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Stabilization of product states and excited-state quantum
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We study a system of a single qubit (or a few qubits) interacting with a soft-mode bosonic field. Considering an
extended version of the Rabi model with both parity-conserving and parity-violating interactions, we disclose a
complex arrangement of quantum phase transitions in the ground- and excited-state domains. An experimentally
testable signature of some of these transitions is a dynamical stabilization of a fully factorized qubit-field state
involving the field vacuum. It happens in the ultrastrong coupling regime where the superradiant field equilibrium
is far from the vacuum state. The degree of stabilization varies abruptly with interaction parameters and increases
with the softness of the field mode. We analyze semiclassical origins of these effects and show their connection
to various forms of excited-state quantum phase transitions.

DOI: 10.1103/PhysRevA.104.053722

I. INTRODUCTION

Controlled evolution of quantum systems becomes a major
challenge of modern physics in relation to quickly advancing
technology [1,2]. Quantum computers and simulators are pre-
sented as devices, potentially capable of hugely surpassing the
efficiency and the range of use of the present-day computing
facilities. One of the biggest obstacles on the way to future
realization of these machines follows from the necessity to
protect the quantum state of the controlled system against the
effects of decoherence induced by unmanageable interactions
with the environment [3]. Several approaches to tackle this
difficulty have been developed over the past decades [4], but
the problem still remains crucial.

In this paper we report on a spontaneous quantum state pro-
tection in a system of N 2 1 qubits (spins or two-level atoms)
strongly interacting with a scalar bosonic field. We use an
extension of the Rabi model [5], a version of the Dicke atom-
field model [6-15] with a single atom (or, more generally,
with a small number of atoms). The Rabi model is a paradigm
for interacting quantum systems with no classical counterpart
[16]. It plays an important role in the present theoretical
and experimental efforts to understand and control quantum
dynamics in a system which provides a possible platform
for quantum information applications. The quantum dynamics
of the Rabi model has been recently investigated experi-
mentally in superconducting circuit quantum electrodynamics
[17-22], quantum photonics [23], semiconductors [24,25],
and trapped ions [26]. In quantum information processing,
the interaction Hamiltonian of the Rabi form describes the
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hybrid gate essential for building large and complex superpo-
sition states [27-30]. The Rabi coupling has been proposed to
build necessary ingredients for quantum technology [31-37].
A combination of the Rabi coupling with a parity-violating
interaction has been used to predict a new regime of multilevel
excitations [38,39], reach nonlinear couplings between the
qubits [40—42], and obtain quantum coherences autonomously
from a cold bath [43,44]. The Rabi model has been also
extensively studied in connection with various new types of
quantum criticality [45-51]. Recent experimental verification
of its ground-state quantum phase transition [52] is very likely
to stimulate serious efforts to detect also the other quantum
critical effects.

In the present theoretical study, the Rabi model with
both parity-conserving and parity-violating interactions is em-
ployed to address the problem of durability of separated qubit
states in a strongly interacting environment. We initiate the
system at zero temperature in the absence of qubit-field in-
teraction, in a product state, in which the qubits are in a
pure state |)®V (carrying replicas of an arbitrary one-qubit
state [¢)) and the boson field is in the vacuum state |0). This
entirely separable state is shown to exhibit a surprisingly large
degree of stabilization even if a strong qubit-field interaction
alters the equilibrium state of the field from the vacuum to
the superradiant form. The degree of stabilization increases
with decreasing energy of an elementary field excitation and
manifests abrupt variations with parameters of the qubit-field
interaction. A stronger interaction in some cases leads to even
stronger stabilization. We show that these properties result
from the presence of various types of excited-state quantum
phase transitions (ESQPTSs) in the energy spectrum.

The ESQPTs represent an extension of the ground-state
quantum phase transitions (QPTs) [53] to the excited do-
main. They attract a lot of recent attention in the context
of diverse interacting quantum many-body systems; see,
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e.g., Refs. [54-78] and the review [79]. The ESQPTs in
their most common incarnations reflect the presence of sad-
dle points or local extremes in energy landscapes associated
with the classical-limit Hamiltonians; hence they generically
cope with spontaneous stabilization effects like that outlined
above. Indeed, for the present model we show that although
the normal vacuum becomes unstable in the superradiant
phase, it still represents an excited quasistationary point in
some parameter domains. Stability properties of dynamics
near this point change with the model parameters, which leads
to ESQPTs of different types and to the different degrees of
the initial-state stabilization. The effect is endemic in Rabi
systems with parity-conserving interactions, but exists also in
the presence of some parity-violating interactions that reshape
quantum critical properties and introduce new coherence phe-
nomena. These results are of fundamental interest as they help
to identify various experimentally detectable dynamical signa-
tures of criticality in small quantum systems. Moreover, they
form the physical background for possible future realizations
of quantum information procedures based on such systems.
The plan of the paper is as follows: In Sec. II we introduce
the extended Rabi model and in Sec. III we analyze its clas-
sical limit and quantum critical properties. We show that the
model in its extended form has a rather rich quantum phase
structure with various types of QPTs and ESQPTs. In Sec. IV
we describe the quantum dynamics of a product qubit-field
initial state and discuss the conditions needed for the stabiliza-
tion effect to be observed. The occurrence and intensity of the
effect depends on the types of ESQPTSs and their configuration
in the energy spectrum. In Sec. V we formulate conclusions.

II. EXTENDED RABI MODEL

We consider an ensemble of identical qubits interacting
with a scalar single-mode boson field. The number N of
qubits will be mostly set to N = 1, in which case our model
represents a generalization of the Rabi model. Nevertheless,
our results remain relevant also in the context of a generalized
Dicke model with moderate values N 2 1. The field quanta
are created and annihilated by operators b" and b and the
Hilbert space H,, of the field subsystem is spanned by the
basis {|n),}52, of all eigenvectors of the boson number op-
erator A = b'b. The qubits (e.g., spin—% particles or two-level
atoms) are Qescribed by the collective quasispin operators
J= (J,n Jy’ Jz),

1
A ~ (i)
J—EE"(’ (D

i=1

where ¢ = (6, 6;5), 6.7) are Pauli matrices acting in the
two-dimensional Hilbert space of the ith qubit and the com-
ponents of J satisfy the commutation relations of angular

. a2
momentum. In the present model, the squared quasispin J
is always conserved and we will assume that its quantum
number j takes the maximal value

j=1inN, 2)

so the qubit dynamics is restricted into the exchange-
symmetric (2j+1)-dimensional space H, spanned by the

basis {|m)g i’ _;

general, this is a subspace of the entire 2"-dimensional qubit
Hilbert space spanned by all combinations of the logical states
of individual qubits. The Hilbert space of the entire qubit-field
system is a tensor product H = H, ® H,;, with a possible set
of basis vectors |m),; ® |n), = |m,n).

In the absence of interaction, each bosonic quantum has an
energy w and the energies assigned to the :l:% spin projections
of each qubit (the eigenstates of 6.") are 1w, (we choose
w, wg > 0). In the following, the ratio R = w,/w of the single-
qubit and single-boson energies will be assumed to be very
large, so R > 1. The Hamiltonian of the whole qubit-field
system is expressed as

of the eigenvectors of the operator J.. In

H = Hy(w, R) + Hin (A, 8, 11, y), A3)

where the first term represents the free Hamiltonian of both
the field and qubit subsystems,

Hy(w,R) = w[b'b+ R T], )

and the second term describes an interaction of these subsys-
tems. The interaction in the most general form considered here
has the form

L8 (BT J_+bJy )+ 52 (b1 +bJ-)

ﬂinl()"véi M, V) T ™~ 7 Lo (T ™~ 7
—————— = A[(b'+D)J, —i8(b"—b)J,
T (6 ) — o6 D) ]

+ (6" +B) (Lt J). 5)

with Jo =J, + JA} standing for the standard angular-
momentum ladder operators. The interaction
Hamiltonian is controlled by four adjustable parameters,
namely A, u € [0,00), § € [—1,+1], and y =0 or 1. The
meaning of these parameters and the ~/NR scaling in Eq. (5)
will be explained below. All quantities here are expressed in
arbitrary units.

We first discuss the Hamiltonian with p = 0. In this case,
the model represents an N =1 (or N 2 1) analog of the
extended Dicke Hamiltonian in the form considered, e.g.,
in Ref. [14]. While the case with & € [0, 1] was studied
in the extended Dicke setup, the case with § € [—1,0) is
new in the present parametrization. The following special
forms of the u = 0 Rabi Hamiltonian can be distinguished:
(i) Dicke-like form with § = 0, (i) Jaynes-Cummings form
with § = +1, and (iii)) anti-Jaynes-Cummings form with
8 = —1. The Dicke-like form coincides with the original
version of the Dicke Hamiltonian [6], with both normal
and counterrotating terms (b*J_ ~|—l3f+) and (l;"'f+ +bJ)
equally weighted. On the other hand, the Jaynes-Cummings
[7] and anti-Jaynes-Cummings forms represent two opposite
extremes of simplification which completely disregard the
counterrotating or the normal term, respectively.

We observe that any i = 0 Hamiltonian conserves a gen-
eralized parity

1= (—=D"(-1)", (6)

where 7 is the number of bosons and 7, = J. 4+ j the number
of spin-up (excited) qubits. In addition, the Hamiltonian with
6 =41 or § = —1 conserves also the quantity M, or M_,
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respectively, where
M. =i+, )

Therefore, both the Jaynes-Cummings and anti-Jaynes-
Cummings limits of the © = 0 model are integrable in the
usual sense (for a more general discussion of quantum inte-
grability of the Rabi model see Ref. [16]).

The parity (6) is not conserved by the Hamiltonian (5) with
n # 0. We will see that the parity-violating term produces
qualitatively new coherence effects in the qubit dynamics even
in the perturbative regime with very small values of p. We
consider two parity-violating regimes: the one with y = 1,
showing a modified type of quantum phase transition to the
superradiant ground-state phase, and the one with y =0,
showing only a smooth crossover behavior. While the y = 1
Hamiltonian brings the parity violation via a combination of
the qubit-field coupling and an external drive of the field, in
the y = 0 case the external drive is missing [43,44]. We note
that the parity-violating term used in our Hamiltonian differs
from the term o< J, commonly employed for the same purpose
in the literature (see, e.g., Ref. [16]), but with the aid of conve-
nient rescaling of operators and parameters these alternative
Hamiltonians can be transformed to the present form with
y = 0. Let us also mention a possible generalization of the
parity-violating Hamiltonian by introducing an independent
and continuous control of the o j term. This however brings
no essentially new feature and is not considered here.

Critical behavior, in general, is an emergent property
achieved in its sharp form only in the system’s infinite-size
limit. So the thermal phase transitions [8—10] as well as the
QPTs [11] and ESQPTs [14,60,62] in the the Dicke model can
be observed only if the number of atoms N — oo. However,
in the Rabi model N is assumed to be small, later even set to
N = 1. The possibility to observe quantum critical effects in
this case relies on the increase of the qubit-to-boson energy
ratio R [45,46,48]. Ratios R > 1 imply that the expectation
values of the number of bosons in typical eigenstates of
the entire system satisfy (1) > 1. On the total energy scale
E ~ Nw, (which follows from the required ability to reach
the excitation of the whole qubit subsystem) we expect values
of the order of magnitude (71) ~ NR. Thus in the present case,
NR (or just R) plays the role of a suitable size parameter
and R — oo is identified with the infinite-size limit. Note
that a systematic definition of size parameters in imbalanced
coupled systems is described in Ref. [79].

The present form of the Hamiltonian in Egs. (3)—(5) im-
plies that for increasing R the energy scale (hence also the
timescale) of the field subsystem remains fixed, while the
energy scale of the qubit subsystem increases (the timescale
decreases). The necessity to boundlessly increase the ratio R
explains the use of the ~/NR scaling of the interaction Hamil-
tonian (5). It ensures a stable proportion between expectation
values (Hi,) and (Hp) in typical eigenstates when R — oo
(otherwise (1-70) would become increasingly dominant). Note
that the scaling factor for each specific value of R can be
absorbed into some renormalized interaction strengths.

To facilitate the description of the system with large values
of the size parameter, we transform the Hamiltonian (3) into
the coordinate-momentum form of the boson operators. In

particular, we use the mapping

. [NR., . . [NR .
b= T(CI—IP), b= T(Q‘HP), (®)

where ¢ and p, respectively, represent the canonical co-
ordinate and momentum of the field subsystem, with the
commutation relation [§, p] = i/NR identifying 1/NR as an
effective Planck constant. We will use a scaled dimensionless
Hamiltonian and the corresponding energy

. H E
h=——, £ =—"-. )
NRw NRw
In terms of § and p, the scaled Hamiltonian reads
N 1 @+p y
h=——— 2N — ¢
Rt PV

A AS 1 N
+ (ﬁ—q, V82, —+J§ﬁq>-1, (10)
w w N w

B

where we introduced a vector of operators B = (B’x, B’y, EZ)
which enabled us to rewrite the qubit-field interaction Hamil-
tonian in the magnetic-dipole form B - J = Exfx—i-éyfy—i—ﬁzfz.
This expression will be employed in the semiclassical analysis
below.

III. SEMICLASSICAL ANALYSIS AND QUANTUM PHASE
TRANSITIONS

A. General expressions

In the limit R — oo the coordinate and momentum oper-
ators ¢ and p in Eq. (8) satisfy [§, p] — 0, so they can be
treated as ordinary commuting variables g and p. Hence the
vector operator B in Eq. (10) maps onto an ordinary c-number
vector B and the interaction term can be cast with the aid
of the quasispin projection in a rotated 7' direction parallel
with B, so

R 8A2 81252
B-J=,\—F¢+—5 P+
w w

1 \/gli ’ J

(N o q) ==

11
where n = B/|B| = (ny, ny, n;) is a unit vector which depends
on g and p. Under these circumstances, the projection J.
commutes with the Hamiltonian (10) and therefore represents
an exact integral of motion. Let us stress that this conservation
law is not satisfied if R is finite since then the unit vector n in
the definition of J. becomes an operator i depending on §
and p which does not commute with the other parts of the
Hamiltonian (in that case even the expression of B in terms
of |B| and 7 would have to be performed in a more careful
way respecting the Hermiticity requirement). If R is finite but
large enough, the correctly defined quasispin projection J.
represents an approximate integral of motion following from
an approximate adiabatic separation of fast qubit dynamics
from the slow field dynamics [15]. This means that the spec-
trum of the full Hamiltonian (10) decomposes into virtually
noninteracting subsets of states with different values of the J.,
quantum number m’ = —j, —j+1, ..., j—1, +j.
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The R — oo classical Hamiltonian depending on variables
g and p for a given value m’ of J, follows from Egs. (10)
and (11):

2 2
q +p ny
hr(q, p) = ———+ V2N —q

2 252 2

+m' Sizq2+8'\f p2+<l+@ q> . (12
W w N w
This Hamiltonian defines classical dynamics of the single
degree of freedom (f = 1) associated with the field subsystem
constrained by the state of the qubit subsystem with the fixed
quasispin projection m'. If R is finite but large enough, the
discrete energy spectra of the whole system can be obtained by
the semiclassical quantization of the field degree of freedom
performed separately for each value of m’ in Eq. (12). The
lowest state for a given m’ approximately coincides with the
minimum of &, (g, p), while the density of excited states is
obtained from the formula

o) = 5o [ dadp O —huig. ), 13)
7w de

where ©(x) is the step function (® = 0 and 1, respectively, for
x < 0and > 1). The bar in p,, indicates that the semiclassical
(infinite-size) level density (13) approximates smoothed level
densities in the finite-size cases. Note the symmetry of the
Hamiltonian (12) under the parameter change § — —3§, which
makes the semiclassical results discussed below dependent
only on |§].

Identification of quantum critical effects relies on the anal-
ysis of stationary points of the set of Hamiltonian functions
in Eq. (12). A nonanalytic change of the absolute minimum
of h,y(q, p) at some value of the control parameter indicates a
QPT of the lowest state in the given m’ subset. Any stationary
point of h,/(q, p) at energy &. above the global minimum
causes an ESQPT nonanalyticity in the level density (13). As
shown in Ref. [66], for a nondegenerate (locally quadratic)
stationary point with index r (the number of negative eigen-
values of the Hessian matrix) the nonanalyticity has the form

(—1)7? O(e—¢),
—In|e—g.|,

forr =0, 2,

forr =1, (14)

P (&) — D2 (e) o {
where a model-specific analytic part [)r(,g)(s) of the full level
density, which depends on the behavior of the Hamiltonian
away from the stationary point, is subtracted to gain the
universal irregular part, which reflects only an infinitesimal
vicinity of the stationary point. As seen in Eq. (14), at the
energy &. of the nondegenerate stationary point the semiclas-
sical level density manifests either an upward or downward
step discontinuity, or a logarithmic divergence.

B. Parity-conserving case

We first consider the parity-conserving p = 0 Rabi
Hamiltonians. Stationary points of the corresponding classical
limit (12) can be obtained in an analytic form for any value of
m’. For m" > 0, the function #,, (g, p) has a single stationary
point, the global minimum at (g, p) = (0, 0), which means
that the lowest energy state is always associated with the field

Sy So

1

[ _——— =

M B

FIG. 1. “Quantum phases” of the field vacuum, i.e., the types
of the (g, p)=(0, 0) stationary point, in the parameter plane of the
parity-conserving (u = 0) Hamiltonian with m’ = —j. The dashed
line at A = A, and the dash-dotted curves denoted as A, and A, which
represent the A(8) dependence from Eq. (15) for § > 0 and § < 0,
respectively, separate the normal phase N, the first superradiant phase
S1, and the second superradiant phases S, and S. The color encodes
the value of the Hessian matrix determinant at (g, p)=(0, 0). The
insets show dynamics of perturbations near the stationary point for
some (A, 8) in the N, Sy, and S, phases.

vacuum. The m’ < 0 cases show more interesting behavior. In
the following, we will analyze the subset of states with the
lowest quasispin projection m’ = —j, which represents (for
A > 0) the subspace containing the ground state.

We define two special values of parameter A,

Ae
Mo(d) = — 15)

N = w
c — |3|’

2N’
that separate, in the plane A x §, different “quantum phases”
distinguished (as explained below) by the nature of the field
vacuum in the lowest-m’ subspace of the entire Hilbert space;
see the diagram in Fig. 1. Stationary points of /_;(q, p) and
the corresponding QPT and ESQPT nonanalyticities of the
semiclassical level density p_;(e) (shown for § = +0.5 in
Fig. 2) can be described with reference to the above phase
diagram:
(a) For A € [0, A.] (the normal phase of the system; see
the region N in Fig. 1), the only stationary point is the global
minimum at the position and energy

(g, p) =(0,0), (16)

£=— (17)

So the field vacuum associated with the point (16) constitutes
(along with the m’ = m = —j state of qubits) the ground
state of the system, which results in the ground-state expec-
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FIG. 2. The semiclassical level density p_;(¢) from Eq. (13) as a
function of ¢ and A for the parity-conserving (u = 0) Hamiltonian
(3) with |§| =0.5 and w = 1 = N. Darker shades correspond to
larger values of the level density. The observed ESQPT nonanalytic-
ities of the level density (divergence and downward step, highlighted
by the dashed and dash-dotted lines, respectively) result from the
stationary points in Eqs. (16)—(21). The lowest state undergoes a
second-order QPT at A = A.. The vacuum phases from Fig. 1 are
indicated.

tation values (b")gs = () o = (b'b) s =0. The stationary point
(16) is nondegenerate for A < A., but it becomes degener-
ate (quartic) at A = A, undergoing a pitchfork bifurcation
in the ¢ direction. This is a critical point of a second-order
ground-state QPT.

(b) For A € (A¢, Ag] (we call this domain the first superradi-
ant phase; see the region S in Fig. 1) we have three stationary
points: Two of them coincide with a pair of quadratic

minima at
(q.p)= |+ L RS 0 (18)
TP =\ 22 a2l
L2 A2
=——(=+=). 19
] 4()%“2) (19)

These form a doubly degenerate ground state, on the quantum
level a doublet of states with opposite values of parity (6). The
minima (18) represent new Higgs-like “vacua” of the field
characterized by a nonvanishing order parameter (b+b" gss
while the extremal quasispin projection m’ of the qubit sub-
system is rotated from the original z axis to a corresponding
new direction. The original field vacuum given by Eqs. (16)
and (17) is associated with the third stationary point, which
is a saddle (maximum in ¢ direction, minimum in p direc-
tion, index » = 1). This remnant of the A < A, minimum (in
the A x ¢ plane a straight continuation of the normal-phase
ground state) corresponds to an ESQPT given by a logarithmic
divergence of the level density, as seen Fig. 2. At A = Ag
this saddle becomes degenerate and undergoes a pitchfork
bifurcation in the p direction.

(c) For A € (X9, 00) (the second superradiant phase, which
exists in two disconnected regions below § = +1 and above
8 = —1; see regions S, and S} in Fig. 1) there exist five
stationary points. The ground state is still given by the pair of
symmetric global minima from Eqgs. (18) and (19), while the

remaining three stationary points give rise to two ESQPTs. A
degenerate pair of quadratic saddles (maxima in ¢ direction,
minima in p direction, r = 1) at

1Az A3
(g.p)=|=* E[A_%_ﬁ}o’ (20)

|WOREPY )1

£ 4(A(2)+A2)’ 1

produces a logarithmic divergence of the level density. The

original field vacuum from Egs. (16) and (17) now corre-

sponds to a local maximum in both the ¢ and p directions

(r =2), which is a remnant of the A € (¢, Ag] saddle. It

generates a downward step in the level density along a line

continuing the A < A, ground state. These structures are ap-
parent in Fig. 2.

As we saw, in the infinite-size limit the real vacuum
of the bosonic field represents a stationary state of the
system for all A € [0, 00), but in the subspace m' = —j
its nature changes with increasing A. Indeed, the corre-
sponding stationary point (16) transforms from the global
minimum to a saddle point at A = A, and then to a lo-
cal maximum at A = Ay. The Hessian matrix (g, p) of the
Hamiltonian second derivatives %qqu—;h, j» Hpp= %h, j»

and %quih_j: Lh_jzqu at (¢, p)=(0, 0) reads as

dqdp apdq
1-% 0
%qq(09 0)5 %qp(ov O) _ 22 (22)
%pq(oa 0), %pp(ov 0) 0, — i:—z ’
0

The determinant of (0, 0) (positive for the maximum or
minimum and negative for the saddle point) is expressed by
the intensity and color of the background filling in the phase
diagram of Fig. 1.

The dynamics of small deviations from the vacuum state
(16) is governed by the matrix equation

0)=(i o))
P —44(0,0),  —3,(0,0)/\p)’

where we can further substitute sz,,(0, 0) = 5,,(0, 0) =0 from
Eq. (22). It follows that the types of the (0,0) stationary point
in the three domains of A differ by the stability properties
of nearby classical orbits: (a) For A € [0, A.), in the nor-
mal phase, we get s, > 0 and ,, > 0, so the matrix in
Eq. (23) has purely imaginary eigenvalues. Hence the dynam-
ics of deviations (g, p) with 6¢ = ¢ — h_;(0, 0) > O is stable
and the Hamiltonian minimum is trivially recognized as an
elliptic fixed point. (b) For A € (A, A¢), in the first superra-
diant phase, we have s, < 0 and »,, > 0, so the matrix in
Eq. (23) has real eigenvalues of both signs. The dynamics of
deviations for §¢ > 0 and < O is unstable and the saddle point
of the Hamiltonian function is classified as an hyperbolic fixed
point. (c) Finally, for A € (X9, 00), in the second superradiant
phase, we obtain s, < 0 and s,, < 0, which again leads to
purely imaginary eigenvalues of the matrix in Eq. (23). Thus
the dynamics of deviations with §e <0 becomes stable, the
local maximum of the Hamiltonian function being identified
with an elliptic fixed point. These conclusions are illustrated
in Fig. 1.

053722-5



STRANSKY, CEJNAR, AND FILIP

PHYSICAL REVIEW A 104, 053722 (2021)

We note that the form of the stationary point for A > X
(local maximum in both coordinate and momentum) is rather
unusual in the context of ordinary systems of classical
mechanics, but appears generically in classical limits of in-
teracting many-body systems (see, e.g., Refs. [14,70]). The
locally stabilizing character of this stationary point will play
an important role later.

C. Parity-violating cases

Now we briefly turn to the parity-violating Hamiltonians
from Egs. (3)-(5) with u # 0. In these cases, the stationary-
point analysis of the corresponding classical limit (12) yields
higher order polynomial equations and in general needs to be
performed numerically. We will consider parameters p (as
well as y and §) to be fixed at some constant values and
analyze properties of the system as a function of the only
variable parameter A. Examples of the m’ = — j semiclassical
level density for three choices of parameters p and y are
shown in Fig. 3.

For systems with p # O the field vacuum may not rep-
resent any kind of equilibrium. The condition necessary for
the vacuum to be a stationary point is that y = 1. Then the
equations aih_ = aih_ ; = 0 with the Hamiltonian function
(12) are fulfilled at (g, p)=(0, 0) for any value of the other
parameters. It however turns out that the (0,0) stationary
point is not the global minimum for x > 0.5. If both con-
ditions y =1 and p € (0, 0.5) are satisfied simultaneously,
the Hamiltonian driven by A exhibits a ground-state QPT con-
nected with the swapping of two minima at a certain critical
parameter value A = A.(u) € (0, A;). For A < 1/ the ground
state corresponds to the field vacuum (g, p) = (0, 0), while for
A > Al it is associated with the nonvacuum solution given
by the lower of the two swapped minima located at a point
(¢. p)#(0, 0). Therefore, the QPT at A = A () for u >0
again represents a kind of the superradiant phase transition,
but in contrast to the parity-conserving case it is of the first
order, with no spontaneous symmetry breaking involved. The
critical value decreases from A, (u = 0) = A, see Eq. (15), to
A(u=05)=0.

The Hessian matrix of the y = 1 Hamiltonian at (g, p)=
(0,0) is still expressed by Eq. (22), which means that
the three vacuum phases described in Sec. IIIB exist also
for u € (0,0.5). Besides the normal phase, now found at
A €[0,4}), and the first and second superradiant phases at
A € (A, Ag) and (X9, 00), respectively, we also observe an
additional superradiant phase in the interval A € (A, A¢). In
this phase (which we will call the zeroth superradiant phase,
So) the vacuum state (g, p)=(0, 0) is still a local minimum
of the Hamiltonian, though not the one associated with the
lowest energy state. The stability properties of this vacuum
type are qualitatively similar to those in the normal phase. The
QPT and ESQPT structures in the level density for a single
choice of u € (0, 0.5) are seen in Fig. 3(a).

The model with y =1 and p > 0.5 does not have the
vacuum (g, p) = (0, 0) as the ground state even for A = 0, but
the vacuum still represents a stationary point above the ground
state. This is seen in Fig. 3(b). In contrast, for y # 1 the field
vacuum is no more a stationary point of any kind and plays no
privileged role in the spectrum and dynamics; see Fig. 3(c).

0
(@)
€
N
-0.5 1
14
0
(b)
9
-0.5
14
04
()
9
-0.5 4
14
T T
0 1 2 3 4

A

FIG. 3. The semiclassical level density p_;(e) (darker shades
correspond to larger values) for parity-nonconserving versions of the
Hamiltonian (3) with || = 0.5 and (u, y) taking values (a) (0.4, 1),
(b) (0.55, 1), and (c) (0.4, 0). We also set w = 1 = N. The ESQPT
nonanalyticities of the level density are highlighted by full (upward
step), dashed (divergence), and dash-dotted (downward step) lines.
In panel (a), the ground state undergoes a first-order QPT and the
vacuum phases are indicated.

In both of these parity-violating cases, the ground-state eigen-
vector and eigenenergy evolve continuously with increasing
parameter A, with no QPT criticality taking place at any point.
Several ESQPT structures are nevertheless observed even in
these cases. If considered just in the A x ¢ plane, they make
an explicit example of “ESQPTs without a QPT” (in the sense
of Ref. [67]). However, connections of these structures to the
first- and second-order QPTs would be established in the full
space of all control parameters.

IV. QUANTUM DYNAMICS
A. General expressions

We will study the evolution of the qubit-field system ini-
tially prepared in the fully noninteracting ground state at
A =pu =0 by the Hamiltonian A with generally nonzero
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values of the interaction parameters. Hence

(W) = e im=—j)y®In=0), = Y con(®)lm.n), (24)

m,n

[W(0))

where ¢, (t) are time-dependent coefficients of the expansion
of the evolving state |W(¢)) in the basis |m,n). Note that we
set i = 1. The initial state |\W(0)) is a product of the qubit and
field states. At t = 0, all qubits are set to the spin-down state,
which can be an arbitrary one-qubit state |¢)=c«|0)+8]|1)
expressed in a suitable basis (o and g are arbitrary amplitudes
of the qubit logical states O and 1). So |m=—j)qz|1p)®N.
The field is initiated in the state |n =0);, which is the normal
vacuum with no bosonic excitations present. The fate of this
simple (in fact the simplest, entirely factorized) state will
depend on the choice of the evolving Hamiltonian H.

It is important to realize that in the R — oo limit, when the
qubit and field subsystems become adiabatically separated,
the evolution of the whole system receives both classical and
quantum features. While the state of the field is determined
by variables ¢g(¢) and p(¢) that evolve according to classical
dynamical equations, the state of the qubits remains entirely
quantal, resulting from an “external” driving performed by
the time-dependent vector B(¢), which is determined by the
classical field state. Below we will study the dynamics for
finite but large values of R.

The evolution (24) can be seen as a response of the
noninteracting system at zero temperature to the quantum
quench into the interacting phase characterized by a chosen
set of parameters (A, 6, i, ) of a general Hamiltonian from
Egs. (3)-(5) [64,65,68]. The time dependence of the survival
probability P(¢) of the initial state can be determined from the
energy distribution

SE) =Y (EIW(0) S(E~E) (25)

Di

(called local density of states or strength function), where
p; is the probability to identify the initial state with the ith
eigenvector |E;) of H. In particular, we have

2

P@t) = [(W(O)|W(1)]* = ‘ / dE S(E)e ™! (26)

Quantum quench dynamics usually involves several stages
which can be derived from the energy-time uncertainty re-
lation AE At 2, % The transient stages correspond to the
time periods Ar in which the energy uncertainty AE is
not yet small enough to resolve all details of the distribu-
tion S(E). The evolution at very short times depends only
on the overall width of the distribution, reflecting the vari-
ance (E%)—(E)?= (\Il(O)|I-AIi§t|\IJ(O)) that grows quadratically
with the overall strength of the interaction Hamiltonian (5).
On the other hand, for very long times (above the Heisenberg
timescale) the full energy resolution is reached (with AE less
than the smallest energy spacing between the populated states)
and the system enters the dynamical equilibrium in which
ongoing fluctuations of all quantities attain constant statistical
measures.

Besides the survival probability (26), we consider also the
time-dependent expectation values

A(t) = (WA (@), 27)

where A stands for a general observable, below identified with
the boson number 7, its quadratures ¢ and p, and with the
quasispin projections J, J}, J.. We will study the infinite-time
averages

— 1T
F = TILH;OT/O dt F(t), (28)
where F () coincides with the time dependencies (26) or (27).
For the averaged survival probability we get

P=>"pi. (29)

which is the inverse participation ratio characterizing the
initial-state distribution in the eigenbasis |E;), while for the
averaged expectation values of observables we obtain

A= ZpiAih (30)
i

where Ay = (E/|A|Ey).

Both the qubit and field subsystems at any time ¢ can
be characterized by their respective reduced density operator
04(t) and Q4(t). These are obtained by partial tracing of the
density operator 9 (1) =|W(¢))(W(¢)| of the whole system over
the Hilbert space of the nonparticipating subsystem:

@qa):Trb@(r):Z[Zcmna)c;,’;,n(r)]|m>q<m/|, (31)

m,m’ n

@b(r>=Trq@<t)=Z[Zcmna)c;';m,(t)}|n>b<n/|. (32)

n,n' m

As the total state o(¢) is pure, both reduced density operators
(31) and (32) have the same eigenvalues, yielding therefore
equal measures of the mutual entanglement.

The diagonal matrix element of the qubit density operator
(31) in the qubit state with m = —j coincides with the proba-
bility to find the qubits in their initial state |)®". Hence we
define the survival probability of the qubit initial state alone,

Py(t) = (m = —jlog(®)lm = —j), (33)

which differs from the overall survival probability in Eq. (26)
by disregarding the state of the field. Similarly, the survival
probability of the field state alone is expressed as the diag-
onal matrix element of the density operator (32) in the field
vacuum state:

Py(1) = (n = 0[0p(®)|n = 0). (34)

For fully factorized qubit-field states, i.e., when 9,(t) and
0p(?) represent pure states of the respective subsystems, the
overall survival probability (26) factorizes into the product
of probabilities (33) and (34). This happens in the R — oo
limit, when the adiabatic separation of the qubit and field
subsystems becomes exact, but in common finite-R situa-
tions we expect partial entanglement of both subsystems and

P(1) # Py (1)Py(1).
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Below we will present a numerical study of the model
dynamics with a single qubit, N = 1. The reduced density
operator of the qubit is expressed as a 2 x 2 matrix in the |m),
eigenbasis | £ %) and can be cast as a linear combination of the
unit and Pauli matrices:

(+310,O1+ 1), (110,01 — 1)
(—Yo,MI+ 1), (=316, — 1)
=11 +p@)- 6] (35)

The Bloch vector gp(r) = 2J(¢t) represents an instanta-
neous quantum expectation value of the normalized spin
polarization, so

04(1)

1 i
3+ L@, @) ljy(t)). (36)

20} = <Jx(r> SNTRGIE SAY
For the qubit survival probability we immediately obtain
P(t) =1 —J.(). (37
Another measure that will be applied is the degree of purity
of the N = 1 state (36). It is characterized by

2
Tr[@q(nz]:%+2[Jx(t>2+1y(t>2+12(r)2]Jw, (38)

which always takes the same value (lying within the interval
[5.1]) as Tr[o(1)*]. The normalized purity (1) = [p(1)|
is connected with the polarization of the qubit system and
changes within the interval g € [0, 1]. The limits go= 0 and 1
correspond to maximally mixed (completely unpolarized) and
pure (maximally polarized) states, respectively. This quantity
will be used as a measure of the decoherence induced on both
qubit and field subsystems by their mutual interaction during
the evolution. It also quantifies the fulfillment of the approx-
imate adiabatic separation explained in Sec. III A. Perfect
adiabatic separation implies = 1, while decreasing values
g < 1 indicate increasing violation of this approximation.

Let us finally mention some specific features of quantum
dynamics with the initial state from Eq. (24). The mean of
the energy distribution (26) in this case is independent of the
choice of parameters (X, 8, w, y) of the final Hamiltonian. We
always obtain (E) = —wR j, hence ¢ = —1, which for y = 1
is precisely the energy associated with the stationary point at
(g, p)=(0, 0). We know that for A > A, or A, this is always
an ESQPT critical energy, the type of the spectral singularity
being linked the type of the respective superradiant phase;
see Figs. 2, 3(a), and 3(b). For the quenches with ¢ = 0 and
8 = +1, the initial state |m=—j),®|n=0); coincides with a
permanent eigenstate of the Jaynes-Cummings Hamiltonian,
so there is no quench dynamics as the system remains frozen.
This can be applied in a two-step realization of quantum
quench protocols to general parity-conserving Hamiltonians
with A > 0 and § # 1: In the first step, the system is set to
6 = +1 and pushed to the desired value of A, and in the second
step 8 jumps to its requested value while A is kept constant.

B. Parity-conserving case

We first consider quantum dynamics induced by the
parity-conserving Rabi Hamiltonians with & = 0. Time de-
pendencies of the survival probability and some expectation

0 20 40 60 80 100

FIG. 4. Time dependencies P(t), J,(¢), and n(z) in the evolution
(24) by the parity-conserving (4 = 0) Hamiltonian with A = 0.8A,
(the normal phase; medium-thick blue line), > = (A.+X¢)/2 (the first
superradiant phase; thick red line), and A = 1.5X (the second super-
radiant phase; thin green line). The other parameters are § = 0.5,
R =100, and w = 1 = N. The survival probability is shown on the
linear scale (in the main plot) as well as on the log-log scale for a
longer time interval (in the upper plots). Significant departures of
all quantities from their + = 0 values are observed only in the first
superradiant phase. The diamonds in the log-log plots correspond to
the time instants visualized in Fig. 7.

values are shown in Fig. 4. The choice of an initial state
with a fixed (positive) value of parity IT from Eq. (6) and its
conservation during the evolution implies vanishing of some
expectation values, namely

Ji(t) = Jy(1) = q(t) = p(t) = 0. (39)

Indeed, for any state |W(z)) satisfying [1|W(r)) =+ | V() we
obtain (W(1)|X |W(t)) =—(W(1)|X|W(t)) for X =J, J,, ¢, and
p. Nonzero expectation values of these quantities can be ob-
served only for states with mixed parity.

The case of N =1 in connection with the parity con-
servation leads to additional special features. In particular,
Eqgs. (38) and (39) imply that p(¢) = 2|J,(¢)|. So the pro-
jection J,(t) fully determines not only the qubit survival
probability, Eq. (37), but also the purity. Moreover, since the

coefficients c,,,(t) in Eq. (24) are nonzero only for m = —%

combined with n =0,2,4,... and m = +% combined with
n=1,3,5,..., we obtain the following relation between the
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survival probabilities:
P(t) = Py(1) < Py(1). (40)

We see that the infinite-time averages P =P, set a
lower bound for qu. For R — oo, when the factorization
P(t) = P,(t)Py(t) takes place, there are two possibilities:
Either the R — oo limit of P = P, is nonzero and the limit
of ITq is unity, or the limit of P = P, is zero and the limit of Fq
is arbitrary. As demonstrated below, the case P, — 1 applies
to our N = 1 initial state |W(0)) = Imz—%)q ® [n=0), in-
volving the field vacuum. In contrast, it can be shown that the
case P — 0 applies, for instance, to nonvacuum initial states
|m=—%)q ® |n>0), with scaled energy & > —%.

The time dependencies shown in Fig. 4 indicate that the
Hamiltonians in the normal and second superradiant phases
(see Fig. 1) induce only small deviations of the quantities
observed from their initial values. This is true mostly for
the average boson number n(¢) and the average quasispin z
projection J,(¢), hence also for the qubit survival probability
P,(t) and purity o(t), but it applies to a large extent also to
the overall survival probability P(¢). Significant deviations
from the initial values are seen only for the evolution by the
Hamiltonian in the first superradiant phase. The log-log plots
of the survival probability expand the short-time evolution
and visualize a longer time interval in which the regime with
saturated fluctuation measures is reached.

Figure 5 depicts the infinite-time averages (28) of the
quantities from Fig. 4. These are plotted for R = 100 in the
parameter plane A x & of the parity-conserving Hamiltonian,
and along its two cuts for R = 10 and 100. The dependencies
shown in these plots are smoothed (by the moving average
method) to get rid of rapid oscillations with control parame-
ters that reflect specific R-dependent patterns of avoided level
crossings in the corresponding spectra. It turns out that for
large R the smoothed infinite-time averages in Fig. 5 enable
us to distinguish the three quantum phases from Sec. III B.
The observations can be summarized as follows:

(@ In the normal phase, i.e., for X € [0, Ac]
(domain N in Fig. 1), the averaged overall survival probability
is P ~ 1, while the averaged expectation values of the number
of bosons and the quasispin z projection are given by nn =~ 0
and J, &~ —%. So the averaged qubit survival probability and

purity P, ~ p~ 1 (not shown in the figure). In this parameter
domain, the noninteracting ground state [m=—j),®[n=0),,
which is the initial state of the quantum evolution (24),
coincides to a high degree of accuracy with the ground state
of the actual Hamiltonian H. So the system is in a nearly
stationary state. In the infinite-size limit R — oo, when
the ground-state criticality becomes sharp, these statements
would be valid in the absolute sense.

(b) In the first superradiant phase, for A € (A., Ao(8)] (do-
main S; in Fig. 1), the average survival probability P is
considerably reduced. At the same time, the averaged number
of bosons 77 grows with A (almost independently of §) to values
~ R and the averaged quasispin projection J, deviates from
the spin-down value —%. The averaged qubit survival proba-
bility and purity in finite-size cases decrease correspondingly
below 1, nevertheless they remain well above 0. For increasing
R we observe that both ITq and g increase toward 1 while the

2 )\/)\c 4 -1

FIG. 5. Infinite-time averages in the evolution (24) by the parity-
conserving (u = 0) Hamiltonian with N = 1. Panels show the
averages (28) for (a) the survival probability P(¢), (b) the expectation
value of the quasispin z projection J,(¢), and (c) the expectation value
of the boson number n(z). The planar plot in each panel depicts the
averages in the A x § plane for R = 100 (cf. Fig. 1); the graphs show
dependencies along the two cuts (dashed lines in the planar plot) for
R = 10 (thin curves) and R = 100 (thick curves). All dependencies
are locally smoothed in parameters A and § to get rid of rapid
oscillations. Vertical dashed and dash-dotted lines in the graphs mark
the values A = A, and A from Eq. (15).

averaged value of the overall survival probability P decreases
down to 0. This means that with increasing R the qubit in the
S; phase more and more preserves its initial state, but the
field characterized by growing 7 gradually deviates from its
vacuum state. This is demonstrated in Fig. 6, whose panels
(a) and (b) show dependencies of the overall and qubit survival
probabilities on the size parameter (up to R = 10*) for a single
point in the middle of the S; phase. We observe approximate
algebraic dependencies P oc N~ and 1 — P, o« N~ with
exponents «; > 0 and By > 0 given (for the selected 1) by
the slopes of the respective plots. In the limit R — oo we get
P— 0and P, — 1.

(c) In the second superradiant phase, that is for
A € (A(8), 00) (domains S, and S) in Fig. 1) the situation
becomes closer to the normal phase. The average survival
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FIG. 6. Variations of averaged survival probabilities P (the qubit-
field initial state) and ﬁq (the qubit initial state) with increasing size
parameter R. The parameters of the parity-conserving Hamiltonian
are the same as in Fig. 4. Panels (a)-(b) and (c)—(d), respectively,
correspond to the selected values of A in the first and second super-
radiant phases. The R — oo behavior in these phases differs: while
in the S, phase both survival probabilities increase toward unity, in
the Sy phase P decreases to zero but P, increases to unity. Note that
the decreasing dependencies in panels (a), (b), and (d) are roughly
algebraic, but the one in panel (c) is much slower.

probability P takes values closer to 1 again, the averaged
number of bosons 7 returns to &~ 0, and the averaged quasispin
projection J, gets closer to the initial value —1 (1ncreasmg
the averaged qubit survival probability and purlty back to
values near 1). The effect is stronger and sharper for larger
R. Hence, despite the strong qubit-field interaction in both S,
and S}, phases, the whole initial product state is preserved to
a large extent even during an asymptotically long evolution.
The increase of stabilization with R is illustrated, for a single
point of the S, phase, in panels (c) and (d) of Fig. 6. For the
qubit survival probability we observe an approximately alge-
braic dependence 1 — qu o N> with an exponent 8, > 0,
implying therefore the R — oo behavior ITq — 1. The overall
survival probability P increases in a nonalgebraic way, leaving
the R — oo behavior indeterminable.

The explanation of these phenomena follows directly from
the stability properties of the (g, p) = (0, 0) stationary point
discussed at the end of Sec. III B. In order to see this, we recall
the results of Ref. [77], where the quantum quench dynamics
was efficiently approximated by the classical evolution of the
Wigner quasiprobability distribution in the phase space. In the
present system, the Wigner distribution is defined by

Wy(q, p, 1)

_/ dx' (x+x'|0p(t)|x—x') e 2P

—Zf dx' (x4-x'|n) (n|0p()|n') (' |x —x"ye 2P,

(41)

where the matrix elements (n|9,(¢)|n’) can be substituted from
Eq. (32) and scalar products of the type (x|n) coincide with

A=2 A=10+h) A=3)
05t =14 t=17 t=0.26
P 0] - / f
051
O.S—Et:28 t=289 t =0.55
p O—f =3 ‘
0.5
0.5_515 =56 t =139 t=1.2
P o—z o * ’
051
-'dé"'é'(']'b's” '.'d.!s"'é'(']'bfé' '-b'.'s"'é'(']'bfé'
[ , N 'V,
-0.2 0.2

FIG. 7. Snapshots of the exact Wigner quasiprobability dis-
tribution in the phase space following evolution (24) by the
parity-conserving Hamiltonians with the same parameters as in
Fig. 4. The three columns correspond to the values of X in the normal,
first superradiant, and second superradiant phases. The rows corre-
spond to three time instants, which were chosen in the very initial
stage of the evolution, in the first dip of the survival probability, and
in the first approximate revival of the initial state; see the diamonds
in the upper plots of Fig. 4. We clearly observe the stabilizing char-
acter of the (g, p)=(0, 0) stationary point in the normal and second
superradiant phases; cf. Fig. 2. The Wigner distributions have been
calculated using the QuantumOptics.jl framework [80].

eigenfunctions of the one-dimensional harmonic oscillator.
The survival probability of the initial field state at any time
reads as

+00
Pb(t)=2n/f dqdpWy(q, p, )W,(q, p,0).  (42)

This formula is exact if the Wigner distribution at time ¢ is
calculated, as assumed in Eq. (41), from the correct field state
Op(t). A semiclassical approximation of W,(q, p,t) and the
survival probability (42) can be obtained if the initial distri-
bution W,(q, p, 0) associated with the vacuum state [n = 0),
is evolved by applying only the classical equations of mo-
tions. It is clear that this approximation can yield reasonable
results only for moderate times. Nevertheless, the connection
to classical dynamics invoked in these considerations gives
us intuitive insight into the roots of qualitatively different dy-
namical responses observed in quantum quenches to various
parameter domains.

The exact evolution of the the Wigner distribution in var-
ious vacuum phases of the parity-conserving Hamiltonian
is illustrated in Fig. 7. We see that the initial distribution
Wi(g, p,0) is always centered right at the (g, p) = (0,0)
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stationary point. Since a certain fraction of classical orbits
near the stationary point is slow in leaving the initial phase-
space domain, the decay of the initial state must be partly
suppressed. The degree of this suppression however strongly
depends on the stability properties of the (0,0) point in vari-
ous parameter domains: In the normal phase, the (0,0) point
(the global minimum of the Hamiltonian) is very stable and
therefore the evolution of the Wigner distribution is marginal.
In the first superradiant phase, the (0,0) point (a saddle point
of the Hamiltonian) is unstable, so the dissipation of the
lateral parts of Wy(g, p,t) characterizes the departure of the
field from the vacuum state and reduces the overlap with
Wi(q, p, 0). Nevertheless, the central part of the distribution,
which is little affected for moderate times, still makes the field
survival probability larger than in cases when no stationary
point is present. Finally, in the second superradiant phase, the
(0,0) point (a local maximum of the Hamiltonian function) is
stable again; hence the evolving Wigner distribution remains
close to its initial form.

We stress that for N = 1 and in the parity-conserving case,
according to Eq. (40), the field survival probability P,(t) in
Eq. (42) coincides with the overall survival probability P()
and sets a lower bound for the qubit survival probability P, (z).
The calculations presented in Fig. 6 show that the convergence
of P,(¢) to unity is very fast in the normal and second super-
radiant phases, which can be connected with the stability of
the vacuum state. On the other hand, in the first superradiant
phase the increase of P,(¢) is much slower as P,(z) sets a less
stringent lower bound.

C. Parity-violating cases

For parity-violating Hamiltonians with u # 0, the condi-
tion (39) is generally broken. For instantaneous expectation
values we expect J, (1), J,(t), g(t), p(t) # 0. Also the infinite-
time averages of the x polarization and coordinate in general
satisfy J,, g # 0. However, the infinite-time average of the
y polarization and momentum always yields

T,=p=0, (43)

which is a consequence of Eq. (30) with the substitution
(Ei|JAy|Ei) = (E;|p|E;) = 0 following from the reality of the
Hamiltonian matrix elements in the basis |m, n) and the sub-
sequent reality of coefficients cj,, in the expansion |E;)=
Zm,n Cimn|m7n>~

Figure 8 exemplifies time dependencies of several
quantities for two values of the parity-violating interaction pa-
rameter, a small one, u = 103, and a medium one, uw=04
(strengths of interactions are in general compared with param-
eter » weighting the noninteracting part of the Hamiltonian).
In this figure we consider only the case y = 1 with the first-
order ground-state QPT; see Fig. 3(a). The parity-conserving
interaction parameter A is taken in the middle of the first
superradiant phase, right on the halfway between A, and Ag.
Otherwise we fix 6 = 0.5 and R = 100. The figure displays
the expectation values of all quasispin components, the boson
number, its quadratures, and also the overall survival proba-
bility and purity. The infinite-time averages of the respective
quantities are drawn by horizontal lines, so one immediately
verifies the fulfillment of Eq. (43). The amplitudes of temporal

w=0.001

pw=04

FIG. 8. Various time dependencies corresponding to the evolu-
tion (24) by the parity-violating Hamiltonian with two values of
n (left and right columns). The other parameters are y =1,
A=0.75= %(AC—{—AO), §=0.5,R=100,and w = 1 = N. The rows
from top to bottom depict the overall survival probability, quantities
assigned to the qubit (expectation values of the three quasispin pro-
jections and the purity), and to the field (expectation values of the
coordinate, momentum, and boson number). The dashed horizontal
lines represent infinite-time averages.

variations of the quasispin components do not significantly
depend on the size of p, so even a very weak parity-violating
perturbation produces a relatively large effect in nonzero
values of J(¢) and J, (7).

In the left column of Fig. 8 we note a sharp onset of
Ji(t) and Jy(¢) at a certain time instant, soon followed by a
similar onset of g(¢) and p(¢). This sudden violation of parity
in the evolving states of the qubit and the field takes place
only for small values of the parameter . We note that in a
finite system the expectation values of the respective quan-
tity before its onset are not exactly zero but take fluctuating
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FIG. 9. Infinite-time averages in the evolution (24) by the parity-
violating Hamiltonians with the indicated values of p and y for
A €[0,3X.], 6 =0.5,N =1, and R = 100. The quantities depicted
are the same as in Fig. 8 except J,, ¢, and p. The left and right
columns correspond to y = 1 and 0, respectively; the two values of
1 are distinguished by line types (cf. Fig. 8). All dependencies are
locally smoothed in parameter A. Vertical dashed and dash-dotted
lines mark the values A = A. and Xy from Eq. (15). The full ver-
tical line corresponds to the first-order QPT point A, for u = 0.4
and y = 1.

values much smaller than those after the onset. This surprising
phenomenon is not important in the present context, but may
have rather interesting consequences for short-time dynamics.
The effect is due to an asymmetric interference of two wave
packets that arise from the initial state (a single Gaussian
centered at ¢ = 0) and move across the two nearly symmetric
(for small ) Hamiltonian minima at g < 0 and g > 0. We are
currently working on a more detailed analysis, which will be
reported elsewhere.

The infinite-time averages (28) are presented in Fig. 9
along the § = 0.5 cut of the A x § plane. We show the same
quantities as in Fig. 8, except J, and p, which identically sat-
isfy Eq. (43), and g. We again have R = 100 and the same pair
of values of the parameter w. Besides the results for y = 1
(parity violation via a qubit-field interaction and an external
drive of the field) we present also those for y = 0 (parity
violation without an external drive), when the system has no
ground-state QPT and the vacuum state (g, p)=(0, 0) is not a
stationary point for any value of parameter A. In analogy to the
parity-conserving case summarized in Fig. 5, the infinite-time
averages in the parity-violating case exhibit large and rapid

oscillations with A, so the plots in Fig. 9 display appropriately
smoothed dependencies.

The infinite-time averages demonstrate that even the pres-
ence of parity-violating terms in the Hamiltonian does not
destroy the initial-state stabilization effect described above.
This effect remains present particularly for large values of
A, i.e., in a deep superradiant regime. Specific observations
deduced from Fig. 9 can be summarized as follows:

(i) For the small value of the parity-violating interaction
strength w, independently of y, the averaged survival proba-
bility, purity, as well as the expectation values of the boson
number and the quasispin z projection show very similar be-
havior to that in the parity-conserving case with u = 0 (cf.
Fig. 5). A qualitatively new feature in Fig. 9 is a small nonzero
value of the averaged quasispin x projection. We observe that
its sign depends on the value of y.

(i1) For the larger value of u and y = 1, the averages
distinguish not three, but rather four vacuum phases described
in Sec. III C. These are the normal phase below the first-order
QPT at A = A/, the zeroth superradiant phase between A,
and A, and the first and second superradiant phases above
A and A, respectively; see Fig. 3(a). The distinction would
become sharper for even larger values of R. The stabilization
of the initial state is again strong in the normal and second
superradiant phases. A partly increased overall survival prob-
ability (26) is observed also in the zeroth superradiant phase,
where the local stability properties of the vacuum are the
same as in the normal phase, but in the zeroth superradiant
phase the stabilization of the qubit itself, expressed by the
averaged probability (37), is weaker, comparable to the first
superradiant phase.

(iii) For the larger value of u and y = 0, the infinite-time
averages show qualitatively different dependencies on A. In
this case, the initial-state stabilization is observed mostly for
large values of A, for which the relative role of the parity-
violating term in the Hamiltonian is reduced and the system
gets close to the second superradiant phase of the parity-
conserving model. This view is supported by the convergence
of the ESQPT critical energies in Fig. 3(c) to those of Fig. 3(b)
as A increases.

We therefore conclude that an efficient stabilization effect
occurs even for parity-violating Hamiltonians, independently
of the form and strength of the parity-violating interactions.
The phenomenon takes place if the parity-conserving interac-
tions are dominant and the degree of stabilization increases
with A.

V. CONCLUSIONS

In this work, we have performed a QPT and ESQPT
analysis of an extended Rabi model including both parity-
conserving and parity-violating interactions. The model
describes a coupled qubit-field system in which sharp
quantum critical effects occur in spite of a very small size of
the qubit subsystem, even in the N =1 case. It has been clar-
ified that a necessary condition for criticality in this model is
infinite imbalance between both system components (asymp-
totically large ratio R between the qubit and field elementary
excitation energies), so that the infinite-size limit is realized
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solely via the field subsystem whose bosonic quanta in typical
eigenstates yield average numbers (/1) — 00.

Using this assumption, we have disclosed rather complex
phase structures associated with both parity-conserving and
parity-violating versions of the model. Some parameter sub-
sets contain either the first-order or second-order ground-state
QPTs of the superradiant type; some others show only con-
tinuous evolutions of the ground state. Numerous ESQPTs
appear in the excited domain and generate various types of
nonanalyticity in the level density. An experimental realiza-
tion of the model in the presently considered extended form
would provide an excellent playground for testing the effects
that accompany various kinds of quantum criticality. Such
studies can be based on a suitable extension of the current
experiment reported in Ref. [52].

Our main attention has been focused to the ESQPT caused
by the (¢, p)=(0, 0) stationary point, which is present in the
parity-conserving model and the y = 1 form of the parity-
violating model. This point corresponds to the real vacuum
of the field, yielding zero expectation values of the boson
creation and annihilation operators (in contrast to the Higgs-
like “vacua” associated with the ground state of the system
in the superradiant phases). Metamorphoses of this station-
ary point in transitions between various parameter domains
define different “vacuum phases” of the system. While in
the normal phase the vacuum represents a stable minimum
of the Hamiltonian, in various superradiant phases it can be
either a local minimum, a saddle point, or a local maximum.
Local stability properties of the vacuum determine the type
of the corresponding ESQPT singularity and are essential for
the stabilization properties of the vacuum-involving factorized
qubit-field state in quantum evolution.

In particular, the saddle point of the classical-limit
Hamiltonian, which corresponds to the vacuum state for
parity-conserving interactions in the first superradiant phase,
induces a stabilization of the qubit state but makes the field

state depart from the initial form. On the other hand, the
local maximum of the Hamiltonian, which characterizes the
vacuum state for ultrastrong parity-conserving interactions
in the second superradiant phase, leads to stabilization of
both qubit and field states. A partial stabilization of this kind
occurs even in presence of parity-violating interactions and is
universal if the parity-conserving interactions dominate over
the parity-violating ones. The degree of the qubit stabilization
effect increases in an approximately algebraic way with R and
becomes ultimate in the R — oo limit.

The stabilization effect and its variations in the param-
eter space can be used as a measurable signature of the
corresponding types of ESQPTs in various experimental re-
alizations of the extended Rabi Hamiltonian. Very similar
effects (including the difference between the first and second
superradiant phases) were numerically observed also in the
Dicke atom-field model with N > 1 [14,68]. Related ESQPT-
induced stabilization phenomena were reported also in some
other types of strongly interacting many-body model systems
[64,65]. It needs to be mentioned, however, that for some
quench protocols the presence of a stationary point in the
semiclassical energy landscape does not lead to an initial-
state stabilization, but to a nearly opposite effect [58,68,77].
We stress that these and related ESQPT-induced dynamical
phenomena may play important roles in quantum-state en-
gineering protocols based on diverse model platforms with
limited numbers of effective degrees of freedom.
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