
PHYSICAL REVIEW A 104, 053719 (2021)

Controlling quantum correlations in optical-angle–orbital-angular-momentum variables
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The entanglement of optical angular position and orbital angular momentum has become one of the important
degrees of freedom for quantum information science. Quantum control of the two conjugate variables may
provide a gate to control the production of the entanglement. Here, we theoretically and experimentally show
that by controlling the transverse spatial coherence of the pump beam, one can modulate the strength of the
quantum correlations between the angular position and orbital angular momentum in down-converted photon
pairs. By determining the relation of the Einstein, Podolsky, and Rosen correlations with the transverse spatial
coherence of the pump, the boundary of the entanglement can be determined. Our work shows that the transverse
spatial coherence of the pump can act as a switch to control the production of quantum entanglement both for
discrete and continuous conjugate variables and may provide another platform for the quantum control research
field.
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I. INTRODUCTION

Entangled photons have become a standard tool in quan-
tum information [1] and foundations [2,3]. They have been
explored to generate nonclassical correlations among differ-
ent degrees of freedom, such as polarization [2–5], time and
frequency [6–8], position and momentum [9], radial position
and radial momentum [10], as well as angular position (ANG)
and orbital angular momentum (OAM) [11,12]. In contrast
with the linear momentum and position being simply Fourier
transforms of each other for probability distributions, the an-
gle is 2π periodic, and therefore bounded, so the angular
variable is expressed as a discrete and unbounded Fourier
series of angular momenta [13]. The discrete nature of OAM
and the continuous but periodic nature of ANG provides a
special sort of entanglement between these two variables. The
study of the uncertainty relation [14], Fourier relation [15],
and the Einstein-Podolsky-Rosen (EPR)-Reid criterion [12]
between the OAM and ANG paves the way to real quantum
information applications. For example, an efficient method
was proposed for sorting both the OAM and ANG modes
for quantum information [16], a high-dimensional quantum
key distribution scheme was implemented by using ANG
and OAM [17], and another way to directly measure a
27-dimensional OAM state vector was proposed through
weak measurements of OAM and strong measurements of
ANG [18]. All of the above studies have shown that the
entanglement of optical ANG and OAM has become one of
the important degrees of freedom for quantum information
science. However, only a small amount of research has been
focused on how to control the quantum entanglement of the
two variables.
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In order to control a quantum system, one essential
way is to control the generation process. As have well
been studied, ANG-OAM entangled photon pairs are of-
ten generated by spontaneous parametric down-conversion
(SPDC) [12,15,17,18]. The SPDC process is usually driven by
a pump beam with transverse spatial coherence, whose profile
not only determines the quality of entanglement [9,19], but
also the transverse structure of the generated photons [20–23].
Recent years have witnessed a growing interest in modulating
the transverse structures of the pump beams to control the
production of the desired entangled photon pairs. By intro-
ducing a π -phase step to the transverse profile of the pump,
Remero et al. observed a modulation of the ANG correla-
tions consistent with the Fourier relationship between the
OAM and angle [24]. They further implemented a tunable
high-dimensional OAM entanglement by tuning the phase
matching in the SPDC process [25]. More recently, by shaping
the spatial profile of the pump, spatial Bell-state genera-
tion without transverse mode subspace postselection [26,27],
OAM-entangled state engineering [28–31], and spatial entan-
glement engineering [32,33] have been extensively proposed.
When considering the Fourier spectrum of the OAM modes
in the pump beam, an interesting quantum pattern recognition
scheme was realized recently [34].

However, all of the above-mentioned methods have fo-
cused on controlling the transverse profile of the pump, and
in fact, it is not the pump profile that is relevant to the joint
transverse distribution of the signal and idler, but its angular
correlation function, which means that the transverse spatial
coherence of the pump field is crucial in determining the
degree of entanglement of the generated signal and idler pho-
tons. There were some early attempts to theoretically study the
transfer of the spatial pump coherence to the down-converted
photon pairs in Refs. [35–39]. By using a partial spatially
coherent pump beam, the generation of entangled photon
pairs has been implemented experimentally [40,41]. More
recently, it was demonstrated theoretically that when pumping

2469-9926/2021/104(5)/053719(7) 053719-1 ©2021 American Physical Society

https://orcid.org/0000-0001-7919-3922
https://orcid.org/0000-0001-5846-3428
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.053719&domain=pdf&date_stamp=2021-11-29
https://doi.org/10.1103/PhysRevA.104.053719


YUE ZENG et al. PHYSICAL REVIEW A 104, 053719 (2021)

by a twisted Gaussian Schell-model beam, the effect of the
amount of entanglement increases inversely with the degree
of coherence [42]. An incoherent light-emitting diode (LED)
pump beam [43,44] was used to produced correlated photon
pairs and then experimentally examined in the generation of
position-momentum entanglement [45]. However, little atten-
tion has been paid to using the transverse spatial coherence of
the pump to control the ANG-OAM entanglement in down-
converted photon pairs. In this paper, we theoretically and
experimentally show that by controlling the pump transverse
coherence, one can modulate the strength of the quantum
correlations between the ANG and OAM. For that, we pump
a nonlinear crystal with a pseudothermal light of variable co-
herence lengths. By showing the value of the EPR correlations
between ANG and OAM variables, we find that the strength
of the OAM correlation depends strongly on the transverse
spatial coherence of the pump but not the ANG, so that the
degree of entanglement between the two conjugate variables
can be controlled. Our results shed light on entanglement gen-
eration and can be applied to control the entanglement of other
degrees of freedom for quantum information applications.
Moreover, recent studies have experimentally demonstrated
that the photon pairs generated using a partially spatial co-
herent pump are more robust towards varying atmospheric
turbulence strengths than the photon pairs produced by a fully
spatial coherent pump beam [46]. Thus our work may find
important applications in free-space quantum communication
using spatially entangled photons.

II. THEORETICAL ANALYSIS

It is known that under the condition of narrow aperture
measurements, the EPR-Reid criterion of ANG and OAM
conjugate variables can be denoted as a violation of the in-
equality [12]

(�� j )
2(�ϕ j )

2 � 1/4, (1)

where � j is the quantum number of OAM, ϕ j is the angle
of the signal or idler photon, and �� j,�ϕ j denote the vari-
ance of the OAM and ANG, which can be deduced by the
joint probability distribution of OAM, P(�i, �i ), and ANG,
P(ϕi, ϕs). The simultaneous strong ANG and OAM corre-
lations are a signature of entanglement. How to deduce the
influence of the pump transverse spatial coherence on the joint
probability distribution of OAM and ANG is our key point to
control the degree of entanglement. We have recently demon-
strated theoretically and experimentally that the transverse
position correlations are independent of the transverse spatial
coherence of the pump beam while the anticorrelations in
momentum are crucially dependent on it [36,45]. As far as we
know, few researchers have studied the influence of the pump
transverse coherence on the correlation of ANG and OAM of
the down-converted photon pairs. Here, we use a monochro-
matic Gaussian Schell-model beam [47] under the paraxial
approximation to deduce this relation. First, we started on the
derivation of the biphoton density matrix of ANG based on the
coordinate transformation. Our detailed derivation processes
are shown in Appendix A. The joint probability distribution

FIG. 1. (a) The analytical plots of the OAM joint probability dis-
tribution of photon pairs with different pump transverse coherences.
(b) The numerical plot of the variance of OAM of idler photons with
different pump transverse coherences.

of the ANG of biphotons is obtained as

P(ϕs, ϕi ) = A(A − B)
√

B/L

4α(A + B)[A − B − (A + B) cos(ϕs − ϕi )]
.

(2)
Here, we simplified this expression as A = 32w2αkp, B =
L(1 + 4α2), where w is the pump beam waist, kp is the wave
number of the pump, L is the length of crystal, and the term α

is responsible for the so-called walk-off and is usually defined
as α = 0.455 as a common choice [23]. From Eq. (2), we find
that the joint probability distribution of ANG is independent
of the pump transverse-coherence length of lc and the ANG of
the signal and idler photons is always correlated, in that corre-
lation exists even for an incoherent pump. So the variance of
the joint probability of ANG should be a constant along with
the different pump transverse coherences theoretically.

For the joint probability distribution of OAM, we can
expand the density matrix of ANG into OAM space. The
detailed derivation processes are shown in Appendix B. The
joint probability distribution of OAM of biphoton pairs is

P̃(�s, �i ) =
√

1 − 4ξ 2

1 + 2ξ

(
2ξ√

1 − 4ξ 2 + 1

)|�s+�i|
, (3)

where ξ = β2

1+2β2 is just for convenient notation, and β = w/lc
is used to describe the pump transverse-coherence property.
It is noted that ξ and β are both relevant to the beam waist
w and the transverse-coherence length lc of the pump. The
theoretical plots of the OAM joint probability distribution
of photon pairs with different β are illustrated in Fig. 1(a).
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In our simulation, we assume the system works in a perfect
phase-matching condition. β ranges from 0.01 to 3, which
can be used to represent the pump beam changing from a
laser to nearly transverse-incoherent beam. As can be seen in
Fig. 1(a), the joint probability distribution of OAM is well
anticorrelated with small β, but becomes uncorrelated when
β is large. So, by modulating the pump transverse-coherence
length lc with a fixed pump beam waist, one may modulate the
degree of anticorrelation of OAM.

By projecting the OAM of signal photons on the special
state, such as l0, one can obtain the conditional probabil-
ity distribution of OAM as P̃(�i|�s = l0). Here, we project
the signal photon state into a zero OAM state based on the
pump beam. So the variance of the conditional probability of
OAM can be calculated by (��i )2 = ∑

�i
�i

2P̃(�i|�s = 0) −
[
∑

�i
�iP̃(�i|�s = 0)]2. Based on Eq. (3), we obtain the vari-

ance of the idler photon,

(��i)
2 = 2β2(1 + 2β2)

1 + 4β2
, (4)

Apparently, the variance is determined by the transverse-
coherence length and inversely proportional to the square of
the transverse-coherence length, as illustrated by the numer-
ical plots in Fig. 1(b). One can clearly see that the variance
increases quadratically with the β, which means that the joint
probability distributions of OAM are dispersed increasingly
with a decrease of the pump transverse-coherence length lc.

Hence, from Eqs. (1), (2), and (4), one can deduce that
with a partially transverse-coherent pump beam it becomes in-
creasingly difficult to fulfill the requirements of the EPR-Reid
criterion so that the entanglement can no longer be verified.
However, it is this characteristic that guarantees our key idea
to control the ANG-OAM entanglement by using the pump
transverse-coherence modulation technique.

III. EXPERIMENTAL RESULTS

Our experimental setup is shown in Fig. 2. To generate
a pseudothermal pump beam, we use a laser diode module
impinging on a spatial light modulator (SLM1). It modulates
the transverse phase profile of the beam and can be programed
to simulate different transverse-coherence lengths [48]. The
resulting beam with a waist of w = 0.5 mm illuminates the
nonlinear crystal, which is a 1 mm × 2 mm × 5 mm periodi-
cally poled potassium phosphate (ppKTP) crystal. It produces
degenerate down-converted photon pairs at 810 nm under
collinear type-II phase-matching conditions, each consisting
of a signal and idler photon that differ in polarization. A
long-pass filter and a 10-nm spectral filter at 810 nm after
the crystal block the pump beam and ensure the detection of
frequency-degenerate photons. Signal and idler photons are
separated by a polarizing beam splitter (PBS). Each one of
them is imaged from the output facet of the crystal through a
4 f system (with f1 = 50 mm and f2 = 300 mm) onto a sec-
ond spatial light modulator (SLM2). To independently project
the signal and idler on different modes, SLM2 is divided
into two parts. Another 4 f system (with f3 = 750 mm and
f4 = 2 mm) reimages the modulated signal and idler photons
onto the input facet of two single-mode fibers (SMFs). We
display the desired holographic gratings on SLM2 to measure

FIG. 2. Experimental setup. Photon pairs are generated by pump-
ing the ppKTP crystal with a regulable transverse-coherence laser
beam which is tuned by modulating the transverse phase profile with
the SLM1, a polarization beam splitter (PBS) splits photon pairs into
two paths, each of them illuminating onto the SLM2, and the joint
probability distributions are measured by a combination of SLM2,
a single-mode fiber (SMF), and avalanche photodiode single-photon
counting modules (SPCM).

the angular positions and orbital angular momenta of the
photon pairs. Photons passing through the fibers are detected
by the avalanche photodiode single-photon counting modules
(SPCMs), whose output is fed into a coincidence circuit. Only
Gaussian modes can be coupled into the SMF so that, together
with the grating of SLM2, it projects the incoming photons
onto the desired ANG and OAM states.

To measure the joint probability distribution of ANG
and OAM with different transverse-coherence lengths of the
pump, SLM1 imprints different random phase patterns. The
time interval of different random phase patterns is set to
0.3 s. For each data collection with 90 s integration, there
are almost 300 random phase patterns. The statistics of these
random patterns are Gaussian with a transverse width in the
crystal of δφ = 0.6 mm. By controlling the strength of the
modulation depth φ0, we can tune the coherence length lc =
δφ/φ0 [45,48]. We vary the modulation depth from 0.001 to
8 to define a series of coherence lengths, and the coherence
length roughly ranges from 0.1 to 600 mm, which represents
the pump beam changing from an incoherent beam to a laser
beam.

To measure the joint probability distribution of ANG, we
use an angular sector transmission aperture programed by a
hologram. The aperture is a Gaussian profile whose width θ

and orientation ϕ can be changed. It is noted that what we
should measure is the angular positions of photons, which just
an orientation with a tiny width, so, the narrower the aperture,
the more precise measurement of ANG can be obtained, but
the photon counts will be too weak to measure with a narrow
aperture. So in our experiment we set the angular aperture
with a width of θ = 2π/15 to get an appropriate signal under
our pump transverse-coherence modulation.

For each central position ϕs of the angular aperture placed
in the signal arm, we scan the central position ϕi of the angular
aperture defined in the idler arm. By scanning ϕs and ϕi both

053719-3



YUE ZENG et al. PHYSICAL REVIEW A 104, 053719 (2021)

FIG. 3. Experimental results for angular position correlations
with different pump transverse coherences. The joint probability
distribution of ANG with β = w/lc changes from 0.01 to 1.7,
which represents the pump beam changing from a laser to a nearly
transverse-incoherent light. The integration time of each position is
90 s, and is averaged three times.

in the range from −π to π with an interval of �ϕ = θ with
different pump transverse-coherence lengths, we obtained a
series of the ANG distribution P(ϕs, ϕi ), as shown in Fig. 3.
By changing β from 0.01 to 1.7, the joint probability distri-
bution of ANG almost retains the same diagonal correlation,
as predicted by our theoretical derivation in Eq. (2). The
variance of ANG can then be obtained by using (�ϕi )2 =∫

dϕi[|ϕ2
i P(ϕi|ϕs = 0)| − |ϕiP(ϕi|ϕs = 0)|2]. Here, we use

the conditional probability of the ANG by considering the
data of ϕi with ϕs = 0. It is noted that in our experimental
measurements, the �ϕ is almost only one pixel size be-
cause of the limited angular aperture. So we expect that the
real value of �ϕ should be smaller than our experimental
calculation.

To observe the joint probability distribution of the OAM
from the down-converted photon pairs, we prepare and display
the desired holographic fork gratings on SLM2 to realize
projective measurements of the OAM eigenstates. Similarly,
for each OAM of the signal photons �s(−7 → 7), we scan
the idler photons �i from −7 to 7, and then obtain the prob-
ability distribution of OAM: P̃(�s, �i ). By varying the pump
transverse-coherence lengths, we can get a series of P̃(�s, �i ),
as shown in Fig. 4(a). Unlike the diagonal correlation of
ANG, the OAMs are antidiagonal correlated when the pump
transverse-coherence length lc is very large (small β). How-
ever, as can be seen in the second row of Fig. 4(a), the
anticorrelated feature of the OAM spectrum becomes broader
with decreasing pump transverse-coherence length (increas-
ing β), which means that the OAM antidiagonal correlation
disappears. The experimental results coincide well with our
theoretical plots in Fig. 1(a). Then, by considering the con-
ditional probability P̃(�i|�s = l0), we can get the variances of
OAM, as illustrated by the red triangle in Fig. 4(b). The blue
curve is the theoretical plot with Eq. (4). One can see that
the experimental results are well consistent with the theoret-
ical calculation. The variances of OAM are just increased as
quadratically with β, which is inversely proportional to the
square of the pump transverse-coherence length. The feasi-
bility of our key idea to control the correlation of OAM by
modulating the transverse coherence of the pump beam has
been well verified.

FIG. 4. Experimental results for orbital-angular-momentum cor-
relations with different pump transverse coherences. (a) The joint
probability distribution of OAM with β = w/lc changes from 0.01
to 1.7, which represents the pump beam changing from a laser to a
nearly transverse-incoherent light. The integration time of each pixel
is 60 s and is averaged three times. (b) The calculated value of the
variance of OAM from the above results.

According to the EPR-Reid criterion of ANG and OAM
conjugate variables as we mentioned in Eq. (1), we know
that when the product of the variances of ANG and OAM
exceeds the boundary (1/4) of the criterion, the entanglement
of ANG-OAM disappears. By controlling the pump trans-
verse coherence, we can actually implement a control of the
quantum correlation of ANG and OAM. We show our results
in Fig. 5, where the vertical axis of the graph describe the
product of (��i)2(�ϕi )2, while the horizontal axis denotes
the value of β. One can see that, for small β corresponding

FIG. 5. Experimental results of the product (��i )2(�ϕi )2 with
different pump transverse coherences. Their product increases with
decreasing the coherence length until it exceeds the boundary, which
below is a signature of quantum entanglement, and therefore makes
the transition from entangled to classical correlated photon pairs.
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to a large pump transverse-coherence length lc, the product is
below the boundary of the EPR-Reid criterion. The signature
of violating the inequality means that the photon pairs are
strongly correlated in ANG and OAM, so one can get the
entangled state for further application. By increasing β (de-
creasing the pump transverse-coherence length), the product
reaches and then exceeds the boundary, which means the
correlation of OAM decreases and the entanglement of the
ANG-OAM of photon pairs is no longer verified. Thus,
the results shown in Fig. 5 clearly demonstrate that we have
achieved control of the degree of entanglement of ANG-OAM
conjugate variables. Quantum control of the entanglement
of photon pairs can be achieved by varying the transverse-
coherence length of the pump beam, which might provide a
useful tool and robust technique for quantum information and
technology.

IV. CONCLUSION

In conclusion, we have proposed and demonstrated a fea-
sible way to control the entanglement of photon pairs in
ANG and OAM conjugate variables. Controlling the corre-
lation of ANG and OAM variables might provide “a gate”
to control the information capacity for quantum information
processing. Quantum control has attracted much attention
due to its intrinsic relation to quantum-information-processing
algorithms [49]. By shaping the classical laser beam, one
can actually shape the single photons in real time by control
and feedback [50]. Unlike the many quantum control works
that are focusing on protecting the quantum system from
decoherence [51], we actually use the coherence feature of
the system and provide another platform for quantum control
by controlling the transverse-coherence length of the pump.
Our work might be combined with the well-known quantum
feedback control theory [52] to provide an alternate technique
that comes from source control to the exact preparation of a
proper initial state for quantum information applications.
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APPENDIX A: THE ANGULAR POSITION
PROBABILITY DISTRIBUTION

In the process of spontaneous parametric down-conversion
(SPDC), a strong pump beam (p) spontaneously generates a
pair of signal (s) and idler (i) photons through an interaction
with the nonlinear crystal, and its correlations of position
and momenta are determined by the correlations of the pump

field and the phase-matching function [53]. Here, we consider
the ANG and OAM joint probability distribution of photon
pairs that are converted from a spatially partial coherent pump
beam. We assume the pump beam has the form of a monochro-
matic Gaussian Schell-model beam, and it is characterized by
a cross-spectral density,

�(r1, r2) ∼ exp

[
− r2

1 + r2
2

4w2
− (r1 − r2)2

2l2
c

]
. (A1)

Because the spatial coherence properties of the pump beam
field get transferred to the spatial coherence properties of the
down-converted two-photon field in SPDC [35], we replace
r1, r2 with (rs + ri )/2, (r′

s + r′
i )/2 in the cross-spectral func-

tion. The position density matrix of the degenerated photon
pairs is given by

ρ̂bi(rs, ri; r′
s, r′

i ) ∼
∫ ∫ ∫ ∫

drsdridr′
sdr′

i�(rs, ri; r′
s, r′

i )

× · χ (rs, ri ) · χ∗(r′
s, r′

i )|rs, ri〉〈r′
s, r′

i|. (A2)

χ (rs, ri ) is the phase-matching function in position space and
it is expressed as

χ (rs, ri ) ∼
√

2kp

L(2α − i)
exp

[
kp(rs − ri )2

iL − 2Lα

]
. (A3)

The phase-matching function is obtained by Fourier transform
from the phase-matching function under a Gaussian approxi-
mation in momentum space just as Eq. (21) in Ref. [36]. It is
noted that the position is a vector, and the density matrix can
be expanded in polar coordinates. The rs, ri can be decom-
posed with rs, ri, ϕs, ϕi, which is

rs,i =
⎧⎨
⎩

rs,i cos ϕs,i

rs,i sin ϕs,i

0

⎫⎬
⎭. (A4)

So, the elements of the density matrix in Eq. (A2) can be
denoted in polar coordinates. The joint probability distribution
can be defined by the diagonal elements of the density matrix,
as P(rs, ϕs; ri, ϕi ). Thus the density matrix of the position of
photon pairs can be simplified as

ρ̂bi(rs, ri, ϕs, ϕi )

∼
∫

rsdrs

∫
ridri

∫
dϕs

∫
dϕi

2kp

L
√

1 + 4α2

× exp

[
− 1

8w2

[
r2

s + r2
i + 2rsri cos(ϕs − ϕi )

]

− 4αkp

L(1 + 4α2)

[
r2

s + r2
i − 2rsri cos(ϕs − ϕi )

]]

× |rs, ri〉 ⊗ |ϕs, ϕi〉〈rs, ri| ⊗ 〈ϕs, ϕi|. (A5)

The density matrix of photon pairs consists of a radial and
angular orientation freedom, where |r〉 is the complete or-
thonormal basis for the radial positions of photon pairs, and as
such satisfies

∫
rdr〈r|r〉 = 1. The radial positions and angular

positions are noninteracting with each other, so the reduced
density matrix of the angular positions can be obtained by the
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partial trace of radial positions as

ρ̂bi(ϕs, ϕi ) =
∫

rdr〈r|ρ̂bi(rs, ri, ϕs, ϕi )|r〉

∼
∞∑

n=0

n∑
m=0

∫
dϕs

∫
dϕi

A

4α

√
B

L

1

A + B
Cm

n

×
(

A + B

2(A − B)

)n

ei(2m−n)(ϕs−ϕi )|ϕs, ϕi〉〈ϕs, ϕi|.
(A6)

Note that we have used the formulation b
x−a =

− b
a

∑∞
n=0 ( 1

a )
n
xn to simplify the density matrix of ANG.

Here, A = 32w2αkp, B = L(1 + 4α2). From Eq. (A6), one
can see that the nonzero value of the density matrix exists
with ϕs = ϕi, so the angular positions of photon pairs always
retain a strong positive correlation. Then we have the angular
position probability distribution P(ϕs, ϕi ) from Eq. (A6),
as shown in Eq. (2). This is an analytical solution of the
angular position probability distribution of photon pairs.
The correlation of ANG of the signal and idler photons
is independent of the transverse-coherence length lc but
can be controlled by the beam waist w and the nonlinear
crystal length L, which is beyond the scope of this paper.
So for the different pump coherence, the joint probability
distribution of ANG is a constant and the variance should
be zero theoretically. For an intuitive understanding, the
transverse position correlations are independent of the pump
coherence [36,45] so that we may determine a similar
property of ANG through a Cartesian to polar coordinate
transformation.

APPENDIX B: THE ORBITAL-ANGULAR-MOMENTUM
PROBABILITY DISTRIBUTION

Under the condition of the radial position and angular
position of the signal and idler photons remaining correlated,
the phase-matching function in Eq. (A3) can be simplified as
a constant. So, the simplified ANG density matrix of Eq. (A6)
can be expanded in polar coordinates as

ρ̂bi(ϕs, ϕ
′
s) =

∫
rdr〈r|ρ̂bi(rs, r′

s, ϕs, ϕ
′
s)|r〉

∼
∫

dϕs

∫
dϕ′

s

2w2l2
c

l2
c + 2w2[1 − cos(ϕs − ϕ′

s)]

× |ϕs, ϕs〉〈ϕ′
s, ϕ

′
s|. (B1)

In order to obtain the joint probability distribution of OAM,
we expand the density matrix of ANG in a complete orthonor-
mal set of OAM states, which is

ρ̃(�s, �i ) =
∑
�s,�i

〈�s, �i|ρ̂bi(ϕs, ϕ
′
s)|�s, �i〉

∼
∫

dϕs

∫
dϕ′

s

2w2l2
c

2w2[1 − cos(ϕs − ϕ′
s)] + l2

c

× exp[i(�s + �i )ϕs − i(�s + �i )ϕ
′
s], (B2)

where we use 〈�|ϕ〉 = exp[−i�ϕ] and ρ̃(�s, �i ) represents the
diagonal elements of the OAM density matrix of photon pairs.

If we define

W (ϕs, ϕ
′
s) = − l2

c

cos(ϕs − ϕ′
s) − (

1 + l2
c

2w2

) , (B3)

and since cos(ϕs − ϕ′
s) � 1, we can simplify this expression

based on a formulation b
x−a = − b

a

∑∞
n=0 ( 1

a )
n
xn. Then we have

x = cos(ϕs − ϕ′
s), a = (1 + l2

c /2w2), b = l2
c , so Eq. (B3) can

be written as

W (ϕs, ϕ
′
s) = w2

2β2 + 1

∞∑
n=0

(2ξ )n cosn(ϕs − ϕ′
s), (B4)

in which β = w
lc

is used to describe the pump coherence prop-

erty, and ξ = β2

1+2β2 is just for convenient notation. Then we
expand the cosine to exponential and get

W (ϕs, ϕ
′
s) = w2

2β2+ 1

∞∑
n=0

n∑
m=0

Cm
n (ξ )n exp[i(2m− n)(ϕs− ϕ′

s)].

(B5)
We assume that 2m − n = k and obtain

W (ϕs, ϕ
′
s) = w2

2β2 + 1

∞∑
j=0

C j
|k|+2 j (ξ )|k|+2 j exp[ik(ϕs − ϕ′

s)].

(B6)
The diagonal elements of the OAM density matrix of photon
pairs are expressed as

ρ̃(�s, �i ) ∼ w2

2β2 + 1

1√
1 − 4ξ 2

(
2ξ√

1 − 4ξ 2 + 1

)|�s+�i|
.

(B7)

So, the normalized probability distribution of OAM of the
generated photon pairs is

P̃(�s, �i ) =
√

1 − 4ξ 2

1 + 2ξ

(
2ξ√

1 − 4ξ 2 + 1

)|�s+�i|
. (B8)

From Eq. (B8), the joint probability distribution
of OAM is relevant to the coherence length. One
can then calculate the variances of OAM, (��i )2 =∑
�i

�2
i · P̃(�i|�s = 0)−[�i · P̃(�i|�s = 0)]

2
. Based on the

conditional probability P̃(�i|�s = 0) =
√

1−4ξ 2

1+2ξ
( 2ξ√

1−4ξ 2+1
)
|�i|,

where we assume γ =
√

1−4ξ 2

1+2ξ
, a = 2ξ√

1−4ξ 2+1
, we then

obtain the analytical expression of the variances of OAM:

(��i )
2 = 2γ

∞∑
�i=0

�2
i a�i − 4γ 2

( ∞∑
�i=0

�ia
�i

)2

= 2β2(1 + 2β2)

1 + 4β2
. (B9)

By considering β � 1, Eq. (B9) can be simplified to (��i )2 ∼
2β2, while for β � 1, (��i )2 ∼ β2. So it is clearly illustrated
that the variance increases quadratically with β, which is also
inversely proportional to the square of the coherence length
lc. One can know that, for a strong coherent pump beam, the
correlation of OAM of photon pairs is strong but when the
coherence length decreases, the entanglement of photon pairs
decreases greatly, so varying the coherence length could be a
useful tool to control the correlations of OAM of photon pairs.
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