 — ba) + p" (@ + by) ] (B7)

1
il
from which follows

wiC'w; = (& + by + & + b3)De(0) + (a7 — b} + @ — b3)De(1) + 2(@1d@z + bib2) De(j)

+ (@ = b1)(@2 + b)De(j + 1) + @1 + b1)(@ — ba)De(j — 1), (BY)
where forany 0 <n < ¢
-1 -1
1 pmn +p—1nn 2 1
D =- _ = . B9
() = 5 mZ:O . ; m; =TT (BY)
The reasoning below to compute D,(n) strongly relies on several properties of circulant matrices discussed in [23]. For any
general circulant matrix M = circ(cy, ¢y, . . . , cg—1) With eigenvalues given by [22]
-1
=Y _c;p™, (B10)
j=0
it is not difficult to see that the factors appearing in the denominator of (B9) can be written as
-1
)me—mn — chpm(j_n) — Cn,OO + Cn-HIOm + cn+2p2m 4o (B11)
j=0

This is nothing else than the set of eigenvalues of a circulant matrix of which the initial row has been shifted by »n to the left
P_, M = circ(cy, cyt1, - - -5 Co—1, Co, - - - ), Where P, is defined as the circulant matrix that shifts all the rows of M by one column
to the right in the notation of [23]. Since circulants commute under multiplications it follows that P_, M) = P,M™!, which
allows us to write the summation (B9) as

2
D, = ZTr(PnC*l). (B12)
The inverse of a three-circulant (B4) is computed in [23],
C ' =circ(dy, dy, ..., dp_1), (B13)
from which follows for 0 < n < £
Dy(n) =2d,_, and D, (0) = 2d,. (B14)
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Following previous assumptions that the coefficients of the circulant matrix (B4) a and b are strictly positive with a # b, from
[23] follows the following result after some substitutions:

| (M)K/Z—n (\/Eiﬁ)l/Z—n

= Va—/b JVa++b (B15)
" 4ab (ﬁ+ﬁ>z/2_(ﬁ—ﬁ>e/2
Ja—+/b Ja+vb

Having already cast all the expressions into a goniometric form in [18] and Appendix A, we can do the same here and write

1 cosh[(% — n)arccosh(¢)]

D,(n) = , B16
o) 2+/ab  sinh [% arccosh(;’)] ( )
with ¢ = %’j. After substituting (BS), (B6), and (B8) into (B3), we can write
't —Ck? ik 1 - .
xe(k, j) = A’ exp( — —— (@ + &) + ~(aj + b} + @ + b3) Dy (0)
4(a — b)¢ sinh [%arccosh(;)]2 16N?b  4Nb 4( L b4+ 6)
1 ~ ~ 1 - 1 - .
+ Z(af —bi +a3 — b3)De(1) + 5((71712 + b1b2)De(j) + Z(al — b)) @ +b)De(j+ 1)
1 - -
+Z(&1 + b1)(@ — b2)Dy(j — 1))- (B17)

To obtain the one-point cycle one has just to substitute @, = b, = 0 and find

¢ K> ka;,  @a—Db0b 1 14 123 - b
He(l)(k) :.Ae\/ T exp ( an + 4 L coth <§arccosh(§)> — —b)

4(a — b)t sinh [%arccosh(g“)]2 16N?b  4Nb a—b 4yab 4 a-b
(B18)
The generalization to d = 3 yields the results presented in the main text in (33) and (34).
APPENDIX C: SPECTRAL DECOMPOSITION OF THE ONE-PARTICLE REDUCED DENSITY MATRIX
The one-particle reduced density matrix (47) can be written as a summation over Gaussian states,
| N
Pl = = 0 ), (C1)
=1
and after rewriting the exponents in (47) the terms can be written as
— N d/2
g9 |r) = C(%) exp (—%(r2 +1%) + ner - r/) (C2)
with
Z(N —¢ 1
¢ =20 . (©3)
Z(N) |2 sinh (4arccosh(¢))|
2m | A,
Ye = 5V, coth (¢ arccosh(¢)), (C4)

-2 : (C5)
"= B\ A sinh (€arccosh(¢))

Here, the Gaussian states were suggestively written in this form to use the results from [24]. This allows us to write down the
solution to the Gaussian eigenvalue problem for n = (n,, n,, n;) (in d = 3),

[ g o) =0 wuidw. ()

as
k;@) — Ce(l _ E@)d élanernz’ (C7)
I/f,gl)(r) = Nanx(\/“_ex)I'Lg(\/ot_ey)an(\/oTeZ) exp (_05(1'2/2), )
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with H, a Hermite polynomial, o, = (y? —n)"?, & = # [24], and the normalization factor N, =
()2 (% )?/4. Remarkably, the ¢ dependence in the coefficient or; drops out:
2m | A, 5 1 2 om A,
o = — [ —| coth [£ arccosh(¢)]” — — 5 = — |—. (C9)
B\ Ax sinh [£ arccosh(¢)] B\ A,

This implies that every Gaussian state g (r'|r) has the same set of eigenstates, which are also immediately the eigenstates of

(Cl):

Yn(r) = NoH,, («/&x)Hny (\/ay)an (ﬂz) exp (—arz).

The factor &, does remain £ dependent:
1

& =

sinh [£ arccosh(¢)] 1 + coth [£ arccosh(¢)] -

and hence the eigenvalue of the full density matrix (C1) corresponding to state ¥, (r) is given by

N
1 Z(N — ¢ 1
. (N —0)

In the case that ¢ > 1 this can be simplified even further:
N

n —

5 l Z Z(N — e)e_(%+nx+ny+n:)larCCOSh({)'

N &= Z(N)

_szl Z(N) |25inh[§arccosh(§)]|d

(C10)
1 —~{ arccosh(¢)

= , (C11)

1— e—K arccosh({))de—(n,x+n),+n1 )14 arccosh(;). (C12)
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