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Quantum fluctuations in the intensity of an optical probe is noise which limits measurement precision in
absorption spectroscopy. Increased probe power can offer greater precision; however, this strategy is often
constrained by sample saturation. Here, we analyze measurement precision for a generalized absorption model
in which we account for saturation and explore its effect on both classical and quantum probe performance. We
present a classical probe-sample optimization strategy to maximize precision and find that optimal probe powers
always fall within the saturation regime. We apply our optimization strategy to two examples, high-precision
Doppler broadened thermometry and an absorption spectroscopy measurement of chlorophyll a. We derive a limit
on the maximum precision gained from using a nonclassical probe and find a strategy capable of saturating this
bound. We evaluate amplitude-squeezed light as a viable experimental probe state and find it capable of providing
precision that reaches to within > 85% of the ultimate quantum limit with currently available technology.
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I. INTRODUCTION

Absorption spectroscopy exploits light-matter interactions
to give precise measurements of sample composition. This
technique is widely applied with key use-cases including
drug analysis [1], environmental monitoring [2], atomic char-
acterization [3], and industrial process monitoring [4]. In
absorption spectroscopy, exceeding sample-specific probe in-
tensities often leads to irreversible damage through a host of
saturation-dependent mechanisms [5,6]. Investigating probe
performance in the saturation regime is therefore crucial
for simultaneously optimizing performance and minimizing
irreversible damage [7-9] of delicate samples such as ar-
chaeological finds, living cells, or food products [4,10,11].
Intensity-dependent quantum noise within the probe scales
favorably with probe power but fundamentally limits the
precision of absorption measurements. Consequently, the sat-
uration intensity of the sample places a bound on the achiev-
able measurement precision.

By conducting an analysis of how saturation affects mea-
surement precision, we are able to present a probe-sample
optimization scheme to help classical measurements obtain
the highest precision possible with a classical probe. The
precision is quantified utilizing the Fisher information [12]—a
measure of how much information about an unknown param-
eter we can extract from the system. We find that the optimal
probe power is always in the saturation regime (= 50% of the
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saturation power), which highlights an inherent trade-off be-
tween precision and damage that saturation-limited classical
schemes must navigate. This motivates the need to find alter-
native probe states that provide greater precision per photon.
Effective states for parameter estimation are identified as
being nonclassical states of light: single-photon states [13,14],
multiphoton states [15—17], or squeezed states [18-21] ca-
pable of enhancing performance under linear loss or phase
for a fixed resource level [11,22-24]. Results thus far have
focused on the linear absorption regime, with the excep-
tion of work by Mitchell [25] which models the effect of
constrained photon number on the performance of Gaussian
states for single-parameter estimation. Mitchell numerically
explores the performance of Gaussian states for measuring
optical depth under a semiclassical model of saturation. Here,
we derive an analytical bound on the performance of both
Gaussian and non-Gaussian states under saturation. We as-
sess the ability of coherent states, Fock states, and squeezed
states to saturating this bound. Our results show that on a
per-photon basis the Fock state remains optimal for probing in
the saturation regime, giving a deeper understanding of when
to consider quantum light sources a worthwhile and viable up-
grade to saturation-limited measurements. Additionally, our
theoretical framework opens the door to further analysis of
nonlinear absorption spectroscopy schemes that directly em-
ploy saturation to enhance image resolution [26,27]. These
schemes often incorporate transmission measurements of
weak signals into more complex estimators and can therefore
build upon the model presented here for further optimization.
In this paper, we construct a physical model and utilize
the Fisher information (FI) and quantum Fisher Information
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FIG. 1. The model schematic: a probe state of mean input photon
number (7i;,) is propagated along a sample of length L. The sample
consists of homogeneously distributed two-level absorbers with den-
sity n,, characteristic transition cross section o, and lifetime t. The
output transmission 7 is measured and used to infer an estimate of
the linear absorption coefficient a.

(QFI) formalisms to investigate classical and quantum probe
performance. We derive the FI obtained from classical probing
and present a sample-probe optimization strategy which we
later apply to two examples: Doppler broadened thermometry
(DBT) and direct chlorophyll absorption spectroscopy. Fur-
ther, we perform a QFI analysis and derive a bound on the
achievable precision of any single-mode quantum state. Our
work shows the FI obtained by the Fock state saturates this
bound and is thus optimal. For a given target precision, we
show the quantum probe brightness to be of an order of magni-
tude less than the required classical probe brightness, making
it desirable for ultrasensitive samples. We identify amplitude-
squeezed states as a viable route towards quantum precision
enhancement for saturation-limited sensors. The analytical
results presented are based on a semiclassical approximation
of sample saturation. Complementary to these results, we
complete a fully quantum numerical analysis of the effect of
saturation on the higher-order moments of the probe’s photon
statistics and find the analytical quantum advantage to be a
lower bound on the achievable advantage of employing quan-
tum light.

II. SATURATION MODEL

The model we consider, depicted in Fig. 1, consists of a
saturable absorber of length L € (0, o) cm, with linear ab-
sorption coefficient a € (0, co)cm ™' and saturation intensity
ng. The sample is resonantly probed via a single mode with
known mean input photon number (7;,). Each target absorber
is modeled via a static, independent, two-level system. This
simplified two-level model can be readily extended to more
complex multilevel systems which display a dominant ra-
diative or nonradiative decay path back to ground [28,29].
The mean photon number is measured at the output to in-
fer a precise estimate of the linear absorption from repeated
transmission measurements. To aid our discussion of the re-
sults, we define the dimensionless variable « := 2(#;,) /5 to
be the input intensity scaled by half the saturation intensity.
Although the effect of saturation on the evolution of the probe
intensity is nonzero for all ¥ > 0, the instantaneous change in
probe intensity is dominated by a term linear in intensity for
k < 1[see Eq. (A7) in Appendix A]. Conversely, when k > 1,
the nonlinear terms dominate the evolution of the intensity and

the dynamics are no longer well approximated by the linear
Beer-Lambert model [30]. We thus define the linear pumping
regime to be ¥ < 1 and the saturated pumping regime to be
k > 1. Under a steady-state approximation, the sample trans-
mission is given by [29] [see Appendix A for a full derivation]

nlk,a) = %W[ln(l{) 4+« —alLl]. (D

Here, WI[x] is the Wright omega function defined over the
real line [31]. We use the standard FI formalism to cal-
culate a bound on the estimate precision of an unknown
parameter x encoded in the output state |i,). The FI on a
target variable x obtained by the set of positive operator-
valued measurements (POVMs), M = {m;} with )", m; = 1,
is defined as F(x) = Y, p(m;|x)[d[In p(m;|x)]/0x]* [12,32].
The probability measurement outcome i is given by
p(m;|x) = tr{|Yy) (¥x|m;}. The FI is related to the variance
of a given estimator of x via the classical Cramér-Rao bound
(CRB), inequality 1 of Eq. (2) [33], which is saturated by
an optimal estimator. The QFI Q(x) is then defined as the
maximum possible FI obtained by optimizing over all POVMs
and is related to the FI via the quantum Cramér-Rao bound
(QCRB), inequality 2 of Eq. (2) [34]:

< F(x) < Q). ®)

Var(x)

We assume that the saturated loss channel acts like a beam
splitter on the optical mode with reflectivity determined by
1 — n(k, a). This semiclassical approximation only accounts
for the effect of saturation on the first moment of the input
state’s photon number and thus does not account for the effect
on its quantum noise.

III. RESULTS AND DISCUSSION

A. Classical probe performance

A classical laser probe is well approximated by a coherent
state [35] |a) with (fi;,) = |a|? and Var(fi,) = (A, ). In direct
absorption schemes, the QCRB is saturated by direct trans-
mission measurements [24]. We calculate F (n) and relate it
to the FI on the linear absorption coefficient, F (a), using the
following formula: F(a) = (31/da)*F (). The transmission
variance Var(n) is related to the output state photon number
variance Var(71) via error propagation [36] (see Appendix B
for a full derivation). Combining these two relations gives

877)2 (in)

Fla)= <_ Var(i)

da ©)

The semiclassical loss approximation allows us to define the
output photon number variance analytically via [24]

Var(#) = 0 Var (i) + n(1 — n)(fin). (4)
For a coherent input state, the FI, F,(a), is given by

Ly >2<ﬁin> 6)
14 nk n

F.(a) = (

which is shown in Fig. 2(a).
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FIG. 2. Precision (blue) and efficiency (red) obtained using (a) a classical probe or (b) the optimal quantum probe, calculated across the
linear (x < 1) and saturated (¢ > 1) pump regimes (dot-dashed purple). (c) The quantum advantage A. Panels (a—c) have been plotted on a
logarithmic x axis. The sample has a fixed length L = 1 cm and is plotted for absorption coefficients @ € {0.5cm™!, 1em™!, 2cm™!}.

B. The optimal classical strategy

The negative effect of saturation on classical probe effi-
ciency, as seen by the downward trend of the red lines in
Fig. 2(a), is visible for ¥ < 1, suggesting sample saturation
has a measurable impact on schemes probed far below sat-
uration. For a given sample of known length and estimated
absorption, we can maximize the FI over probe power. We
find the optimal probe intensity 7,y to be

T g
Nopt = EW[l +(JL] P Ea (6)

with a  corresponding sample transmission  of
Nopt = WI[1 + aL]™". Interestingly, the probe power resulting
in the greatest precision is lower bounded by ¥ = 1, implying
classical strategies must be probed in the saturation regime to
fully optimize performance. This result highlights an inherent
trade-off between damage which can occur with saturation
and desired precision that underperforming classical schemes
will need to navigate. Such a compromise further motivates
a move to the quantum regime which is capable of providing
an absolute advantage [21].

To highlight the benefits of classical power optimization,
we apply our method to the quantum-limited high-precision
absorption spectroscopy of a dilute cesium vapor cell, used
to define the Boltzmann constant k, via DBT [37]. In DBT
the characterization of the linewidth profile of a specific
transition enables precise estimation of the Boltzmann con-
stant k,. DBT is also frequently used to accurately detect
and monitor gases [38] with high measurement precision
being imperative to both applications of the technique. In
Ref. [37], a shot-noise limited 895-nm laser is used to probe
a transition with characteristic saturation intensity ny; = 2.5
mW /cm? through a cell of length 75 mm. A laser intensity
of 7 mW/cm? (x = 0.005) is used resulting in a total trans-
mission of n = 17%. We can therefore estimate the linear
absorption coefficient to be a =2.53 cm~!. Using Eq. (6),
we find the optimal probe intensity to be 2.67 mW/cm?
(k = 2.14) with a resulting sample transmission of n = 47%.
Employing such a power would result in a 24-dB improve-
ment in the linear absorption estimate precision (total Fisher
information) over the power used in Ref. [37]. In the ab-

sence of saturation, a further 6-dB increase in power would
result in a 6-dB increase in precision. Our model shows that
once saturation is properly accounted for such an increase in
probe power actually results in a —3-dB reduction in pre-
cision, highlighting the importance of including saturation.
Note, the only source of noise we consider here is laser shot
noise. Other sources of noise may scale unfavorably with
power (e.g., temperature stability) and therefore may limit
the practicality of witnessing such an increase in precision.
This example demonstrates the potential gains in accounting
for saturation when optimizing measurements and highlights
the potential for miscalculation when only considering linear
absorption.

For a given intensity damage threshold, we can similarly
maximize the FI over sample length. As a further example, we
investigate the resonant absorption of chlorophyll a acetone
solution, probed at 661 nm [39]. Chlorophyll a density is rou-
tinely measured via absorption spectroscopy in a wide variety
of settings [40,41]. The transition absorption cross section is
o =4 x 107" cm? with lifetime t = 4 ns [42,43]. Chloro-
phyll absorption measurements use a typical cuvette width of
1 cm and aim to prepare sample densities that give an output
transmission somewhere in the range 15-50 % [39]. Suppose
we probe a sample with a commercially available high-power
laser at 1 W (x = 0.02) and measure a transmission of 50%.
We can infer from this measurement that @ ~ 0.7 cm™". The
optimal sample length of such a measurement is found to be
L = 2.9 cm, which results in a 3-dB improvement in precision
over the standard 1-cm cuvette width. This precision im-
provement maps directly onto the concentration estimate. As
demonstrated above, these results provide simple but powerful
optimization strategies to help improve precision. We now
derive a limit on the precision gained via any single-mode
state and explore the ability of quantum states to saturate this
bound.

C. A bound on single-mode precision

Birchall et al. derived an upper bound on the QFI for
single-parameter estimation that results in a correlated linear
phase and loss being applied to a single-mode optical probe
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by Eq. (8) [32], which reduces to the following when there is
no phase shift applied by the sample:
- 2
Ox) < {f1in) (3x77) ) )
n(l —mn)

The saturation model presented above is insensitive to
phase information and depends only on the mean intensity
of the input state and sample parameters. Therefore, we can
apply this result to our model and note that an optimal quan-
tum probe is one that necessarily saturates this bound. Using
Eq. (7) in conjunction with Eq. (1), we derive a bound on the
QFI gained on the linear absorption coefficient a, estimated
via the transmission 1 [Eq. (1)]:

Ly \° (fin)
= 8
2@ <1+n/<) n(l—mn)’ ®)

Equation (8) defines the quantum limit on precision [shown
in Fig. 2(b)]. We now seek to find quantum strategies that
saturate this bound and the separation of such strategies from
those reliant on classical resources only.

D. Finding an optimal probe

It is well known that the Fock state probe provides an
optimal strategy in the linear absorption model [44,45]. We
expect this probe to remain optimal under saturation. To prove
this hypothesis, we combine Egs. (3) and (4) for a Fock state
[Var(7;,) = 0] which gives an expression for the FI achieved
via Fock state probing, Fy(a):

o L\ ()
Ff(“)_<1+m<> (=’ ®

The FI for a Fock state is indeed equivalent to Eq. (8); hence
Fock state probing remains an optimal quantum strategy for
maximizing the precision of the absorption coefficient es-
timate in the presence of saturation. By setting « = 0, we
recover well-known linear absorption estimation results with
new insight gained for all k > 0.

To benchmark the optimal quantum strategy against an
equally bright classical strategy we define the quantum ad-
vantage A(a) := Q(a)/F.(a) explicitly given by A(a) = ﬁ,
which compares the maximum precision gained from quan-
tum and classical states of equal brightness [Fig. 2(c)]. By
performing a Taylor expansion around a = Ocm™!' we find
an expression for the quantum advantage gained under the
saturated probing of weakly absorbing samples:

Aa) =

, (10)

valid for k > 1 and a < ”TK

E. The effect of saturation on precision

Saturation imposes a limit on the maximum precision a
coherent [Fig. 2(a)] or Fock [Fig. 2(b)] state provides with in-
creasing optical power. This is diametrical to linear loss which
suggests probe brightness can always be increased to enhance
precision [24]. The knock-on effect is impaired efficiency due
to diminishing returns in precision. While the probe power is
above saturation, the effective linear absorption is low which

limits the information on the loss coefficient carried by each
photon. Both the quantum and classical strategies suffer due to
this effect; however, the coherent state performance is affected
further due to greater optical noise in the input state. The
combined effect is a quantum advantage that scales linearly
with k in the saturation regime. The quantum advantage is
strongest for weakly absorbing samples as observed in trace
detection schemes [46,47] or single-molecule direct absorp-
tion schemes [26].

F. Probe brightness

The superior performance in combination with resilience to
saturation allows for probing with a Fock state at much weaker
probe powers without a compromise in performance. This
enables a significant reduction in the energy flux incident upon
the sample. In Fig. 3(a) we quantify this reduction in required
power for a given linear absorption coefficient and classical
probe power k.. For a target absorption of a = 1 um~! probed
at k = 1, employing the optimal quantum probe offers a re-
duction in probe brightness of —36 dB which has the potential
to drastically reduce sample damage. We can account for the
effect of imperfect detection by adding in a static loss prede-
tector (see Appendix B). Returning to our example of DBT
and accounting for a detector efficiency of 85%, if we allow
the classical strategy to optimize its power such that x = 2.14
as previously calculated, we find a possible power reduction
factor of —3 dB available by switching to the optimal quan-
tum probe without a compromise in precision. State-of-the-art
multiplexed single-photon sources are not bright enough to
provide the required power to match performance and typi-
cally have repetition rates of the order ~10° Hz [48]. Such
a source would only begin to saturate samples with microsec-
ond relaxation rates, while typical biophysical relaxation rates
are on the order of nanoseconds [49,50]. Although current
single-photon sources lack the brightness to outperform clas-
sical probes, bright amplitude-squeezed states are readily
available and capable of approaching the limit on quantum
performance [51].

G. Amplitude squeezed state performance

The precision gained from such a bright amplitude-
squeezed state, F(a), is given by

2 A
Fa) = ( Lnp ) (7tin) an
* 1+nk ) n210-R/10 4+ n(1 —p)’

where R is the input state’s squeezing factor in deci-
bels, valid for bright amplitude squeezing such that
loe]? > R? [51]. Squeezed state performance is thus found
to approach the quantum limit for infinite squeezing values,

F;(a) R—_)fg Q(a). Figure 3(b) shows squeezed state per-
formance normalized by Q(a). A state-of-the-art squeezed
vacuum source with 15 dB squeezing could be displaced to
provide precision within 85% of the quantum limit and is
almost unaffected by saturation effects for x < 4 [52]. We
note that losses other than those caused by the target sample
absorption, such as coupling losses or additional propagation
losses, will dilute the squeezed statistics with vacuum noise,
negatively affecting the state’s performance. However, these
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FIG. 3. (a) The probe power reduction achievable by switching from a coherent probe of input intensity «. to a Fock state probe without
loss of precision. The sample has a fixed length L = 1 cm and is plotted for several absorption coefficients. (b) The squeezed state precision
F;(a) normalized by the quantum limit Q(a) displaying the relative performance of several amplitude-squeezed states with squeezing factor R.

(a) and (b) have been plotted on a logarithmic x axis.

results strongly indicate that advances can be made by em-
ploying squeezed states in the absence of bright Fock states.

H. Quantum loss channels

The semiclassical approximation of saturation is useful for
providing analytical results. We now present a fully quantum
Hamiltonian model to assess the true effect of saturation on
the higher-order moments of the state’s photon number. The
model is presented in full in Appendix C and has been solved
using the open-source software QUTIP [53,54]. The code used
in this section has been made available in Ref. [55].

To enable full simulation, the sample is discretized along
its length z. The probe state is propagated through each
slice dz containing N, absorbers and interacts with the
probe state for a time tj, := dz/c where c is the speed
of light inside the sample. Using open systems quantum
modeling we account for each coherent absorber-field interac-
tion, spontaneous emission, and dephasing. The single-photon
single-atom interaction rate is determined by the interac-
tion time and field geometry relative to the absorption cross
section [56]. Quantum effects dominate the evolution if the
absorber-field interaction rate exceeds all decohering ef-
fects [57-59]. This type of coherent coupling is atypical
for standard sensors and requires careful design. Here, we
consider decoherence-dominated propagation with a general
dephasing time 7, determined by the specific system under
consideration. Using this model we can reproduce the classi-
cal dynamics of the ground- and excited-state populations. To
compare the two models, we plot the evolution of the probe
state’s Fano factor—the variance-to-mean ratio of the photon
number probability distribution—defined as F := (#1) /Var(#),
for classical [Fig. 4(a)] and Fock [Fig. 4(b)] input states.

As the state propagates along the sample, the photon num-
ber distribution evolves according to the effective loss applied
to each component number state. In the fully quantum model,
this effective loss is dependent on the number of photons in
each basis state and is therefore different for each component
of the distribution. By comparison, the semiclassical model
assumes the effective loss is the same for all component num-
ber states and is dependent only on the mean photon number.
The overall effect of accounting for the differential effective

loss across the distribution is to add or suppress additional
noise in comparison to the semiclassical approximation.

We find that the addition of noise to the Fock state is
suppressed in comparison to the semiclassical model while the
probe intensity remains above saturation. During a saturated
interaction only N, photons may be absorbed per interaction
time which suppresses the rate at which noise, through loss,
is added to the state. Fy(a) is therefore underestimated for
output powers « > 1. For coherent state propagation, satura-
tion increases the optical noise due to a differential effective
absorption rate across the state’s photon number distribution.
This acts to stretch the Poissonian photon number statistics
such that the probe becomes super-Poissonian. We there-
fore conclude that F.(a) presented under the semiclassical
approximation is an upper bound on the true classical state
performance. Consequently, the quantum advantage given by
Eq. (10) is a lower bound on the true quantum advantage under
saturated probing.

In alignment with the results presented by Kumar and
Mehta [60], the semiclassical approximation for classical
sensing experiments is sufficient when the mean photon num-
ber of the state remains one standard deviation above or below
the saturation intensity during the analyte-probe interaction.
This ensures that the effective absorption strength across the
states’ Poissonian photon number statistics is well approxi-
mated by its mean value.

IV. SUMMARY AND CONCLUSION

We have analyzed and compared the effect of satura-
tion on probe performance in absorption spectroscopy. These
results are of most importance to saturation-limited classi-
cal measurements demanding greater precision or efficiency
such as those often performed in high-precision absorption
spectroscopy experiments [37,38]. We have proven Fock
states are optimal for mitigating the limiting effects of sat-
uration and, through performance comparison, have shown
classical schemes probing weak absorptions stand to gain
the most from using a quantum probe [7-9]. For schemes
that do not have access to quantum resources we present
a classical sample-probe optimization strategy to help im-
prove performance with minimal experimental adaptation.
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FIG. 4. (a) Coherent and (b) Fock state evolution along a saturable sample. We plot the evolution of the probe state’s Fano factor F
(blue) and transmission 7 (red), comparing the fully quantum model (solid blue) to the semiclassical approximation (dashed blue). Shaded red
represents additional noise and shaded blue represents suppressed noise. The dot-dashed purple line is the point along the channel at which the
number of photons present in the probe state drops below N, (see Appendix C).

Further, we have shown that in the absence of bright Fock
states, state-of-the-art squeezed states provide an effective
alternative to overcoming saturation with today’s technology.
While the analysis here finds saturation to be a detrimen-
tal effect on standard absorption spectroscopy, there are a
number of more advanced techniques, such as stimulated de-
pletion microscopy [26] or saturated structured-illumination
microscopy [61], where saturation is used as a tool to enhance
the information gained on a sample. Adapting the analysis
here to optimize the performance of these strategies and to
investigate any potential quantum advantages may lead to
further enhancement of these optical sensors. Further work
also includes experimental confirmation of these results.
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APPENDIX A: DERIVATION OF TRANSMISSION

We present the derivation of Eq. (1) which expands on the
Beer-Lambert law to account for nonlinear absorption that

occurs across a medium in the high-power, low-saturation-
intensity regime. We aim to solve for the intensity of a
single-mode optical field, N(z), as a function of position
z along a medium comprised of homogeneous two-level
absorbers. The incident photons are resonant with the tran-
sition to remove frequency dependence and we consider the
medium to be isolated from the environment, exhibiting no
internal interactions or temperature-dependent effects on pop-
ulation. Each particle has a given interaction cross section o,
the probability a particle will absorb a photon, and a transition
relaxation time 7. The total number of particles, n;, is con-
served with ny and n; accounting for the number of particles
in the ground and excited states, respectively. It follows that

n, = ny + ny. (A1)

The rate equations for the populations of the ground and
excited states at a given position z, accounting for absorption,
stimulated emission, and spontaneous emission, are

di’l() -1

o = —0oN@ng +oN()n, + 1t~ 'ny,

d}’ll 1

T =oN(@)ng—oN(@)n — 1~ 'ny. (A2)

As the flux of photons passes through a slab of thickness dz,
we make the assumptions that the relaxation time of the transi-
tion is long enough such that the populations of n; and ny can
be considered constant. Under this steady-state assumption,
dm — () and % = 0. This allows us to solve for n; and ny
using Eq. (A1) and either one of Egs. (A2):

m(oN@) +17")

N
e n = moN(z)

~ 20N(@) 41! (A

ny =
As the state propagates along dz the change in intensity is
given by the net change in population:

dN(z)
dz

= oN(2)(n — no). (A4)

Here we assume spontaneous emission coupling back into the
mode is negligible, as is the case for free space propagation.
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Using the solutions for n; and ng gives a differential in N(z):

dN(z) _ o N(®2)
dz Tt '420N()
Let a:=n,o, the standard definition of the linear ab-

sorption coefficient, and ng := é be the saturation intensity.
Recast with these substitutions,

dN(z) ~ aN(z)

dz 142N(2)/ns

Note that we may expand the quotient into a geometrical
series to give

dN(z)

dz

The differential equation is dominated by the linear Beer-

Lambert law when 2N (z)/n; < 1. When 2N(z)/ns = 1, both

the linear and nonlinear terms contribute equally to the instan-

taneous change in intensity, at which point the effective linear

absorption is exactly half its nominal value. We can now solve

for N(z) via separation of variables followed by integration
from zero to z. Let N(0) := Ny,

ez’:’x—f) <2N(Z)> _ eln(%)-kn%(No—az). (A8)

ng

(A5)

(A6)

= —aN(z)(1 = 2N(2)/n; + O((2N (2)/ns))). (A7)

Equation (A8) has been rearranged into a form with which we
can use the Lambert W function, defined by

W(ze*) =z. (A9)

Furthermore, using a special case of the Lambert W function,
the Wright omega function, defined by W (e*) = W(z), gives
the final solution:

) 2N, 2N
N(z) = n—W(ln( 0) + 0 —az)).
2 ng ng

The intensity through a sample of length L with linear ab-
sorption coefficient a, saturation intensity n,, and input probe
intensity Ny = (i) is therefore given by

n= ng W<1n<2<ﬁm)) + 2(fin) . aL) (A11)

(A10)

2(fn) ng ng

We introduce k = 2(iy,)/ng as a dimensionless quantity:

nk) = %W(ln(fc) + Kk —al). (A12)
Figure 5 plots how transmission is affected by probing above
and below saturation. As we increase k, the transmission
function shifts from an exponential, as determined by the
Beer-Lambert law, to a linear falloff conducive of saturated
absorption.

APPENDIX B: DERIVATION OF FISHER INFORMATION

To calculate the Fisher information (FI) gained from a
probe state |{) on the unknown parameter a, we invoke the
Cramér-Rao bound (CRB). Transmission is the optimal unbi-
ased estimator for the linear absorption coefficient such that
the FI on n is given by

F(n) =

Var(n)’ (B1)

1.0

Transmission n
o o o
e (*2] Qo

o
N

o
o

0.0 25 50 7.5
Length L

10.0

FIG. 5. Sample transmission as a function of length for several
probe intensities, k. x = 0 recovers the Beer-Lambert linear absorp-
tion model, k = 1 defines the edge of the saturation regime, and all
k > 11is in the saturation regime.

Given that n := (71) /(7;,) is a continuous linear differentiable
function of output intensity (71), we can relate the variance in
the transmission to the variance of the output photon number
via error propagation:

an\>_  __ Var(h)
Var(n) = | — | Var(n) = — .
on (nin) 2
The FI is therefore given in terms of the output photon number
variance of the output state:

(B2)

<ﬁin)2

Fo = Go@y

(B3)

The FI on 5 can be related to the FI on a via the formula

(o () ()’
Fa) = (5) Fon = <£> —

Using the following formula for the derivative of the
Wright omega function,

V@) W)
dx 14+ Wkx)’

we can calculate the derivative of 7 via a substitution
u=In()+«x —aL:

(BS)

op LoW Ly
T

= B6

da Kk Ou (B6)
Combining Eq. (B4) with Eq. (B6) gives the final expression
for the FI gained by a state |y/) on a as a function of output
state photon number variance:

F(a):( Ln )2—<ﬁi“>2 (B7)
1+ nk ) Var(n)

We can account for the effect of imperfect detection by
adding an additional loss to the transmission predetection. We
model this via a beam splitter with reflectivity 1 — y, where
y is the quoted detector efficiency. Under this model, the
measured transmission is defined as 1,, := ny. The FI on the
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measured transmission is again given by the CRB:

F(nm) = . (B8)
Var (1)
Using the formula Var(aX) = a*Var(X) gives
F(nm) = (B9)

y2Var(n)’

Following the previous method, the FI on the measured
transmission can be related to the FI on the linear coefficient

via
2 a2
F(a):< Lny ) (nm)A '
y + nk ) Var(in)

(B10)

APPENDIX C: QUANTUM LOSS CHANNEL MODELING

We present a quantum model of a saturated loss channel.
To allow for a fully quantum simulation the loss channel is
discretized along its length z into slices each consisting of N,
absorbers. The optical probe state is then propagated through
each slice to show how quantum noise is propagated along the
sample. Each slice interacts for a time 7i, = dz/c where c is
the speed of propagation. The model used is closely related
to the Dicke model [62] of an open quantum system under a
Markovian evolution [63]. We apply this model to calculate
the evolution of the probe field accounting for both coherent
and decoherent processes. Sensors that have not been specif-
ically designed to operate coherently will be dominated by
decoherent processes that result from spontaneous emission,
variational atomic trajectories, and inhomogeneous broaden-
ing across the ensemble. Since this is by far the most common
type of dynamic seen in direct absorption schemes we focus
our discussion on this. Specifically we account for decoher-
ence due to the spontaneous emission of each independent
absorber at a rate I'sp := 1/7; and due to the dephasing at a
rate 'y, := 1/7>. Here, T; and T; are the characteristic energy
and phase relaxation time scales of the specific system under
consideration [64]. Our model follows the dipole, rotating-
wave, and two-level system approximations. By assuming
a homogeneous sample density and probe intensity, we can
approximate each absorber to be equally coupled to the field
which is considered to be resonant with the absorber transition
frequency w. In the second-quantized form, the governing
system Hamiltonian is found to be [62]

I\JU
Hy = hod'a+ Y (hoo] 6+ g@as] +a'60)),  (Cl)
k=1

where 6'; is the excitation operator for the kth absorber which
has the form &; = |g) (e| (these operators follow standard
spin-1/2 algebra). a is the quantum oscillator probe field
annihilation operator. The first term propagates the radiation
field. The second term propagates the N, two-level systems.
The third and fourth terms account for absorption and its
reverse process, stimulated emission, at a rate determined by
the single absorber-field interaction strength g. For monochro-
matic illumination of a two-level system under the dipole

approximation, the interaction strength g is given by

_ unkE

==
where (1, is the dipole transition moment and E is the en-
ergy per photon within the interaction volume. There is some
debate over the definition of E in free space; however, it is
common practice to use the cavity-based interaction definition
where the volume V is now given by the interaction volume

defined by the probe optical mode cross section and duration.
As such, E is given by [65]

(C2)

how
26()V '

(C3)

The free space transition cross section and spontaneous
emission rates can be recast in terms of the dipole transition
moment [66]:

2
o= 22k (C4)
36()h€
@’ iy
o= H Cs
P 3¢ hic3 €5

We note that deriving the dephasing rate for a given system
is much more complex and so is typically measured exper-
imentally for a given setup and is often found to be orders
of magnitude greater than g [67]. Following Ref. [56], we
express the optical mode area A = nrfocus in multiples of the
wavelength rgeys := BA. We normalize the interaction time
Tine by the absorber lifetime I, such that 7y := «/I'p. Using
the following ansatz for the interaction volume,

V =625 ctin, (C6)
we can express the interaction rate as

3 3
8=\ 2g 72 5 (C7)
Crucially, in the free space model, the coupling strength
is dependent on the interaction time through the parameter
«. Note that in this model we do not include the saturation
intensity n as this only arises in the semiclassical model as
a direct result of the constraint that only one photon may be
absorbed per cross section per transition lifetime. Here, this
is already built into the Hamiltonian. As mentioned above,
the strategy will be to use this model to propagate the probe
through each ith sample slice of width §z. The input density
matrix of the zeroth slice is given by

p0(0) = [%0(0)) (¥o(0)] @ (|0%) (0°)), (C8)

where the optical input state |((0)) € {|a), |N)} is either a
Fock state or a coherent state with mean photon number (7).
The absorbers are assumed to be in the ground state. The
evolution of the system density matrix p;(t), where the inter-
action with the environment has been traced out, is governed
by the following master equation. Note we have switched to
natural units in which =1 and ¢ = 1; we also set w = 1
such that A = 2. This is for convenience and does not affect
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the physics:
N,
0 i (7
'Oat( ) :—'|: a+ kXZ: akak—i-g(a(fk +a'6y), ,Ot}i|

||M2

(akpzvk - —{Gk 6, pz}>

N,
VA 1.
Ty Y (640 - 51000 01). (©
k=1
Here, &, is the Pauli-z dephasing operator for the kth atom.
We propagate the system for a time 7;,, and perform a partial
trace over the absorbers Hilbert space to extract the output
optical state from the ith slice:

(Vi (Tin)) (Vi (Tin)| = tra, {0i(Tin)}-

This state is then coupled forward as the input state of the
(i + Dyth slice and the algorithm is thus repeated for the full
length of the sample:

0i+1(0) = ¥ (Tin)) (Wi (Tin0)| ® (10F) (OF)).

(C10)

(C11)

At each step, we calculate the states photon number vari-
ance and compare it directly with that predicted by a linear
loss channel. For the purpose of this investigation we set
Tyt = 1 and assume « = 0.5 such that the interaction time
is half the transition relaxation time allowing saturation to
take effect during the interaction. The coupling constant can
no longer be considered the same for each absorber close
to diffraction-limited focusing due to the states’ polarization
becoming nonuniform [68]. We therefore consider a maximal
focusing of B = 10. This gives an interaction rate g = 0.1 in
natural units. We set the dephasing rate to be I'y, = 2 such
that decoherence dominates the evolution with I'g, > g, I'gp.
The model can be used to recreate the famous optical Bloch
equations under a classical probe approximation which de-
scribe the evolution of an ensemble of absorbers coupled to
a classical coherent field [69]. Here, we will use the model
to probe the intensity profile along a sample consisting of 20
slices. To enable full simulation of the Hilbert space, N, = 4
for each slice and we probe with an optical state consisting of
(fin) = 12 input photons. Despite the simplicity of this model,
we can use it to lend insight into how probing a loss channel
above saturation affects quantum noise in the probe state.
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