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Spin-orbit grating of light in coherent media
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We explore the underlying spin-orbit coupling (SOC) mechanism for the interactions between complex
structured light fields in a four-level tripod electromagnetically induced transparency (EIT) system. Because
one coupling field in the system is a Bessel beam, the susceptibility of the EIT medium can be modulated
quasiperiodically in the radial dimension. The paraxial propagation and evolution of a rotating spinor image
as the probe field in the medium can be described by a Pauli-like equation with the SOC term. We calculate
the spatial distributions of the diffracted patterns of the image in the near field and clearly show the tunable
SOC-induced radial splitting of the oppositely polarized pseudospin states. Our scheme may be useful for
all-optical processing of spatial multimode signals in coherent media.
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I. INTRODUCTION

Coherent media based on electromagnetically induced
transparency (EIT) have been intensively investigated for sev-
eral decades [1–3]. The EIT and related effects have led to a
variety of successful strategies for all-optical manipulation of
photons, having potential applications in classical and quan-
tum information processing. For instance, optical diffraction
has been considered for the storage and processing of multi-
mode transverse images based on Fourier optics [4–8]. More
interestingly, standing-wave light fields can be introduced
into the EIT systems to create transverse periodic structures,
termed as electromagnetically induced grating (EIG) [9–16].
Such all-optical grating structures can diffract the weak probe
laser into a number of discrete directions with high tunability.
To further improve the functionality of EIG, diverse con-
figurations have been proposed. In particular, image-induced
blazed grating structures can be produced in the EIT systems
to deflect the probe laser with very high efficiency (∼98%)
[17–20]. Furthermore, Kerr nonlinearity in the EIT systems
is utilized to generate sinusoidal phase gratings [21], volume
holographic gratings [22,23], and angular vortex gratings [24],
etc. Recently, other types of EIG schemes, such as EIG in
Rydberg atoms [25,26], polarization-dependent EIG [27], EIG
with parity-time symmetry [28–30], have also been widely
studied, which could greatly enrich the diffraction phenomena
and applications in coherent media.

In recent years, spin-orbit coupling (SOC) of light has
attracted considerable attention, which could find a diverse ar-
ray of applications for spin-orbit photonics at subwavelength
scale [31,32]. Furthermore, the SOC of light in the paraxial
regime has also been considered for the spatial propagation
of a spinor image in the EIT media [33,34]. The giant group
refractive index in the EIT media can greatly enhance the SOC
strength, thus giving rise to visible spatial quantization of the
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oppositely polarized pseudospin states. Such an EIT-based
scheme offers flexible opportunities to manipulate the SOC
of light in an all-optical manner.

In this article, we explore the radially quasiperiodic struc-
tures in EIT media, which could be regarded as the spin-orbit
grating for a spinor image under rotation. To generate the grat-
ing structures, we employ a four-level tripod EIT system with
ultracold atoms and use Bessel beams in one of the coupling
fields. We investigate the spatial evolution of the spinor image
through the spin-orbit grating using different EIT parame-
ters, where the pseudospin states can undergo SOC-induced
radial splitting by diffraction. Our work shows the underly-
ing SOC mechanism for the interactions between complex
structured light fields in coherent media, having poten-
tials in multidimensional optical information processing and
coding.

II. THEORETICAL MODEL

As shown in Fig. 1, the four-level tripod system contains
one weak probe light field and two strong coupling light fields.
The probe light field is a spinor image composed of two
Laguerre-Gaussian (LG) modes with opposite orbital angular
momentum (OAM) indices ±� [35]. One coupling field is a
Bessel beam [36,37] and the other is an expanded Gaussian
beam. To rotate the spinor image at the frequency of �, one
can pass the image through a rotating Dove prism with the
rotation frequency �/2 [38] or introduce the frequency shifts
±�� into the ±� LG modes [39,40], respectively. There are
three ground states |1〉, |2〉, and |3〉 and one excited state
|4〉 in the tripod system. Without rotation, the probe image
interacts with the atomic transition |1〉 ↔ |4〉 with single-
photon detuning �p = ωp − ω41. The coupling C1 (C2) field
drives the atomic transition |2〉 ↔ |4〉 (|3〉 ↔ |4〉) with single-
photon detuning �c1 = ωc1 − ω42 (�c2 = ωc2 − ω43). Upon
rotation, the two LG modes in the spinor image can achieve
opposite rotational Doppler shifts ±��, respectively. Under
the rotating-wave and electric-dipole approximations, the in-
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FIG. 1. (a) Schematic setup for the all-optical spin-orbit grating
of light in an EIT system, where the spinor image rotates at a fre-
quency of �. The image hits the medium at its waist, then propagates
a distance of D to the photodetector (PD). The thickness of the
medium is d . A Bessel (expanded Gaussian) beam can be applied
as the strong coupling C1 (C2) field. The image, C1, and C2 fields
are colinear and copropagating. (b) A four-level tripod EIT system
without image rotation, where |1〉, |2〉, and |3〉 are the ground states
and |4〉 is the excited state. (c) Upon rotation, the two LG modes
undergo opposite rotational Doppler shifts ±�� and interact with
the |1〉 ↔ |4〉 transition, where ω±� = ωp ± ��. Note that, in panel
(c), we use �p in the nonrotation case in panel (b) as a reference of
the frequency detuning and attach ±�� as two additional rotational
frequency shifts originating from the image rotation.

teractions between the complex structured light fields and the
ultracold atoms in the tripod EIT system can be described by
the time-dependent Hamiltonian [41]

H = −h̄(�p|4〉〈4| + δ′|2〉〈2| + δ′′|3〉〈3|)
− h̄[�p|4〉〈1| + �c1|4〉〈2| + �c2|4〉〈3| + H.c.], (1)

where δ′ = �p − �c1 and δ′′ = �p − �c2 are the two-
photon detunings in the absence of rotation (i.e., � = 0),
�p = �+�e−i��t + �−�e+i��t is the effective probe Rabi fre-
quency with �±� the Rabi frequencies of the LG modes
in the spinor image, and �c1 (�c2) is the Rabi frequency
of the coupling C1 (C2) field. Consequently, the light-
atom interactions in the tripod EIT system are governed
by the time-dependent density-matrix master equation ρ̇ =
−i[H , ρ]/h̄ + Lρ, where ρ̇ denotes the derivative of ρ

with respect to time and the operator L phenomenologi-
cally describes all the spontaneous decay and decoherence
processes.

The response of the atomic system to the three light fields
can be derived from the well-known density matrix formalism.
Thus, we can obtain the equations of motion for some matrix
elements in the atomic density operator as follows:

ρ̇21 = (−γ21 + iδ′)ρ21 − i�pρ24 + i�∗
c1ρ41, (2a)

ρ̇31 = (−γ31 + iδ′′)ρ31 − i�pρ34 + i�∗
c2ρ41, (2b)

ρ̇41 = (−γ41 + i�p)ρ41 + i�c1ρ21 + i�c2ρ31

− i�p(ρ44 − ρ11). (2c)

The coherence decay rate between levels |4〉 and |1〉 can be
given by γ41 = (	41 + 	42 + 	43)/2, where 	4i denote the ra-
diative decay rates of the populations from level |4〉 to |i〉 (i =
1, 2, 3) [42]. And, we ignore the coherence decay associated
with inhomogeneous broadening (e.g., Doppler broadening)
in the cold atomic ensemble as done in Ref. [9].

Note that, when the spinor image rotates at the frequency of
�, the petal-shaped pattern actually scans azimuthally in the
cold atomic cloud. Therefore, the individual off-axis atoms
in the cloud experience an amplitude-modulated field (pulse
train) generated by the rotating (bichromatic) probe light field
with the carrier (central) frequency (ω+� + ω−�)/2 = ωp and
the modulation frequency �ω = (ω+� − ω−�)/2 = �� where
ω±� = ωp ± �� with �� � ωp are the angular frequencies of
the ±� modes under rotation, i.e., two Fourier frequencies in
the pulse train (see Figs. 1(b) and 1(c), and some related work,
e.g., in Refs. [39,43,44]). (The on-axis intensity of the probe
image is always zero due to the phase singularity of the LG
modes.) Consequently, based on Ref. [43], for the light-atom
interactions, our scheme can also be viewed as a slow-light
model for the pulsed probe field in the EIT systems. (For
example, see Appendices A and B for some formal derivations
based on the slow-light model.) In what follows, we thus
adopt some approximations widely used in the EIT systems
for slow-light studies.

We first assume that the atoms are initially prepared in level
|1〉 and other levels are empty. Also, the probe field is so weak
that its intensity is much lower than the saturation intensity
of the |1〉 ↔ |4〉 transition. Therefore, we can assume that the
populations of the atomic levels are ρ11 ≈ 1 and ρ22 ≈ ρ33 ≈
ρ44 ≈ 0 and ignore the second-order small quantities �pρ24

and �pρ34 in Eqs. (2) (e.g., see Ref. [42] and Appendix C for
details).

Moreover, because the effective probe Rabi frequency �p

is time-dependent, we resort to the Floquet method for poly-
chromatic fields to analytically solve Eqs. (2) [45]. To this
end, the matrix elements should be decomposed into Fourier
harmonics as

ρ j1(t ) =
+∞∑

m=−∞
ρ

(m)
j1 (t )eim��t ( j = 2, 3, 4), (3)

where �� is the magnitude of the rotational Doppler fre-
quency shift.

Consequently, by substituting Eqs. (3) into Eqs. (2) and
equating the coefficients of the harmonics of ��, one can
achieve a closed set of the equations for the ±1st order com-
ponents of the elements ρ21, ρ31, and ρ41, which are associated
with the ±� LG modes. The equations take the form of

ρ̇
(∓1)
21 = (−γ21 + iδ′

±�)ρ (∓1)
21 + i�∗

c1ρ
(∓1)
41 , (4a)

ρ̇
(∓1)
31 = (−γ31 + iδ′′

±�)ρ (∓1)
31 + i�∗

c2ρ
(∓1)
41 , (4b)

ρ̇
(∓1)
41 = (−γ41 + i�±�)ρ (∓1)

41 + i�c1ρ
(∓1)
21

+ i�c2ρ
(∓)
31 + i�±�, (4c)

where δ′
±� = δ′ ± ��, δ′′

±� = δ′′ ± ��, and �±� = �p ± ��.
By setting the terms ρ̇

(∓1)
21 , ρ̇

(∓1)
31 , and ρ̇

(∓1)
41 on the left side to
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be zero, one can achieve the steady-state solutions of Eqs. (4)
with respect to ρ

(∓1)
21 , ρ

(∓1)
31 , and ρ

(∓1)
41 (see Appendix D for

other-order terms with m �= ±1). Thus, the linear susceptibil-
ities of the ±� modes in the probe field can be expressed as

χ (ω±�) = Nμ2
14

h̄ε0

ρ
(∓1)
41

�±�

= iNμ2
14

h̄ε0

[
(γ41 − i�±�)

+ |�c1|2
(γ21 − iδ′

±�)
+ |�c2|2

(γ31 − iδ′′
±�)

]−1

, (5)

where N is the atomic number density, μ14 is the electric
dipole moment of the |1〉 ↔ |4〉 transition, h̄ is the reduced
Planck’s constant, and ε0 is the vacuum permittivity.

Consider the ideal EIT system with γ21(31) ≈ 0, we also
assume that, in the absence of the image rotation (i.e., � =
0), all the light fields are resonant with the corresponding
atomic transitions. Upon the image rotation (i.e., � �= 0),
the coupling fields satisfy the near-resonance EIT condi-
tions |�c1|2 + |�c2|2 
 {��γ41, �

2�2}. Thus, to first order of
�/ωp, the susceptibilities can be simplified as

χ (ω±�) ≈ Nμ2
14

h̄ε0

±��

|�c1|2 + |�c2|2 + O(�3)

= 2(ng − 1)
±��

ωp
+ O(�3), (6)

where ng = 1 + Nμ2
14ωp

2h̄ε0(|�c1|2+|�c2|2 ) is the group refractive index
for an ideal on-resonance EIT scheme. Note that, in the near-
resonant EIT systems, the phase refractive index n is near-
unity. Thus, we usually have ng 
 n ≈ 1. Also, it is clearly
seen that the group refractive index ng can be modulated by
two coupling fields while the absorption can be suppressed,
offering high flexibility to realize all-optical manipulation of
light.

In the EIT system, the paraxial propagation of the two
LG modes are governed by two Schrödinger-type equa-
tions 2ik±�∂E±�/∂z = −∇2

r,φE±� − k2
±�χ (ω±�)E±�, where the

operator ∇2
r,φ is the sum of the radial and azimuthal Lapla-

cians and E±� are the slow-varying amplitudes of the two
modes. The two equations can be combined as 2ik±�∂�/∂z =
−∇2

r,φ� − k2
±�χ (ω±�)�, where the spinor wave function � =

(E+�, E−�)T = (A+e+i�φ,A−e−i�φ )T under rotational invari-
ance, A± stand for the radial wave functions, and e±i�φ are the
helical phase profiles. Using the unitary transformation � =
Û� with Û = (1 0

0 e2i�φ ), we have � = ei�φ (A+,A−)T =
ei�φ (A+|+z〉 + A−|−z〉) as the spin-orbit spinor, where ei�φ is
the orbital wave function and |±z〉 represent the pseudo-spin-
up and -down states.

Accordingly, the two combined Schrödinger-type equa-
tions can then be mapped into a Pauli-like equation with the
SOC term under rotational invariance, which can be expressed
as

i
∂

∂z
� =

(
−1

2
k−1∇2

r,φ − ζ �̂σ̂z − ζ� − ζ�2 �

ωp

)
�. (7)

In Eq. (7), we have k−1 = (1/k+� 0
0 1/k−�

) is similar to a mass
operator, k±� = ω±�/c = (ωp ± ��)/c are the wave vectors
of the rotating LG modes. The operator �̂ = −i∂φ is the

OAM z-component operator, σ̂z is the third Pauli matrix,
�̂σ̂z thus denotes the Russell-Saunders-type SOC. As a re-
sult, the coefficient ζ ≈ (ng − 1)�/c can be defined as the
SOC strength for �� � ωp and is consistent with the “spe-
cific rotary power” for a slow-light medium with ng 
 n ≈ 1
[44,46]. The last two terms stand for the “energy shifts” as-
sociated with the OAM index � and have nothing to do with
spin states. Note that, under the condition of �� � ωp, the
last term ζ�2�/ωp could be ignored. Consequently, Eq. (7) is
isomorphic to the two combined Schrödinger-type equations
mentioned before, where the radial evolution of the two LG
modes can represent that of the pseudo-spin-up and -down
states |±z〉 affected by the SOC effect.

Taking advantage of such excellent and peculiar proper-
ties of EIT media, we can introduce a Bessel beam in the
coupling C1 field and an expanded Gaussian beam in the
coupling C2 field to keep the rotational invariance of
the system (see Fig. 1), and further investigate the interactions
between complex structured light fields via atomic ensembles
for visualizing and analyzing the underlying SOC mechanism
for all-optical diffraction.

III. NUMERICAL RESULTS AND ANALYSIS

Note that, in atomic physics, the studies on the SOC effect
focus mainly on the energy splitting for the electronic levels
in an atom because it can be experimentally characterized by
atomic spectrum. Moreover, the SOC could also lift the spatial
degeneracy of the wave functions of different spin states,
which can hardly be observed in an atom. In the following,
we will demonstrate the SOC-related effect by numerically
calculating the lifting of spatial degeneracy of the pseudospin
wave functions |±z〉 in the spinor image.

Moreover, Bessel beams have attracted much attention for
decades due to their unique nondiffractive nature [36,37].
In practice, it is possible to approximately generate Bessel
beams in experiments, which can sustain the diffraction-free
properties over a long distance. Therefore, for cold atomic
clouds with finite size, we assume the Rabi frequency of the
Bessel C1 field as �c1 = �̊c1Jb(krr) exp(ibφ), where �̊c1 is a
real scale value, Jb denotes the bth-order Bessel function with
b an integer, kr is the radial component of the wave vector.
For high-order Bessel beams (b > 1), the central intensity at
r = 0 vanishes due to the phase singularity associated with
the azimuthal phase term exp(ibφ).

In addition, for the coupling C2 field, we employ an
expanded Gaussian beam. Its Rabi frequency is given by
�c2 = �̊c2 exp(−r2/w2

c2), where �̊c2 is the peak value and
wc2 is the waist width. In this way, the total coupling intensity
(∝ |�c1|2 + |�c2|2) does not vanish in the interaction region
to ensure the validity of the near-resonance EIT conditions
in Eq. (6). As a result, the Bessel C1 field with |�c1|2 =
�̊2

c1J2
n (krr) can lead to a quasiperiodic SOC strength ζ in the

radial dimension. Such an EIT system can also be regarded
as a spin-orbit grating to diffract the spinor image in free
space.

To visualize the spatial results of the SOC-based diffrac-
tion induced by the EIT system with a set of concentric ring
structures in Fig. 1(a), we can utilize the split-step method to
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FIG. 2. (a) Intensity evolution (in arbitrary units) of the pseu-
dospin |±z〉 states (i.e., the two LG modes) propagating in space.
The arrows mark the peak positions. Inset: A snapshot of the in-
put image with ±� = ±80 at the waist (D = 0), which rotates at
� = 60 Hz. Bottom: snapshots of the intensity patterns of the ro-
tating image at different propagation distances for (b) D = 0.25zR,
(c) 0.5zR, (d) 0.75zR, and (e) 1zR, where the size of the pictures is
500 × 500 μm2. The peak values of the patterns are normalized and
all the ring structures are labeled. Optical parameters: w0 = 20 μm
for the LG modes and zR = πw2

0/λp ≈ 1.611 mm is the Rayleigh
range acting as a scaling parameter for the propagation distance D;
�̊c1 = γ41, kr = 0.15 μm−1, and b = 15 for the Bessel C1 field;
�̊c2 = 0.12γ41 and wc2 = 1 mm for the Gaussian C2 field. The
longitudinal range of the EIT medium is also labeled by the gray
dashed line, where the thickness d = 1 mm ≈0.621zR.

solve Eq. (7). The incident spinor image at D = 0 is given by

� = C0

√
2

πw2
0�!

(√
2r

w0

)�

e
− r2

w2
0 ei�φ

(
1

1

)
, (8)

where C0 is the normalization constant and w0 is the waist
width of the LG modes [35].

For the EIT system, we adopt ultracold 87Rb atomic ensem-
ble and the D2 line to construct the tripod configuration. We
assume the atomic number density N ≈ 1012 cm−3, the decay
and decoherence rates γ41 = 2π × 6 MHz and γ31 = γ21 =
2π × 1 kHz, and the dipole moment μ14 = 3.58 × 10−29 Cm
[47]. The thickness of the EIT medium is d = 1 mm. For
the light fields, the wavelengths of the probe, Bessel C1, and
Gaussian C2 fields are λp ≈ λc1 ≈ λc2 ≈ 780 nm.

In Fig. 2, the coupling C1 field is a high-order Bessel beam
with �̊c1 = γ41, kr = 0.15 μm−1, and b = 15. The coupling
C2 field is an expanded Gaussian beam with �̊c2 = 0.12γ41

and wc2 = 1 mm. For low rotation frequency, we may use
a rotating Dove prism with a rotation frequency of 30 Hz.
Thus, the rotation frequency of the image is � = 60 Hz. To
increase the rotational Doppler effect, the LG modes with

FIG. 3. (a) Intensity evolution of the pseudospin |±z〉 states in
space. Inset: a snapshot of the input image at the waist, which rotates
at � = 100 Hz. Bottom: Snapshots of the rotating image at different
propagation distances for (b) D = 0.25zR, (c) 0.5zR, (d) 0.75zR, and
(e) 1zR. Except the rotation frequency, all other parameters are the
same as those in Fig. 2.

high OAM indices ±� = ±80 are adopted to generate the
spinor image, where the waists of both LG modes are equal
(e.g., w0 = 20 μm). It is seen that different spatial evolution
can occur for the two pseudospin states (i.e., the two LG
modes) in Fig. 2(a), where the SOC causes spatial separation
of the two pseudospin states in the radial direction. For the
|+z〉 state, double-peak structures can be produced in the
radial direction at the propagation distances D = 0.125zR and
0.5zR and weak triple-peak structures appear at D = 0.25zR,
0.375zR, and D � 0.625zR. For the |−z〉 state, double-peak
structures are maintained for D � 0.5zR, while weak triple-
peak structures appear from D = 0.625zR to zR. Relatively,
the intensity of the pseudospin |+z〉 state expands outwards,
while that of the pseudospin |−z〉 state shrinks inwards. We
also can see the corresponding 2D images in Fig. 2. As shown
in the inset of Fig. 2(a), the input intensity distribution has a
petal-wheel-like pattern of 160 maxima in a single ring. The
SOC-induced splitting of the |±z〉 states leads to double-ring
[i.e., rings 1 and 2 in Fig. 2(c)] and weak triple-ring structures
[i.e., rings 1, 2, and 3 in Figs. 2(b), 2(d), and 2(e)], still having
the petal-wheel-like patterns in the azimuthal direction. (Note
that the outermost ring 3 in Fig. 2(b) is very weak.)

To enhance the effect, we increase the rotation frequency
of the image to � = 100 Hz by raising the rotation frequency
of the Dove prism to 50 Hz and keep all the other parameters
unchanged in Fig. 3. We can see that, at the same propagation
distance, the double-peak or triple-peak structures become
more significant in Fig. 3(a). At certain positions (e.g., D �
0.5zR), compared with those in Fig. 2(a), the dip between
the two peaks of |−z〉 state becomes deeper and wider and
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FIG. 4. (a) Intensity evolution of the pseudospin |±z〉 states in
space. Inset: a snapshot of the input image with ±� = ±10 at the
waist, which rotates at � = 800 Hz. Bottom: snapshots of the ro-
tating image at different propagation distances for (b) D = 0.5zR,
(c) 1zR, (d) 1.5zR, and (e) 2zR. Note that, for simplicity, only the
rings with low fringe contrast are labeled. Optical parameters: w0 =
20 μm; �̊c1 = γ41, kr = 0.15 μm−1, and b = 3 for the Bessel C1
field; �̊c2 = 0.12γ41 and wc2 = 1 mm for the Gaussian C2 field.

thus one peak of the |+z〉 state can well stay in the dip.
Also, for D � 0.625zR, the innermost peak of the |−z〉 state
becomes strongly predominant. These distinctions can also be
shown in the 2D intensity patterns. In Fig. 3(b), the outermost
ring 3 of the triple-ring structure is slightly augmented. The
contrast of the petal-wheel-like fringes in the middle ring
2 is weakened because, at this ring position, the |+z〉 state
with a peak dominates over the |−z〉 state with a wide dip.
Similar situations occur for Figs. 3(c)–3(e), where the fringe
contrast of the inner rings 1 becomes low, particularly for
ring 1 in Fig. 3(d), because the inner peaks of the |−z〉 state
are predominant as aforementioned. Consequently, by spatial
filtering, one may select the desired pseudospin state from the
diffraction pattern.

By introducing the frequency shifts ±�� into the ±� LG
modes, respectively, one can rotate the image with higher
speed. In Fig. 4, the image rotation frequency is � = 800 Hz.
Accordingly, we lower the OAM indices of the LG modes
to ±� = ±10 and also lower the order of the Bessel beam
in the C1 field to b = 3. Quadruple-peak structures ap-
pear in the |+z〉 state at some short propagation distances
(e.g., D = 0.25zR, 0.5zR, and 0.75zR). At farther distances,
some minor peaks gradually weaken due to absorption and
diffraction-induced energy spread in space. For the |−z〉 state,
the intensity profile has double-peak structures at short prop-
agation distances (D = 0.25zR and 0.5zR) and triple-peak
structures for longer distances (from D = 0.75zR to 2zR),
where the outermost peak fades out during propagation. For
the 2D intensity patterns, we have the petal-wheel-like pattern

FIG. 5. (a) Intensity evolution of the pseudospin |±z〉 states in
space. Inset: A snapshot of the input image with ±� = ±10 at the
waist, which rotates at � = 2000 Hz. Bottom: snapshots of the
rotating image at different propagation distances for (b) D = 0.5zR,
(c) 1zR, (d) 1.5zR, and (e) 2zR. Optical parameters: w0 = 20 μm;
�̊c1 = 2γ41, kr = 0.1 μm−1, and b = 6 for the Bessel C1 field;
�̊c2 = 0.2γ41 and wc2 = 1 mm for the Gaussian C2 field.

of 20 maxima in a single ring for the input image in the inset
of Fig. 4(a). In Fig. 4(b), there are three rings with low fringe
contrast, where the inner and outer rings (1 and 3) predom-
inantly originate from the |−z〉 state and the middle ring 2,
though very thin, comes from the |+z〉 state. In Figs. 4(c)–4(e),
we can clearly see two rings 1 and 2 with low fringe contrast,
to which the two inner peaks of the |−z〉 state contribute
mostly. (Note that, for simplicity, the rings with high fringe
contrast are not labeled.)

In Fig. 5, we increase the image rotation frequency to
� = 2000 Hz. We also change the parameters of the Bessel
C1 field to kr = 0.1 μm−1 and b = 6. To suppress the ab-
sorption, we increase the intensity parameters of the two
coupling fields to �̊c1 = 2γ41 and �̊c2 = 0.2γ41. As seen,
large spatial separation can be achieved. Contrary to the trend
in Figs. 2–4, the |+z〉 state in Fig. 5(a) shrinks inwards but
the |−z〉 state expands outwards. In details, the |+z〉 state has
single-peak structures at D = 0.25zR, double-peak structures
at D = 0.5zR, 0.75zR and 1zR, and weak triple-peak struc-
tures in the range from D = 1.25zR to 2zR, while the |−z〉
state keeps a single peak during propagation. Accordingly,
turbine-wheel-like patterns with well-separated rings appear
in Figs. 5(b)–5(e). Due to the large spatial separation, the
fringe contrast in the ring structures becomes very low. In
Figs. 5(b), the |+z〉 (|−z〉) state dominates the inner ring 1
(outer ring 2). In Figs. 5(c)–5(e), the |+z〉 state dominates the
two inner rings 1 and 2, corresponding to the two innermost
strong peaks in Fig. 5(a) at D = 1zR, 1.5zR and 2zR. The
|−z〉 state always dominates the outer ring 3, though, radially
broadened by diffraction.
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Note that, Figs. 2–5 actually show the spatial consequence
of the SOC effect, i.e., the radial splitting of the wave func-
tions of the pseudospin states (i.e., the two LG modes) in the
radial dimension. Strictly speaking, the SOC of the spinor
image only occurs inside the EIT medium because, in the
medium, we can achieve the group refractive index ng 
 1
and thus the SOC strength ζ can be greatly enhanced [see
Eq. (7)]. To clarify this point, in Figs. 2–5, we label the
longitudinal regions to explicitly show the range of the EIT
medium.

However, the SOC of the spinor image in the medium
will definitely influence the free-space evolution of the im-
age behind the medium. We thus show the evolution of the
image in the ranges for d < D � 1zR in Figs. 2 and 3 and for
d < D � 2zR in Figs. 4 and 5, where d is the thickness of
the medium. In optics, the free-space evolution of the image
closely behind the medium can also be considered as the
near-field diffraction of the spinor image. This is the reason
why we call the radially quasiperiodic structure as “spin-orbit
grating” in our scheme. In practice, it is difficult to directly
observe the spatial evolution of the spinor image inside the
EIT medium. But, the near-field diffraction pattern behind
the medium can serve as a practical means to characterize the
SOC-induced splitting of the pseudospin states inside the EIT
medium.

IV. DISCUSSION

A. The presence of single-photon detuning �p

for nonrotating spinor image

In Eqs. (1)–(5), we first achieve the general expressions to
describe the light-atom interactions in the EIT system. To ob-
tain Eq. (6), we consider a typical EIT scheme. In this scheme,
when the spinor image in the probe field does not rotate (i.e.,
� = 0), all the light fields are resonant with the corresponding
atomic transitions (i.e., �p = �c1 = �c2 = 0 for a resonant
EIT system), leading to a symmetric EIT transmission win-
dow. When the spinor image is rotating at the frequency of
�, the frequencies of the two LG modes symmetrically shift
away from the resonance by ±��, respectively. Therefore,
Eq. (6) includes the single-photon detunings of the two LG
modes in the rotating spinor image as �±� = ±��.

When �p �= 0, as long as the near-resonance EIT con-
ditions |�c1|2 + |�c2|2 
 {�±�γ41, �2

±�} are satisfied, the
susceptibilities in Eq. (6) for an ideal EIT system with
γ21(31) ≈ 0 and �c1 = �c2 = 0 can be rewritten as

χ (ω±�) ≈ Nμ2
14

h̄ε0

�±�

|�c1|2 + |�c2|2 + O
(
�2

±�

)
= 2(ng − 1)

�±�

ωp
+ O(�2

±�

)

= 2(ng − 1)
�p ± ��

ωp
+ O

(
�2

±�

)
, (9)

where ng = 1 + Nμ2
14ωp

2h̄ε0(|�c1|2+|�c2|2 ) is the group refractive index
same as that in Eq. (6). Compared with Eq. (6), Eq. (9) only
has one more term associated with �p ( �= 0). For Eq. (7), this
new term has no influence on the spin-orbit term and only
gives rise to a spin-independent term.

Additionally, to achieve Eq. (6), we actually consider a
common slow-light model in the EIT medium, i.e., the reso-
nant EIT scheme. In this case, the central frequency ωp of the
rotating spinor image (pulse train) is resonant to the |1〉 ↔ |4〉
transition. Thus, we have �p = ωp − ω41 = 0. At the same
time, we also assume �c1 = �c2 = 0. Therefore, the central
frequencies of the rotating spinor image (pulse train), the cou-
pling C1, and C2 fields are all resonant to the corresponding
atomic transitions, i.e., all the two-photon detunings are zero.
This represents a typical slow-light EIT system having a very
important property that the second-order term of � in Eq. (6)
vanishes exactly. Consequently, there is no group velocity
dispersion of the rotating spinor image (pulse train) through
the EIT medium. (Also see Secs. III and IV in the review paper
Ref. [3] for the slow-light propagation.)

B. Diffraction capability of the spin-orbit grating

In this work, we term the radially quasiperiodic structure
in the EIT medium “spin-orbit grating.” Usually for grating
structures in optics, the discrete diffraction peaks in one or two
dimensions is of great importance to demonstrate the optical
properties and assess the diffraction capability of gratings
(e.g., see Refs. [9–30]). Because the spin-orbit grating in our
scheme keeps the rotational invariance, the diffracted field
through the grating will spread out in the radial direction, thus
generating multiple ring structures. Therefore, we emphasize
the discrete peak structures in the radial dimension to keep
consistency with the traditional research on optical grating.

However, the diffraction capability of the spin-orbit grating
is different from that of traditional gratings without SOC
because the spin-orbit grating can separate the two pseudospin
states by diffraction. Moreover, because we actually inves-
tigate the near-field diffraction of the probe field (e.g., the
propagation distance D � zR in Figs. 2 and 3 and D � 2zR

in Figs. 4 and 5), the evolution of the diffracted fields could
be rapid and intense. To characterize the spatial evolution in
details, we emphasize the peak structures to show the near-
field diffraction features of the two LG modes. Additionally,
because there lacks an analytical theory for our proposed
structures in the EIT system, one has to assess the diffraction
capability of the spin-orbit gratings in Figs. 2–5 by using
numerical calculations on a case-by-case basis.

In Fig. 2, by observing the intensity profiles in Fig. 2(a)
at different propagation distances, one can see that the wave
functions of the pseudospin |±z〉 states (especially, the in-
nermost peaks of the two pseudospin states) cannot separate
completely in space. Accordingly, the images in Figs. 2(b)–
2(e) are petal-wheel-like patterns with high fringe contrast. As
a comparison, in Fig. 3, the separation of the wave functions
of the |±z〉 states is larger than that in Fig. 2. For example, we
can see a bright ring-structure with very low fringe contrast
at D = 0.75zR [i.e., ring 1 in Fig. 3(d)], where the innermost
peaks of the |±z〉 states are largely separated. Therefore, at
this position of D = 0.75zR, the |−z〉 state can be sampled
by using a spatial filter. Moreover, the SOC energy can be
associated with the frequency difference (2��) between the
two pseudospin states (i.e., the two LG modes). Because all
the parameters are the same in Figs. 2 and 3 except the fre-
quency difference (2�� = 9600 Hz with � = 60 Hz in Fig. 2
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and 16 000 Hz with � = 100 Hz in Fig. 3), it is seen that
larger frequency difference (SOC energy) can lead to higher
diffraction capability for the gratings.

In Fig. 4, we change some optical parameters including
the OAM indices of LG modes (±� = ±10) and the order of
the Bessel beam (b = 3) and keep the frequency difference
between the two pseudospin states still as 16 000 Hz. The
innermost peak of the |−z〉 state can be separated further
away from the |+z〉 state. For example, at the positions of
D = 1zR, 1.5zR, 2zR in Figs. 4(c)–4(e), the innermost rings
1 have very low fringe contrast. [Note that, because the image
inside the EIT medium can hardly be used to do the spatial
filtering in practice, we ignore Fig. 4(b) at D = 0.5zR < d .]
Therefore, even if the frequency difference between the two
pseudospin states is the same, by changing the light fields,
we can also enhance the radial splitting between the two
pseudospin states, thus improving the diffraction capability of
the grating.

In Fig. 5, we slightly change some optical parameters of
the light fields but greatly increase the frequency difference
between the two pseudospin states to 2�� = 40 000 Hz with
� = 2000 Hz. Consequently, very large spatial separation can
be observed in Fig. 5(a), where even the innermost two peaks
of the |+z〉 state can be separated far away from the |−z〉
state. For example, at the positions of D = 1zR, 1.5zR, 2zR

in Figs. 5(c)–5(e), the inner two rings 1 and 2 with very low
fringe contrast are dominated by the |+z〉 state, while the
outer rings 3 represents the |−z〉 state. In this case, the two
pseudospin states can be sorted by choosing spatial filters with
different apertures, showing high diffraction capability.

On the one hand, when all the other parameters are fixed,
larger frequency difference (SOC energy) can lead to larger
spatial splitting (e.g., see the innermost peaks of the |±z〉
states in Figs. 2 and 3 as an indicator). On the other hand, by
changing the optical parameters, the spatial splitting (e.g., also
see the innermost peaks of the |±z〉 states in Figs. 3 and 4 as an
indicator) can also be enhanced even for the same frequency
difference. By further increasing the frequency difference and
optimizing other optical parameters, very large spatial split-
ting (e.g., see the innermost two peaks of the |+z〉 state and
the single peak of the |−z〉 state in Fig. 5) can be achieved for
the two pseudospin states. Therefore, the frequency difference
2�� (associated with the SOC energy) plays an indispensable
role in creating the diffraction capability. (In other words,
without the frequency difference, there is no SOC-related
diffraction to split the two pseudospin states.) Meanwhile,
other optical parameters in the EIT medium should also be
considered to optimize the grating design, which offers the
opportunities to manipulate the spin-orbit gratings in an all-
optical manner.

C. Near-resonance EIT conditions in Figs. 2–5

Note that the near-resonance EIT conditions |�c1|2 +
|�c2|2 
 {��γ41, �

2�2} used to achieve the static suscepti-
bilities [i.e., Eq. (6)] are also consistent with those in the
slow-light model for pulse propagation in EIT systems. These
conditions suggest that the two Fourier frequencies in the
probe field well stay in the EIT transmission window gener-
ated by the coupling C1 and C2 fields (i.e., the modulation

frequency �ω much smaller than the EIT window width)
and the susceptibilities are highly linear at the vicinity of the
central frequency ωp, which are also common conditions for
EIT-related effects.

Using the parameters in Figs. 2–5, we numerically verify
the near-resonance EIT conditions in our work. Note that,
because we also have γ41 
 �� in Figs. 2–5, the condi-
tion |�c1|2 + |�c2|2 
 �2�2 can be satisfied automatically
in these figures. Apparently, at the dark rings of the Bessel
C1 field (�c1 ≈ 0), the expanded Gaussian C2 field (�c2) is
critical to realize the conditions, which will be considered in
the following.

As shown in Figs. 2 and 3, the two LG modes (±� = ±80)
in the probe field is roughly located within the radius of
175 μm. The Rabi frequency of the C2 field within this range
(i.e., r � 175 μm) is given by �c2 = �̊c2 exp(−r2/w2

c2) �
0.1164γ41, where �̊c2 = 0.12γ41 and wc2 = 1 mm. Therefore,
even if the Bessel C1 field vanishes at the dark rings, the
minimal coupling Rabi frequency experienced by the probe
field is determined by the Gaussian C2 field. The transmission
window then reads |�c2|2/γ41 � 81294 Hz, while the modu-
lation frequencies are �� = 4800 Hz in Fig. 2 and 8000 Hz in
Fig. 3, respectively. Therefore, the window width is more than
an order of magnitude larger than the modulation frequencies.
The near-resonance EIT conditions can be satisfied in Figs. 2
and 3.

In Fig. 4, the size of the two LG modes (±� = ±10) in the
probe field is shrunk and roughly located within the radius of
75 μm. The Rabi frequency of the C2 field within this range
(i.e., r � 75 μm) is given by �c2 = �̊c2 exp(−r2/w2

c2) �
0.1193γ41, where we still have �̊c2 = 0.12γ41 and wc2 =
1 mm in Fig. 4. The window width is |�c2|2/γ41 � 85395 Hz,
much larger than the modulation frequency �� = 8000 Hz in
Fig. 4.

In Fig. 5, the rotation frequency of the probe field is in-
creased to � = 2000 Hz and the peak Rabi frequency of the
Gaussian C2 field is raised to �̊c2 = 0.2γ41. All other parame-
ters in the probe and Gaussian C2 fields are the same as those
in Fig. 4. Thus, we can obtain the Rabi frequency of the C2
field within the range of r � 75 μm as �c2 � 0.1989γ41. The
window width is |�c2|2/γ41 � 237 367 Hz, again much larger
than the modulation frequency �� = 20 000 Hz in Fig. 5.

Therefore, the near-resonance EIT conditions are verified
in Figs. 2–5, which are also consistent with those in the slow-
light model for pulse propagation in EIT systems. Such a fact
also ensures that the numerical results of Eq. (7) are reliable
in Figs. 2–5.

D. Experimental possibilities

Note that, in our scheme, the ±� LG modes are used to
simulate the radial evolution of the pseudospin |±z〉 states,
i.e., SOC-induced splitting in the radial dimension. The az-
imuthal interference fringes of the ±� LG modes are not
directly related to the spin |±z〉 states because, in spin space,
the |±z〉 states are orthogonal and do not interfere in real
space. However, the interference fringes can reflect the extent
of spatial overlap between the ±� LG modes. For exam-
ple, owing to the large radial separation in Fig. 5(c), the
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contrast of the azimuthal fringes in the inner and outer
rings greatly attenuates, which may facilitate the experimental
observations.

To rotate the image at low speed, one may use a rotor to
mechanically rotate a Dove prism up to ∼167 Hz [48]. Thus,
the image rotation frequencies of � = 60 Hz in Fig. 2 and
� = 100 Hz in Fig. 3 are accessible in experiments. For high
speed rotation with � = 800 Hz in Fig. 4 and � = 2000 Hz
in Fig. 5, one may introduce the frequency shifts ±�� into
the ±� LG modes, respectively, which can produce the image
rotation frequency in the range from mHz to MHz [39]. In
addition, all the snapshots of single frames in Figs. 2–5 can
be captured by a high-speed charge-coupled-device (CCD)
imaging system.

Ultracold atomic ensembles with high density and mil-
limeter (even centimeter) size in magneto-optical trap have
been successively implemented, in which the EIT-related
effects have been observed (e.g., see Ref. [49]). For the
D2 line in 87Rb atoms, we can employ the magnetic sub-
levels in |5S1/2, F = 1〉 and |5P3/2, F = 0〉 to construct a
closed tripod configuration in Fig. 1, where |1〉, |2〉, |3〉
represent |5S1/2, F = 1, mF = −1〉, |5S1/2, F = 1, mF = 0〉,
|5S1/2, F = 1, mF = +1〉, respectively, and |4〉 stands for
|5P3/2, F = 0, mF = 0〉 [47]. Also, a magnetic field with mod-
erate strength can be applied to lift the degeneracy of the
|5S1/2, F = 1〉 state. For example, a magnetic field of 15
G can produce a Zeeman splitting of ∼10.5 MHz between
adjacent magnetic sublevels in |5S1/2, F = 1〉. To make sure
that each light field only drives one transition, we consider
the selection rules for electric dipole transitions and use three
laser beams having different polarizations. For example, the
probe, Bessel C1, and Gaussian C2 fields could be σ+, π , and
σ− polarized, respectively.

The structured light fields in the probe and coupling C1
fields can be created by various methods. For example, high-
order LG beams can be flexibly generated by liquid-crystal
spatial light modulators [50]. Recently, using spiral phase
mirrors, very-high-order LG beams with OAM indices up
to 10010 can also be obtained [51]. Moreover, by shining
strong high-order LG beam on an axicon lens, one can further
efficiently generate high-order Bessel beam for the coupling
C1 field [37], where the order b of the Bessel beam is de-
termined by that of the incident LG beam. The radial wave
vector kr can be controlled by the the base angle α of the
axicon and the refractive index nax of the axicon material.
For kr = 0.15 μm−1 used in Figs. 2–4, the base angle of
the axicon is given by α = kr/[kc1(nax − 1)] = 2.37◦, where
kc1 = 2π/λc1 (λc1 = 780 nm) is the total wave vector of the
Bessel C1 field and nax = 1.45 is the refractive index of
the fused silica axicon. For kr = 0.1 μm−1 used in Fig. 5, we
have the base angle of the axicon α = 1.58◦. The axicons with
such base angles can be customized within current fabrication
capabilities for diffractive optical elements.

E. Some comments

First, from the viewpoint of optics, Eq. (6) tells us that,
although the frequency (energy) difference between the two
LG modes is small, the strong dispersion in the EIT medium
can lead to large group refractive index ng (i.e., the slow-

light effect), thus greatly enhancing the SOC strength ζ in
Eq. (7). Moreover, note that the susceptibilities in Eq. (6)
actually have opposite signs because the two LG modes shift
up or down by ��, respectively, which can produce strong but
nearly opposite phase shifts for the two transmitted modes.
Besides, compared with the earlier work in Ref. [33], be-
cause a Bessel beam can have strong radial intensity variation
in its multiring structure, this makes it possible to generate
grating structures with steep radial variation (gradient) for
the susceptibilities. Therefore, the two LG modes can expe-
rience totally different phase modulations with strong optical
diffraction through the EIT medium, suggesting the optical
origin of the different spatial trajectories of the two LG modes
(see Figs. 2–5).

Second, similar to the optical gratings in one or two dimen-
sions in Refs. [9–30], the large spatial separation and discrete
multiring structures (i.e., discrete peak structures in the radial
direction) in our scheme may offer more opportunities for
the applications of all-optical sorting and spatial multiplexing.
For example, by using multiple spatial filtering, it is possible
to select desired LG modes (i.e., pseudospin states) at different
peak (radial) positions, which may improve the flexibility
for optical information processing. Also, the peak structures
with significant spatial separation may facilitate experimental
observations and verifications.

Third, we explore the four-level tripod EIT system, which
also represents a major extension of the theoretical model.
The two coupling fields could provide higher flexibility for
all-optical control over the spinor image in the probe field. In
particular, because the Bessel C1 field has vanishing intensity
at the dark rings, the EIT conditions cannot be satisfied at
these regions for the traditional three-level �-type EIT system
used in Ref. [33]. However, in a tripod EIT system, the ex-
panded Gaussian C2 field can be used to “fill” the dark regions
in the Bessel C1 field to guarantee the near-resonance EIT
conditions in Eq. (6), which is critical to derive the Pauli-like
equation [i.e., Eq. (7)] to explicitly show the SOC effect.

V. CONCLUSION

In conclusion, we have demonstrated that EIT-based co-
herent media could establish a flexible platform to visualize
the spinor wave function evolution described by a Pauli-like
equation. Also, we have investigated the interactions between
complex structured light fields in coherent media. The LG
modes with opposite OAM indices (i.e., the pseudospin |±z〉
states) are spatially separated by diffraction as they pass
through a radially quasiperiodic grating structure created by
a Bessel beam, which can also be termed “spin-orbit grating.”
Our scheme may help develop promising strategies for spatial
information processing of multimode images and vortices in
EIT-based coherent media.
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APPENDIX A: A FORMAL DERIVATION OF χ(ω±�)
BASED ON THE SLOW-LIGHT MODEL

As mentioned in Sec. II in the main text, in the cold ensem-
ble, the rotating spinor image with the frequency of � actually
scans in the azimuthal direction, while the individual off-axis
atoms can “see” an amplitude-modulated probe field (pulse
train). The carrier (central) frequency of the pulsed field is
(ω+� + ω−�)/2 = ωp and the modulation frequency is �ω =
(ω+� − ω−�)/2 = �� where ω±� = ωp ± �� are two Fourier
frequencies (see Figs. 1(b), 1(c), and related work, e.g., in
Refs. [39,43,44]). Therefore, for the light-atom interactions,
our scheme is still in the context of slow-light model in the
EIT system.

Following the work in Ref. [43], we can also make a formal
and brief derivation for the susceptibilities χ (ω±�) of the two
Fourier frequencies ω±� in the pulsed (bichromatic) probe
field, which may provide empirical evidence to support the
theoretical model in Sec. II in the main text. Due to the large
temporal dispersion (∂χ/∂ω 
 1) in the EIT system and the
narrow spectral width �ω = �� � ωp, the susceptibilities
can be decomposed by Taylor expansion around the central
frequency ωp as

χ (ω±�) = χ (ωp) +
+∞∑
n=1

(±��)n

n!

∂nχ

∂ωn

∣∣∣∣
ωp

, (A1)

where we keep all the Taylor expansion orders. Note that, for
long pulses with narrow spectral widths (�ω = �� � ωp),
it is usually not necessary to include higher-order expansions
(e.g., only n � 1 terms are included in Ref. [43]). The sus-
ceptibility χ (ωp) of the monochromatic carrier field with the
frequency ωp has been fully studied in the tripod EIT system
(see Ref. [42]) and can be given by

χ (ωp) = iNμ2
14

h̄ε0
[(γ41 − i�p)

+ |�c1|2
(γ21 − iδ′)

+ |�c2|2
(γ31 − iδ′′)

]−1

, (A2)

where one can refer back to Eqs. (1), (2), and Fig. 1(a) in the
main text for the parameters. Therefore, the susceptibilities
χ (ω±�) of two Fourier frequencies ω±� can be achieved by
summing up the Taylor series in Eq. (A1), yielding

χ (ω±�) = iNμ2
14

h̄ε0
[(γ41 − i�±�)

+ |�c1|2
(γ21 − iδ′

±�)
+ |�c2|2

(γ31 − iδ′′
±�)

]−1

, (A3)

where ω±� = ωp ± ��, �±� = �p ± ��, δ′
±� = δ′ ± ��, and

δ′′
±� = δ′′ ± ��. This expression is well consistent with our

result in Eq. (5) in the main text. Such a formal derivation
of χ (ω±�) based on the slow-light model could also provide
an alternative to show the validity of the susceptibilities in
Eq. (5).

APPENDIX B: A FORMAL DERIVATION OF ng BASED ON
THE STATIC SUSCEPTIBILITIES χ(ω±�)

As described above, due to the rotation of the image, the
off-axis atoms actually experience an amplitude-modulated
probe field (pulse train) with the central frequency ωp and
the modulation frequency �ω = ��. This is still a slow-light
scheme in the EIT system and the group refractive index ng is
one of the most characteristic parameters for the pulse dynam-
ics. Moreover, as seen in the Pauli-like equation [i.e., Eq. (7)]
in the main text, the group refractive index ng is also critical
to enhance the SOC strength ζ . In addition, note that, in other
related work, e.g., the rotary photon drag model with similar
optical configurations (images) to our scheme (see Refs. [40]
and [44]), the group refractive index ng in the so-called “spe-
cific rotary power” [consistent with the SOC strength ζ for
ng 
 n ≈ 1 in Eq. (7)] is also formally derived from the static
refractive indices of the two Fourier frequencies in the image.

It is reasonable to believe that the static and perturbative
susceptibilities of the two Fourier frequencies (ω±�) could
play a vital role in studying the slow-light effect of the pulsed
probe field (i.e., the rotating spinor image) in the EIT system
with large temporal dispersion. In what follows, considering
the work in Ref. [43], we try to make a formal and brief
derivation to show this fact. For the two Fourier frequencies,
we have ω±� = ωp ± �ω, k±� = kp ± �k, and the dispersion
equations k±�c = ω±�n(ω±�), which can lead to

2c�k = c(k+� − k−�) = ω+�n(ω+�) − ω−�n(ω−�)

= (ωp + �ω)n(ωp + �ω) − (ωp − �ω)n(ωp − �ω)

= (ωp + �ω)

[
n(ωp) + �ω

∂n

∂ω

]

− (ωp − �ω)

[
n(ωp) − �ω

∂n

∂ω

]

= 2ωp�ω
∂n

∂ω
+ 2�ωn(ωp), (B1)

where we expand the refractive indices as n(ωp ± �ω) =
n(ωp) ± �ω ∂n

∂ω
|ωp for the narrowband pulsed field with �ω =

�� � ωp. Using the definition of pulse group velocity (i.e.,
vg = �ω/�k) in Eq. (B1), we can find the group refractive
index of the pulsed probe field with the central frequency ωp

and the modulation frequency �ω as

ng = c

vg
= n(ωp) + ωp

∂n

∂ω

∣∣∣∣
ωp

, (B2)

which agrees well with the result for slow-light studies in EIT
systems with large temporal dispersion in Ref. [43]. Because
n = √

1 + χ ≈ 1 + χ/2 for χ � 1 in EIT systems, the static
susceptibilities χ (ω±�) of the two Fourier frequencies are
of importance to determine the group velocity of the pulsed
probe field.

Usually, in EIT systems, to find the group refractive index
ng of the pulsed probe field centered around the frequency ωp,
one can solve the static and perturbtive susceptibility χ (ωp)
for a monochromatic field at the frequency ωp and then use
Eq. (B2) directly to find the group refractive index of the
pulsed probe field. In our work, we actually focus on the ori-
gin of ng (or vg) in Eq. (B2) from the static and perturbative
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susceptibilities of the two Fourier frequencies (ω±�) in the
pulsed probe field [see Eq. (B1)].

As a simple justification, by using χ (ω±�) resulting from
the the steady-state solutions of the master equation [see
Eqs. (1)–(6)] in the main text, it is straightforward to de-
rive ng of the pulsed probe field in the tripod system under
the ideal EIT conditions with γ21(31) ≈ 0, �c1 = �c2 = 0,
and �±� = ±�� (i.e., without rotation, �p = 0). First, we
have

∂n

∂ω
≈ n(ω+�) − n(ω−�)

ω+� − ω−�

≈ χ (ω+�) − χ (ω−�)

2(ω+� − ω−�)

= Nμ2
14

2h̄ε0

1

|�c1|2 + |�c2|2 . (B3)

Because the central frequency ωp of the pulsed probe field
is resonant with the transition |1〉 ↔ |4〉 in above situation
(�p = 0), also combined with the conditions γ21(31) ≈ 0 and
�c1 = �c2 = 0, we have the static susceptibility χ (ωp) = 0,
thus n(ωp) = 1. Finally, we can find the group refractive index

ng = 1 + Nμ2
14

2h̄ε0

ωp

|�c1|2 + |�c2|2 , (B4)

which is in good agreement with the expression in Ref. [42]
as well as that in Eq. (6) in the main text.

We also compare our work with Ref. [42]. In Ref. [42],
the authors first achieve the static susceptibility at a single
frequency, then directly use Eq. (B2) to find the group velocity
(i.e., the group refractive index) of a narrowband amplitude-
modulated probe field with the frequency range around the
single central frequency. But, we here use the static sus-
ceptibilities χ (ω±�) of the two Fourier frequencies to derive
the group refractive index for the narrowband amplitude-
modulated probe field. The two results are highly consistent
with each other. Therefore, the static and perturbative suscep-
tibilities χ (ω±�) resulting from the the steady-state solutions
of the master equation are still reliable to solve the slow-light-
related issue in our proposal.

APPENDIX C: NUMERICAL ESTIMATIONS FOR THE
PERTURBATION TERMS IN THE MASTER EQUATION

To numerically estimate the contributions of high-order
terms in the master equation [see Eqs. (2)] in the main text,
we consider some cases deviated from the ideal conditions
used in Eqs. (2).

First, again following the work in Ref. [42] we assume
that the system is initially prepared in a superposition of
all energy levels as |ψ (0)〉 = α1|1〉 + α2|2〉 + α3|3〉 + α4|4〉,
where α1,2,3,4 are the initial probability amplitudes. Based on
the two-level model with the |1〉 ↔ |4〉 transition, we roughly
estimate the population (ρ44 = |α4|2) in the excited state. The
on-resonance population of state |4〉 can be given by ρ44 =
|α4|2 = 1

2 s0/(1 + s0), where s0 = Ip/Is is the on-resonance
saturation parameter [52]. Because the intensity of the pulsed
probe field Ip is much smaller than the saturation intensity Is,
we assume that the peak probe intensity Imax

p ≈ 0.0002Is and
thus find the maximum of ρ44 is about ∼0.0001. Note that, for
a perfect dark state in EIT systems, due to the quantum inter-
ference effect in the presence of the strong coupling fields and

other ground states, there could be even smaller population
value ρ44 in the excited state.

Moreover, we assume |α1|2 ≈ 0.99, |α2|2 ≈ 0.00495,
and |α3|2 ≈ 0.00495. Thus, to first order, we have
ρ11(t ) ≈ |α1|2 ≈ 0.99, ρ44(t ) ≈ |α4|2 ≈ 0.0001, ρ21(t ) ≈
α2α

∗
1 ≈ 0.07, ρ31(t ) ≈ α3α

∗
1 ≈ 0.07, ρ41(t ) ≈ α4α

∗
1 ≈ 0.01,

ρ24(t ) ≈ α2α
∗
4 ≈ 0.0007, and ρ34(t ) ≈ α3α

∗
4 ≈ 0.0007 [42].

For simplicity, we here set α1,2,3,4 to be real numbers.
Therefore, we have {ρ24(t ), ρ34(t )} � {ρ41(t ), ρ31(t ),
ρ21(t )} (at least an order of magnitude smaller). For a very
weak probe light field, the terms �pρ24 and �pρ34 are
so small (second-order small quantities) compared with
the terms �∗

c1ρ41 and �∗
c2ρ41 in Eqs. (2) that they can be

neglected.
Second, we further consider some special positions for the

Bessel C1 field at the vicinity of the dark rings with vanishing
intensity. Note that the Gaussian C2 field still exists in these
regions. In this case, following the work in Ref. [53], we
assume that the system is initially prepared in a superposi-
tion of two ground levels as |ψ (0)〉 = α1|1〉 + α2|2〉. At the
dark rings of the Bessel C1 field, a new laser field could
be generated at the transition |2〉 ↔ |4〉 by the weak probe
light field due to the parametric process studied in Ref. [53].
For |α1|2 ≈ |α2|2, the new laser field could be significant.
However, when we take |α1|2 
 |α2|2 (e.g., |α1|2 ≈ 0.9999
and |α2|2 ≈ 0.0001) and also consider the near-resonance
EIT conditions (i.e., |�c2|2 
 {��γ41, �

2�2} where �c1 is so
weak that can be ignored at the dark rings of the Bessel C1
field) used in Eq. (6), based on the derivations in Ref. [53],
the new laser at the transition |2〉 ↔ |4〉 is much weaker than
the probe field and thus can be neglected. In this case, the
four-level tripod system can be reduced to a three-level �

system. This fact is also reflected by the expression of the
linear susceptibilities in Eq. (5). It means that, when the Bessel
C1 field vanishes (i.e., �c1 ≈ 0) at the dark rings, Eq. (5) can
be reduced to the linear susceptibilities for a three-level �

system with the weak probe field and the strong coupling C2
field.

In general, our scheme is actually still a slow-light EIT
model with an amplitude-modulated probe field (pulse train)
experienced by the individual off-axis atoms in the cold en-
semble. Based on the analyses above, it is seen that the
initial preparation of the atomic levels is very crucial for the
validity of deriving the susceptibility. As known, the prepara-
tion can be well controlled, for example, by using adiabatic
passage techniques. As long as the conditions ρ11 ≈ 1 and
ρ22 ≈ ρ33 ≈ ρ44 ≈ 0 can be satisfied, the parametric gener-
ation of new lasers can be suppressed and the EIT effect can
be maintained, thus enabling large group refractive index ng

to enhance the SOC strength ζ in Eq. (7).

APPENDIX D: OTHER-ORDER TERMS (m �= ±1)
IN THE FLOQUET METHOD

As a matter of fact, the Floquet method is widely used
for the EIT systems with bichromatic and even trichromatic
light fields (e.g., see Refs. [54,55]). In these work, because
the strong coupling fields are bichromatic or trichromatic,
different Fourier components of the density matrix elements
are always coupled with each other in the master equation
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because the strong coupling fields cannot be ignored by per-
turbation theory. Hence, one must truncate the set of equations
at high-order terms to achieve the required accuracy to cal-
culate the atomic response to the probe field in the EIT
systems.

However, in our scheme, instead of the strong bichro-
matic or trichromatic coupling fields, the weak probe field
is bichromatic. As described before, for the light-atom in-
teractions, our scheme is still in the context of the simplest
slow-light model for the pulsed probe field (pulse train) in
the EIT system. Accordingly, we adopt the perturbation the-
ory widely used, for example, in Ref. [42] for a tripod EIT
configuration.

Under perturbation theory in a slow-light model, the �pρ24

and �pρ34 terms can be negligible (also see Appendix C for
some numerical estimations). Using the Floquet method, the
equations for other-order (m �= ±1) Fourier components can
be simplified as

ρ̇
(m)
21 = (−γ21 + iδ′

±�)ρ (m)
21 + i�∗

c1ρ
(m)
41 , (D1a)

ρ̇
(m)
31 = (−γ31 + iδ′′

±�)ρ (m)
31 + i�∗

c2ρ
(m)
41 , (D1b)

ρ̇
(m)
41 = (−γ41 + i�±�)ρ (m)

41 + i�c1ρ
(m)
21

+ i�c2ρ
(m)
31 . (D1c)

Note that, because the effective probe Rabi frequency �p =
�+�e−i��t + �−�e+i��t in Eq. (1) in the main text is only
associated with the ±1st order harmonics of ��, the �±�-
related terms are missing in Eq. (D1) with m �= ±1. Taking the
steady state limit, we assume ρ̇

(m)
21 = ρ̇

(m)
31 = ρ̇

(m)
41 = 0 on the

left side of the equations. It is seen that a set of homogeneous
linear equations for ρ

(m)
21 , ρ

(m)
31 , and ρ

(m)
41 (m �= ±1) can be

derived and the determinant of coefficient matrix is usually
nonzero. As a result, the matrix elements ρ

(m)
21 , ρ

(m)
31 , and

ρ
(m)
41 (m �= ±1) should be zero. Therefore, we only retain the

nonzero ±1st-order terms ρ
(∓1)
21 , ρ

(∓1)
31 , and ρ

(∓1)
41 as seen in

Eqs. (4) and the results in Eqs. (5) and (6) are also consistent
with those obtained in the slow-light EIT model with a weak
probe field.
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