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We propose a mechanism to engineer an n-photon blockade in a nonlinear cavity with an n-photon parametric
drive A(a™ 4 &"). When an n-photon-excitation resonance condition is satisfied, the presence of n photons

in the cavity suppresses the absorption of the subsequent photons. To confirm the validity of this proposal,
we study the n-photon blockade in an atom-cavity system, a Kerr-nonlinear resonator, and two-coupled Kerr-
nonlinear resonators. Our results demonstrate that n-photon bunching and (n + 1)-photon antibunching can be
simultaneously obtained in these systems. This effect is due both to the anharmonic energy ladder and to the
nature of the n-photon drive. To show the importance of the drive, we compare the results of the n-photon drive
with a coherent (one-photon) drive, proving the enhancement of antibunching in the parametric-drive case. This
proposal is general and can be applied to realize the n-photon blockade in other nonlinear systems.
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I. INTRODUCTION

In a nonlinear photonic cavity, the energy ladder of the
harmonic oscillator is modified by the presence of photon-
photon interactions. Even if the driving field can be tuned
to be resonant with the cavity, a strong nonlinearity can sig-
nificantly change the photon-number probability distribution,
allowing sizable deviations from the Poissonian statistics.
In the conventional photon blockade, a large nonlinearity
changes the energy-level structure of the system, suppressing
the simultaneous presence of photons in the resonator [1].
In the limit of large (infinite) interactions, the presence of
a single photon (1P) in the cavity blocks the creation of
a second photon [2,3]—an effect known as a conventional
single-photon blockade.

Due to its potential applications in information and com-
munication technology, the 1P blockade has been extensively
studied in the past years [4-16]. For example, the 1P
blockade has been predicted in cavity quantum electrodynam-
ics [17-19], quantum optomechanical systems [20-23], and
second-order nonlinear systems [24—26]. The conventional 1P
blockade effect was first observed in an optical cavity coupled
to a single trapped atom [27]. Since then, many experimental
groups have observed this strong antibunching behavior in
different systems, including a photonic crystal [28] and a
superconducting circuit [29].

The photon blockade can also be enabled by quantum
interference [30,31], a phenomenon called the unconventional
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photon blockade [32-38]. Indeed, two optical paths in, e.g.,
a dimer, can create interference, preventing the simultaneous
excitation of two photons in a cavity [39-42]. This effect
has been recently observed in quantum-dot cavities and su-
perconducting architectures [43,44]. Although conceptually
different, conventional and unconventional photon blockades
are connected mechanisms [45,46], and they can even arise
simultaneously [47,48]. In this paper, we will consider the
conventional photon blockade, and for the sake of brevity
we will denote the conventional photon blockade as a photon
blockade.

In analogy to the 1P blockade, the n-photon blockade (nP
blockade, n > 2) occurs when n photons in a nonlinear cavity
suppress the creation of subsequent photons by the drive.
The two-photon (2P) blockade (nP blockade with n = 2) was
studied in several platforms, including a Kerr-type system
driven by a laser [49], in a strong-coupling qubit-cavity sys-
tem [50,51], and in a cascaded cavity QED system [52]. The
2P blockade can also be generated by squeezing [53].

Experimentally, the 2P blockade was realized in an optical
cavity strongly coupled to a single atom [54], where driving
the atom provides a larger optical nonlinearity than driving
the cavity. The nP blockade with n > 2 has been studied in
a cavity strongly coupled to two atoms [55], in a cavity with
two cascade three-level atoms [56], and in a Kerr-type system
driven by a laser [57,58]. Meanwhile, in analogy to the photon
blockade, the phonon blockade has also been studied [59,60].

In this paper, we theoretically propose that the nP block-
ade can be triggered in a nonlinear cavity with an n-photon
parametric drive (denoted for the sake of brevity as the nP
drive). While the 2P drive is the parametric down-conversion
(PDC) which characterizes x ®-type nonlinearities, the higher
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nP drive implies the simultaneous creation of n excitations in
the system.

Similarly to PDC, the nP drive has been realized exper-
imentally for n = 3 by using a superconducting parametric
cavity [61]. Such a procedure relies on the fourth-order ex-
pansion of the nonlinearity of Josephson junctions, meaning
that a high-frequency photon produced by a strong resonant
field is transformed into three lower-frequency ones. In the
same way in which PDC relies on x® nonlinearities, this
effect relies on X(3)- Thus, n > 3 parametric drives can be,
in principle, realized exploiting higher-order nonlinearities.
Other possible implementations of the nP drive rely on the
multiphoton Jaynes-Cummings model [62] and the quantum
Rabi model [63] by driving the atom with the method in
Ref. [64], or on the use of generalized Rabi models in the
ultrastrong-coupling regime, where a cavity photon can simul-
taneously excite n atoms, inducing an effective n-boson drive
in the collective atomic degree of freedom [65-69].

In this paper, we first give a brief introduction of this
proposal and then confirm its validity by considering three
examples, i.e., an atom-cavity system, a Kerr-nonlinear
resonator, and two-coupled Kerr-nonlinear resonators. This
proposal is quite general and can be extended to other non-
linear systems that can display the nP blockade.

The study of the nP blockade in recent decades has mainly
focused on a coherent (i.e., single-photon) drive. Compared
with a proposal using a coherent driving, the use of an nP
drive has the following advantages.

(i) There are systems where the nP blockade exists with an
nP drive, while a coherent driving to the cavity will not induce
the nP blockade in these systems (e.g., in an atom-cavity
system as discussed in Sec. IIT and Ref. [54]). In this regard,
the nP drive is a “more general” approach for the realization
of the nP blockade.

(ii) For the same set of parameters characterizing a non-
linear system, we find that the nP drive approach exhibits a
larger (n + 1)-photon antibunching with respect to the coher-
ent driving approach. Moreover, the nP drive mechanism leads
to a larger photon number in the cavity.

The remainder of this paper is organized as follows.
In Sec. II, we give a brief introduction of this proposal.
In Sec. III, we analytically illustrate the nP blockade in an
atom-cavity system, showing the differences between the nP
drive, leading to the nP blockade, and the coherent drive
which does not show any nP blockade. Similarly, in Sec. IV
we show the nP blockade in a Kerr-nonlinear resonator, and
we discuss the different features which occur with the nP
drive and the coherent drive, respectively. In Sec. V, we focus
on the 2P blockade in two-coupled Kerr-nonlinear resonators,
showing that our analysis remains valid also for extended
systems. Conclusions are drawn in Sec. VL.

II. PROPOSAL FOR AN n-PHOTON BLOCKADE WITH AN
n-PHOTON PARAMETRIC DRIVE

The 2P drive has many applications [70-74], such as
quantum computing [70], quantum metrology [71], cooling
of micromechanical mirrors [72], and generation of long-
lived cat states [73]. While the 2P drive is described by a

Hamiltonian

H; = M@Pe " + a*erh, €]
the nP drive involved in our proposal is described by

Hy = M(@"e " 4 a"er), 2)

where & is the cavity annihilation operator, X is the parametric
driving amplitude, and w), is the driving frequency.

Our idea is fo use the nP drive to induce the nP blockade in
a nonlinear cavity. Apart from the bosonic field of the cavity
which is subject to an nP drive, an auxiliary nonlinear element
(e.g., an atom, a Kerr-nonlinearity medium, or an auxiliary
cavity) is required to realize the nP blockade.

The Hamiltonian of the auxiliary nonlinear system and of
the undriven cavity is denoted by Hy. The form of Hj is not
unique, and it depends on the type of the nonlinear system.
Generally speaking for U(1) symmetric (i.e., for particle-
number conserving) Hamiltonians, Hy can be diagonalized
and expressed as

ki ky
Ho =) ol [y{)vi|+ D wilvi)vi|

j=1 j=1

kn
+o kY wllwwi 3)
j=1

where wj, is the jth eigenfrequency of H, for the photon

excitation number n, and we have assumed that the ground-
state energy is zero. The corresponding eigenstate |v;) is
constructed by the k,, basis vectors for an n-photon excitation
manifold. This basis forms a closed space under the action
of Hy due toAthe U (1) mode] symmetry. The set of eigenfre-
quencies {w{}, {w3} -+, {w;}, -+ is anharmonic due to the
nonlinear interaction. Among these eigenfrequencies, {wj}
(where j is from 1 to k,) is crucial to the nP blockade because
the corresponding eigenstate {|v);} includes an n-photon
state. When the parametric drive frequency w), is tuned to the
{w}}, the parametric drive resonantly excites n photons in the
cavity. As a result, the system occupies the state {|y)7}. This
gives rise to a sizable nP blockade. We deduce the following
conditions for the nP blockade:

wp, = !, (4)

where j ranges from 1 to k,. The n-photon resonance excita-
tion by the nP drive ensures that the nP blockade is triggered
in the nonlinear cavity due to the system nonlinearity, strongly
suppressing higher-order processes which excite more
photons.

So far, we have considered the eigenvalues of the Hamilto-
nian A to provide the conditions for the blockade. Obviously,
to excite an n-photon state, the drive and the dissipation should
be correctly taken into account, and in the following numerical
simulations we will explicitly compute their effects. To do
that, we assume that the systems we consider are described
by the Lindblad master equation with the form [75-77]

ap N
= =il pl+ ijx,z(apb, 5)
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where «; denotes the decay rates and the Lindblad superoper-
ators £(0;) act as

PN A At Lata a 1 Anfa
E(oj)pzoj,ooj— 5050,,0— Epo’joj. (6)
We are interested in characterizing the steady state pss under
the Lindblad master equation, which is reached by the system

once it has evolved for a sufficiently long time. pss can be
obtained by

Pss
ot
In the examples below, if not specified otherwise, any plot
in the following refers to quantities computed for the steady
state.

The simple Hamiltonian picture in Eq. (4) allows us to
capture the main idea behind the mechanism in the regime
of the weak drive. Even if the drive and the dissipation mod-
ify the system properties, in the limit which we consider
the drive can be seen as a perturbation of Hy, and therefore
the resonance condition is well captured by Hp. In this re-
gard, increasing the drive strength can reduce the accuracy of
our prediction. Furthermore, the blockade effect can become
weaker by increasing n. For example, we verify that, to have
a non-negligible photon number, a four-photon (4P) blockade
needs a stronger drive than a three-photon (3P) blockade.

To demonstrate the validity of the above proposal, we study
three examples of the nP blockade arising in three different
systems: an atom-cavity system, a Kerr resonator, and two-
coupled Kerr cavities. Deriving an analytical condition for the
nP blockade via Eq. (4), we refine our analysis including the
drive and the dissipation, confirming that the nP blockade can
be triggered in a nonlinear cavity with the nP drive.

By solving the master equation and obtaining the steady
state, we numerically compute the nth-order equal-time cor-
relation function and demonstrate the presence of the nP
blockade. Here the nth-order equal-time correlation function
is defined as g™ (0) = (a™a")/(a’a)", and & is a bosonic an-
nihilation operator. The nth-order correlation function g(”)(O)
can be reexpressed as

=0. @)

n'P,
( Zn nP")n ’

where P, is the n-photon occupation probability of a bosonic
mode [78]. Thus, g™ (0) > 1 implies a large n-photon oc-
cupation probability, which indicates n-photon bunching.
In contrast, g"*V(0) < 1 implies a small (n+ 1)-photon
occupation probability, which indicates (n + 1)-photon anti-
bunching. That is, the conditions g"™(0) > 1 and g"*D(0) <
1 simultaneously prove the presence of the nP blockade [54].
The nP blockade can be interpreted as the fact that n photons
in a nonlinear cavity suppress the presence of the (n + 1)th
photon, and thus a large (n + 1)-photon antibunching is a
requirement for a good n-photon blockade.

Before proceeding further, let us also remark that a strong
n-photon drive can trigger instabilities and leads to nonphys-
ical results if the appropriate renormalization terms are not
taken into account. Therefore, one has to verify that the occu-
pation of the system is not divergent, which ultimately leads
to a boundary on the intensity of the driving. In our case, we

£"(0) = ®)

are interested in the weak drive and the few-photon regime,
where these parametric instabilities never take place.

III. ATOM-CAVITY SYSTEM

We begin our investigation by considering an atom-cavity
system described by the Jaynes-Cummings Hamiltonian,
where the cavity is driven by an #P drive. In a frame rotating
at the parametric drive frequency w,/n, the Hamiltonian is
(assuming /i = 1 hereafter)

H=H,+H; = Hy+ r@™m+a",
Hy=AJd'a+ A6.6_ +g@'6_ +6.a) )

where a is the cavity annihilation operator, 61 are the atom
raising and lowering operators, g is the coupling strength of
the atom and the cavity mode, A is the amplitude of the
nP drive, and A, (A,) is the detuning between the cavity
frequency w, (the atom frequency w,) and the rescaled driving
frequency w,/n, such that

Ay =w, —wp/n, A, =w,— wpy/n. (10)

If w, > w, or w, € w,, and g is sufficiently small, the
qubit degree of freedom can be traced out, inducing some
(possibly nonlinear) energy shifts. Thus, we focus on the
resonant case w, = w,, resulting in A, = A,. The Hamilto-
nian (9) with n = 2 can be used to exponentially enhance the
light-matter coupling in a generic cavity QED [79-81].

In the absence of the nP drive, the atom-cavity Hamiltonian
H, in Eq. (9) can be analytically diagonalized and brought in
the form of Eq. (3) with k, = 2 for all n. The eigenstates of
Hy are

2y Lo
|V, )—ﬁun L, e)FIn, g) (11)

and the corresponding energies are
wy? = nw, F v/ng, (12)

where |g) (|e)) is the ground (excited) state of the atom, and
n denotes the photon excitation number. The energy-level
diagram of the system is shown in Fig. 1(a).

Using Eq. (4), the optimal conditions for the nP blockade
are

g=+£J/nA, (13)

where A = A, = A.. When one of the above conditions is
met, the atom-cavity system will occupy the state |/!) or
|1ﬁ3) due to resonance excitation. There is one path for the
system to reach the state |}2): the system first arrives at an
n-photon state by the nP drive, then goes to the state |1ﬂ,}'2)

via the coupling g, i.e., |0g) BN |ng) LN |1/f,}*2). The system
has difficulty reaching the other manifolds due to the large
energy-level splitting once it occupies the states |y)-?), and
the blockade occurs.

Next, we numerically study the nP blockade effect in the
presence of the drive and the dissipation. We obtain the steady
state of the Lindblad master equation in Eq. (5), which for our
system reads

ap Y A A .
w —i[H, p] + «t(@)p + yL(a-)p, (14)
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FIG. 1. (a) Schematic energy-level diagram explaining the oc-
currence of a three-photon blockade. (b) Logarithmic plot of the
third-order correlation function g®(0) and the fourth-order correla-
tion function g™ (0) as a function of the detuning A /k, for g/ =
10+/3, ¥ /k = 0.1,and A/k = 0.3. (c) g (0) and g (0) as a function
of A/k,for g/k =10,y /k =0.1,and A/k = 1.5.

where k denotes the decay rate of the cavity and y is the
atomic spontaneous emission rate.

In Fig. 1(b), we show the emergence of the 3P blockade
by plotting g (0) and g®(0) versus A/k with g/k = 10/3.
Clearly, the 3P blockade appears for A/x = +£10, which
agrees well with the conditions in Eq. (13). The case of the
4P blockade is studied in Fig. 1(c). We set g/k = 10, and
the 4P blockade appears when A/k = =£5, which also agrees
with the prediction of Eq. (13) with n = 4. The numerical
results confirm the analytic conditions and the corresponding
analysis.

We here remark that for the Jaynes-Cummings Hamilto-
nian in Eq. (9) it has been proved that the nP blockade cannot
emerge with a coherent drive (i.e., a drive with n =1 in
H,;) [54], but the nP blockade can exist for this system with
an nP drive. This prediction shows the nontrivial effect of the
nP drive.

IV. KERR-NONLINEAR RESONATOR

The Kerr-nonlinear resonator with a 2P drive has been
extensively studied due to its rich physics [8§2-87]. Here, we
investigate the nP blockade with the nP drive. In the frame
rotating at the pump frequency, the Hamiltonian of this model
reads [84]

H = Hy + Hy = Hy + 2@" + "),
X i (15)
Hy=Ad'a+Ua‘a'aa,
where
A =w, —wpy/n (16)
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FIG. 2. (a) Energy spectrum of the single mode Kerr-nonlinearity
system leading to a three-photon blockade via a three-photon para-
metric drive. (b) Logarithmic plot of g®(0) and g (0) as a function
of A/k. (c) Logarithmic plot of g’(0) and g®(0) as a function of
A/k.In (b, ¢), the parameters are U/k = 10 and A/x = 0.1.

is the pump-to-cavity detuning, U is the Kerr nonlinear
strength, and A is the amplitude of the nP drive.

The Hamiltonian H, in Eq. (15) is diagonal in the Fock
basis, and the eigenstates and eigenfrequencies are |1ﬁ,}) = |n)
and

o) = wen +Un* —n), (17)

respectively. Hence, Eq. (3) has k, = 1, for all n. The nP
blockade can be triggered by the n-photon-excitation reso-
nance, where the |0) — |n) transition is enhanced. According
to Eq. (4), the condition for the nP blockade is

A

U:_n—l' (18)

To demonstrate the presence of an nP blockade, we con-
sider the Lindblad master Eq. (5) with dissipation «£(a)p.
The energy-level diagram for the 3P blockade is shown in
Fig. 2(a), and the corresponding numerical simulation is
shown in Fig. 2(b), where we plot g (0) and g*(0) as a
function of A/k with U/k = 10. These results show that the
3P blockade can be obtained at A/k = —20, as predicted
in Eq. (18) for n = 3. Similarly, the 4P blockade depicted
in Fig. 2(c) appears at A/k = —30, which also agrees with
Eq. (18) with n = 4.

To prove the efficiency of the nP drive mechanism for the
realization of the nP blockade, we compare it with the case of
a coherent drive (one-photon drive) F' (@" + &), where F is the
coherent driving strength. As an example, we compare the 3P
blockade based on the 3P drive with that based on the coherent
drive in Fig. 3. To this end, we plot g*(0) and g*(0) versus
the 3P drive strength A and coherent drive strength ' under
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£“(0), and the occupation N as a function of (a) 3P driving strength
M/k, and (b) coherent driving strength F'/k. In (a, b), the parameters
are U/k = 10 and A/k = —20.

the blockade condition of Eq. (18) (U/k = 10, A/k = —20).
Notice that the blockade condition obtained in Eq. (18) is
independent of the form of the drive, and therefore we expect
that this set of parameters allows us to observe the maximal
3P blockade possibility.

The 3P blockade due to the 3P drive is obtained in a region
of small A [the region between the vertical dash-dotted lines in
Fig. 3(a)], while the implementation of the 3P blockade with
the coherent driving needs a larger F [the region between the
vertical dash-dotted lines in Fig. 3(b)]. Comparing with the
coherent driving approach, we see that the nP drive approach
leads to a larger suppression of g"+1)(0), which corresponds
to a stronger (n + 1)-photon antibunching.

Furthermore, the occupation N = (a'a) is an important in-
dicator to evaluate the proposed protocol for the nP blockade,
and a larger N indicates a brighter emission. In general, from
the interpretation of the nP blockade that n photons in a non-
linear cavity suppress the presence of the (n + 1)th photon,
one could define an optimal blockade point as (i) g™ (0) > 1
and (ii) g+ (0) is minimal. However, this criterion does not
take into account the occupation N. As such, a “better” photon
blockade point would require that (iii) N is maximal. Thus
the perfect blockade point needs to satisfy (i), (ii), and (iii).
Sometimes, however, these three conditions cannot be met
simultaneously. If such a perfect blockade point cannot be

found out, we can relax the condition (iii) in order to look for
an optimal blockade point only satisfying the conditions (i)
and (ii). In Fig. 3(a), we show that &P (0) =~ 0.044, g®(0) =
1, ie., In[g®(0)] ~ 0, and N ~0.83 for A/k =0.29 (the
right vertical line), which is a perfect 3P blockade point. The
perfect 3P blockade point for the coherent driving appears at
F/k = 4.37; instead, g*(0) ~ 0.197 and N ~ 0.766. The nP
drive approach has a larger g (0) and also a larger N than the
coherent driving approach for the perfect blockade point.

We conclude that the nP drive triggers the nP blockade
better than the coherent driving. The difference between the
two cases (nP drive versus coherent driving) lies in the effi-
ciency for exciting n photons; this can be understood using a
perturbation theory approach. The nP drive resonantly drives
the nth-excitation manifold: it requires just one action of the
drive to pass from the vacuum to a state with n photons.
As such, even a relatively weak drive can accomplish this
task. In contrast, for the coherent driving, the drive has to
act n times to bring the photon from the vacuum to the state
with n photons. This is a process of order n passing through
many nonresonant Hamiltonian states. As such, (i) it requires
a much stronger drive to produce a comparable number of
excitations and (ii) it causes a higher probability of exciting
other undesired states other than |n).

V. TWO-COUPLED KERR-NONLINEAR RESONATORS

Two-coupled cavities with Kerr nonlinearity have been
considered to study the 1P blockade [31]. Here, we label the
two cavities as @ and b. The Hamiltonian in the frame rotating
at the drive frequency is

H =H,+H; = Hy+ r@™" +a"),
Hy = AG@Ta+b'b) +J@"h+ ba)
+ U@ a"aa + b'b'bb), (19)

where & (b) is the photon annihilation operator for the cavity
a (b) with frequency w, (wp),

A =w, —wy/n=w,—w,/n, (20)

J is the coupling strength of the two cavities, U is the Kerr
nonlinear strength, and A is the nP drive strength.

Since the total number of photons is conserved by Hy in
Eq. (19), we can deduce that there are k, = n + 1 states in
Eq. (3). In this case, we cannot analytically determine all the
eigenfrequencies {w}} for all n, but the case of n = 2 can still
be analytically solved. We now focus on the n = 2 subspace,
and to diagonalize it we project the Hamiltonian onto the two-
photon states |20), |11), and |02), where |¢8) = |a) ® |8) is
a Fock state with o (8) photons in the cavity a (b). In the
two-photon subspace, Hy is expressed as

2w, +2U 2 0
H, = V27 2w, V27 . (21)
0 V2J 2w, +2U

The three eigenfrequencies are

wy? = 2w, + U F V42 + U,

0} =2U + w,). (22)
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FIG. 4. (a) Energy spectrum for two-coupled cavities with Kerr
nonlinearity. The blue arrows are half the distance of w! and w3,
which are calculated by ) and w3. (b, ¢) Logarithmic plot of g?(0)
and g®(0) as a function of A/« for (b) the cavity a and (c) the cavity
b, respectively. In (b, ¢), the parameters are U /k = 10, J/k =5, and

Ak =0.5.

The corresponding un-normalized eigenstates are

[¥,7%) = 120) — [V2U F V2(4J2 + UD)]/(2))[11) + (02),
[¥3) = —[20) + |02). (23)

The energy-level diagram is shown in Fig. 4(a).
The conditions for the 2P blockade, obtained from Eq. (4),
are satisfied if

U VAT D2
- : .

Under these resonance conditions, the 2P blockade can be
triggered via the resonant transitions |00) — {|1//22), |1ﬁ21’3)}.
The two cavities occupy the two-photon states [20) and
|02), which ensures that the 2P blockade is simultaneously
realized in the two cavities when the conditions in Eq. (24)
are satisfied.

The numerical study of the 2P blockade is the same as
before. In Figs. 4(b) and 4(c), we plot g®(0) and g (0) as a
function of A/« for the cavity a and the cavity b, respectively.
The results indicate that the 2P blockade occurs for A/k =
—12.7, —10, and 2.07, which are predicted by the three 2P
blockade conditions given in Eq. (24). Thus, it is seen that the
2P blockade is simultaneously realized in both cavities due to
the feature of the system and the »nP drive.

In Fig. 5, we compare the 2P drive case with the coherent
drive case by showing g»(0) and g®(0) as a function of
Ak (F/x) for the three blockade points shown in Figs. 4(b)

A=-U, A (24)
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FIG. 5. Logarithmic plot of the correlation functions g®(0),
g¥(0), and the occupation N of the cavity b as a function of
MKk (F/k) for U/k =10 and J/k = 5. The column on the left
corresponds to the 3P driving strength A /«, and that on the right cor-
responds to the coherent driving strength F'/k. (a,a’) A/k = —12.1.
(b,b’) A/k = —10.(c,c’) AJk =2.07.

and 4(c). We focus on the undriven cavity b, where g3(0)
is smaller than that of the cavity a. The blockade regions are
shown between the green vertical lines. Similarly to the single
Kerr-nonlinear resonator case, the effect of the drive leads to
two different blockade regions. Again, the 2P drive approach
shows a better three-photon antibunching property than the
coherent drive approach.

Finally, we also look for the perfect blockade point defined
in the previous section. As opposed to the scheme of the
single Kerr-nonlinear resonator in Sec. IV, g*(0) is not a
monotone function when A/k = —12.7 and —10 as shown
in Figs. 5(a) and 5(b) for the 2P drive case. And we can
only find the optimal blockade point, which corresponds to
a minimal 59(0). For A/k = 2.07, instead, the correlation
function g*(0) is monotone decreasing and the occupation N is
monotone increasing, shown in Figs. 5(c) and 5(c’). A perfect
2P blockade point with the 2P drive appears at 1/x = 0.525,
where ¢®(0) ~ 0.0045 and N = 0.0725. For the coherent
driving, we find g®(0) ~ 0.0094 and N ~ 0.0387 for F/x =
0.62. Thus, the 2P drive approach has a stronger three-photon
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antibunching and a larger occupation on this perfect blockade
point.

VI. CONCLUSIONS

We have proposed that an n-photon blockade can be real-
ized in a nonlinear cavity with an n-photon parametric drive.
The validity of this proposal has been confirmed by three ex-
amples, i.e., the n-photon blockade in an atom-cavity system,
in a single-mode Kerr nonlinear device, and in a two-coupled
Kerr-nonlinear resonator. By solving the master equation in
the steady-state limit and computing the correlation functions
2" (0) and g"*+P(0), we have shown that the nP blockade
can be realized, and the optimal conditions for the nP block-
ade are in good agreement with the numerical simulations,
thus supporting the validity of our proposal. Although we
focused on cases where the Hamiltonian Ay can be diagonal-
ized analytically (and therefore the resonance condition can be
expressed as an algebraic equation of the system parameters),
the proposed procedure to realize the nP blockade with the nP
drive remains valid for more complex Hamiltonian systems.
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