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Quantum metrology with superposition spin coherent states: Insights from Fisher information
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We present a closed-form analytical description for the metrological performance of a generic superposition of
spin coherent states (SSCS) used as probes for quantum phase estimation. Working in this framework, we derive
transparent analytical expressions for the pertinent quantum Fisher information and identify a general class
of spin coherent states enabling quantum metrology with Heisenberg-limit precision. Bloch-sphere analysis of
antipodal SSCS shows that the phase-estimation precision attainable with such states increases with the distance
from the equator of the Bloch sphere, growing from the shot-noise limit level for the equatorial states all the way
up to the Heisenberg limit for SSCS that can be represented as superpositions of the poles of the Bloch sphere.
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I. INTRODUCTION

Measurement plays a central role in science, serving as
a process whereby scientific hypotheses are scrutinized, the-
ories are tested, and, eventually, new knowledge is gained.
In classical physics, better, i.e., more accurate measurements
require a larger number of probes N, as the error of mea-
surements is bounded from below by the shot-noise limit
(SNL), which scales as 1/+/N. While classical physics views
the SNL as the fundamental limit of measurement precision,
the quantum theory of measurements relegates it to a more
technical status, viz., the limit of precision for measurements
performed with N independent probes. Moreover, as one
of its central results, quantum theory of measurements pre-
dicts [1,2] that the true fundamental limit of measurement
precision—the Heisenberg limit (HL)—should instead scale,
for suitably correlated probes, as 1/N. This result paves the
ways for ultrahigh-precision spectroscopy, detection of gravi-
tational waves, high-sensitivity magnetometry, microscopy on
the nanoscale, and metrology of fundamental physical con-
stants [3-9].

While the HL sets the lower bound on the error of phys-
ical measurements, the precision attainable for each specific
experimental setting depends on the properties of quantum
probes used in this setting. Standing out as an important
class of quantum probes enabling measurements with an
HL precision are the cat states of the form \%(IN Ya ®
[0}, 4+ 10), ® |N)p), known as NOON states [2,10,11]. Gen-
eration of NOON states is conceptually and technically
challenging. Several efficient schemes have been proposed
within the past few years to confront these challenges via
finely tailored quantum-state engineering [12-20]. Yet, the
search is ongoing for practical parameter-estimation solu-
tions within a broader class of superposition coherent states
that would foster experimental studies and that would help
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address the issues related to decoherence, dissipation, as well
as the high cost and low efficiency of quantum-state gen-
eration. As one promising solution, Schrodinger-cat states
[21], i.e., superpositions of coherent states |+ «) have
been shown to enable entanglement-enhanced super-resolving
phase measurements [22,23] while sustaining a reasonably
high immunity to decoherence [24-27]. Quantum states of
this class can be generated via laser-assisted entanglement
of coherent harmonic-oscillator states of laser-cooled trapped
ions [21,28,29], by photon subtraction from a squeezed
vacuum state of light [30-32], through optical Fock-state
engineering [33,34], as well as by using superconducting
qubits [35], cavity QED [36], and linear-optical arrangements
[37]. Spin cat states with moderate entanglement have been
shown [26] to be more robust against loss than maximally
entangled states, enabling high-precision measurements be-
low the SNL level in a dissipative environment. Multiqubit
Schrodinger-cat hyper-entanglement [22,38—40] and iterative
Schrodinger-cat enlargement [41] have been demonstrated as
significant milestones on the way toward practical schemes for
quantum information processing, computation, cryptography,
and metrology.

Here we examine the performance of a generic superpo-
sition of spin coherent states (SSCS) in quantum metrology
and identify conditions for attaining the HL precision with
such states. We will derive closed-form analytical expressions
for the pertinent quantum Fisher information and the related
quantum Cramér—Rao bound (CRB) on the error of phase es-
timation using SSCS. Based on this analysis, we will identify
a general class of SSCS enabling quantum metrology with
Heisenberg-limit precision. We show that antipodal SSCS that
can be represented as superpositions of equatorial states on the
pertinent Bloch sphere can only perform at the SNL level of
phase-estimation precision. Off the equatorial line, however,
the precision of SSCS increases, reaching the HL for the states

©2021 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.053712&domain=pdf&date_stamp=2021-11-18
https://doi.org/10.1103/PhysRevA.104.053712

MALEKI, SCULLY, AND ZHELTIKOV

PHYSICAL REVIEW A 104, 053712 (2021)

that can be represented as superpositions of the poles on the
Bloch sphere.

II. SPIN COHERENT STATES FOR PHASE ESTIMATION

We start with a brief review of the main properties of
SU(2) spin coherent states. To this end, we consider a spin
algebra generated by lowering and raising operators J_ and
J; and the z-component of the spin J, such that [J,,J_] =
2J., [J;, J+] = £J4. Acting on the ground state of the Dicke
basis |j, —j) defined by these operators [42], the rotation
operator,

—6 . 4
R, ¢) =exp{7(1+e i —J_e“”)}, (1)
yields a spin coherent state [42],
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where y = ¢ tan(%).
The inner-product overlap of two spin coherent states is
[43]

_ (1+38y)¥
R+ [y )2

where y = e tan(%), § = ¢~ tan(% ), and § is the com-
plex conjugate of §.

The spin algebra representation defining the coherent state
connects to a representation in a two-mode bosonic harmonic-
oscillator basis via

3)

(01, @1, j102, @2, j)

Jo=a'b, J_=b'a, J.=1i@a-0bD), 4)

where a and b are the bosonic annihilation operators of the
first and second modes of a harmonic oscillator, which will be
referred to hereinafter as the photon annihilation operators.

With N, and N, photons in modes a and b, such that j =
N and m =% N =N, + Ny, we find [N,)IN,) = |j, m).
When all the photons are in one of the two modes, a stan-
dard algebra of Ji|j,m) =/(GEtm)(jEtm+1)|j,m+t1)
and J,|j, m) = m|j, m) yields one of the two states: |0) ®
IN) =1j, —j) or IN) ® |0) = |j, j). A superposition of these
two states is a NOON state, [INOON) = \/%(IN, 0) + 10, N)),
which can now be readily transformed to the Dicke basis as
[24]

1
NOON) = —(|j, j ,—J))- 5
| ) ﬁ(lj B+ =) ®)

A NOON state can thus be viewed as a superposition of the
two poles of the Bloch sphere. As an outstanding experimental
achievement, electron spins in dysprosium atoms have been
shown to enable a superposition of opposite-pole spin states
with a mesoscopic spin J = 8§ [44], corresponding to a NOON
state with N = 16. Such a state has been shown to enhance the
sensitivity of magnetic field measurements by a factor 13.9
[44].

As an important finding of earlier studies [25,26], provid-
ing a benchmark for our analysis here, a superposition of
coherent states of the form

with A being the normalization factor, has been shown to
surpass the SNL. Given the profoundness of this result for the
quantum theory of measurements and its practical significance
for quantum metrology, an important question to be asked is
whether there are other operationally useful states that can
enable measurements with a precision below the SNL. As we
will show below in this paper, not only do such states indeed
exist but they can also provide a higher precision. In what
follows, we will identify such states, derive a closed-form an-
alytical solution for the lower-bound precision that such state
can provide in quantum measurements, and specify conditions
when this precision reaches the HL.

III. QUANTUM METROLOGY WITH SUPERPOSITION
SPIN COHERENT STATES

A. Quantum Fisher information for superposition spin
coherent states

In the search for a suitable general class of SSCS capable
of performing estimates with a precision below the SNL, we
examine superposition states of the form

[V, j) = N61, 01, j) + 102, 2, j)). @)
where
(1+3y)2-f+(1+)78)2-f:|_l/2
=2 : : , 8
N [+ TESEBIOEE] ®

where y is the complex conjugate of y.

For a quantitative analysis of the performance of such
states in quantum metrology, we consider a generic setting for
an estimation of a parameter £ that shows up in the phase shift
€%’ The error of £ estimation, A& is bounded from below by
the quantum CRB [2,8],

Aécrg = 1/y/ Fo(p(£)), )

where Fp(p(§)) =Tr[p(§ )Lg] is the quantum Fisher infor-
mation [2,8], and L¢ is the symmetric logarithmic derivative,
defined by the equation 9:p(§) = (1/2)[p(§)Le + Lep(§)]
for the density matrix p(§).

Applying the general definition of Fp to the SSCS as
defined by Eq. (7), we find

Fo = 4(92 +G1 - 912), (10)
where
oo P 1312 ]
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and
(48P 2@y 4+ (A + 787 (p8)’
(L+ 1812 (1 + |y 12)
Equations (10)— (12) present one of the central results of
this study. It is straightforward to see from these equations that
Fo and, hence the CRB depend only on the phase difference

¢ = @ — ¢ rather than on the individual phases ¢, and ¢;.
In the case of j = 1/2, Fp becomes

18] Sy + 76
L+1812 (1 + 18120 + |[y)'2 ]
(13)
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Since j = 1/2 corresponds to N = 1, the SNL is equal
to the HL,, and Eq. (13) does not suggest any quantum en-
hancement in the precision. Yet, this expression is useful as it
provides a closed-form solution that quantifies the metrologi-
cal performance of spin-1/2 SSCS.

In a special case of j = 1, corresponding to two-photon
SSCS, N = 2, Egs. (11) and (12) give

ly 2 87 (1458y)8y + (1 +78)78
=2
G NZ[HW T2 A+ B+ [yP) ]
(14)
and
ly* 1[4 Gy)? + (76)>
=2N2[ + ]
o A+ P2 A+ 1822 A+ A+ [y?)
(15)
where
(1+3y)2+(1+378)2]1/2
N=|[2+ 16
[ A+ 3P0 + [y ) (16)

Combined with Eq. (10) for Fy, Egs. (13) and (14) provide
a closed-form solution that quantifies the metrological perfor-
mance of SSCS with j = 1.

B. Phase estimation errors and the HL

For a closer examination of spin-1 states, we consider a
superposition of the form

For ¢ = ¢ = 0, this superposition reduces to the superpo-
sition state defined by Eq.(6). With ¢ = m, on the other hand,
Eq. (17) describes a superposition of two antipodal spin coher-
ent states on the Bloch sphere [27]. As its general property, the
CRB Aé&cgp for the phase estimation error of superposition
states (17) is independent of ¢. The effect of ¢ is illustrated in
Fig. 1, which plots Aécrp as a function of 6. While Eqgs. (10),
(11), (14), and (15) provide the general solution for the CRB
Aé&crp(0), Fig. 1 illustrates the key properties of the CRB by
presenting Aécrp(0) for three values of ¢, viz., ¢ =0, 7/2,
and 7. One of these ¢ values, ¢ = 0, allows the solution for
Aé&crp () as provided by Egs. (10), (11), (14), and (15) to be
directly benchmarked against the SSCS as defined by Eq. (6).
Examination of the case of ¢ = 7w will be shown to reveal
one of the most remarkable properties of the SSCS as defined
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FIG. 1. The CRB Aé&cgg for the phase estimation error of j = 1
SSCS (17) as a function of 6 for ¢ = 0 (dotted blue line), ¢ = 7 /2
(dashed black line), and ¢ = 7 (red line).

by Eq. (17)—the ability to reach the HL for any 6. Finally,
¢ = /2 is a reasonable intermediate choice for ¢.

As one important finding of this analysis, the antipodal
SSCS (17), that is, the SSCS (17) with ¢ = 7 (red line in
Fig. 1), reach the HL (A& = 1/2) for any 6. Such SSCS
are thus optimal phase estimators. The precision of phase
estimation that these states provide is always higher than the
precision of the benchmark SSCS as defined by Eq. (6).

As is also seen from Fig. 1, all the SSCS defined by
Eq. (17) reach the HL at & = 0 and m. At these points, the
SSCS reduce to a NOON-state superposition of the north and
south poles of the Bloch sphere, losing their sensitivity to
the azimuthal phase. For ¢ # 7 SSCS, the phase estimation
error reaches its maximum at 6 = 7 /2. At this value of 9,
both coherent states lie on the z = 0 great circle of the Bloch
sphere. Finally, SSCS with ¢ = 0 and 6 = 7 /2 perform at the
SNL level.

In Fig. 2, we plot the CRB A&cgp for general-form SSCS
lo, j) = N(01, ¢, 1) + |02, ¢ + ¢, 1)) as a function of §; and
6,. As is readily seen from these plots, the highest phase-
estimation precision for such SSCS is achieved along the 8, =
m — 6 line, which stands out as the darkest line in Figs. 2(a)
and 2(b), corresponding to the minimum estimation error,
showing, once again, that the antipodal SSCS (17) always
reach the HL.

We will now examine the metrological performance of
antipodal SSCS with arbitrary j. To this end, we focus on
superposition states of the form

lo, /) =NU0, 0. )+ —0.0+¢.j)). (I8

As can be seen from Figs. 3(a)-3(c), which present the
CRB as a function of 8 for various j, the antipodal SSCS

3.0 3.0
175 )5
1.50
2.0 s 20 2.0
25
0, %, 1.5
1.0 1.00 19 '
0.75 1.0
0.0 0.0 0.5

00 1.0 20 30
0,

FIG. 2. The CRB Aé&cgg for the phase estimation error of the j =
1 SSCS g, j) =N (101, ¢, 1) + 102, ¢ + ¢, 1)) as a function of 6,
and 6, for ¢ = 0 (a) and ¢ = 7 (b).
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FIG. 3. The CRB as a function of 6 for j = 3/2 (a), 2(b), and 7/2 (c) with ¢ = 0 (dotted blue line), ¢ = /2 (dashed black line), and

¢ = 7 (red line).

as defined by Eq. (18) generally fail to reach the HL. Yet,
the precision of phase estimation provided by these states is
always higher than the phase-estimation precision provided
by SSCS with ¢ = ¢ = 0, i.e., the superposition state defined
by Eq. (6).

C. Bloch-sphere perspective of Heisenberg-limit precision

In a special case of 7§ = —1, Eq. (10) for antipodal SSCS
reduces to

1+ |y
(1+ [y]?)?

As can be seen from Eq. (19), the HL, FA=N?= 4j2,
can be achieved only when |y| is either zero or infinity, or,
equivalently, when 6 is either O or 7. SSCS that satisfy these
conditions can be represented as a superposition of the north
and south poles of the Bloch sphere, i.e., a NOON state.
Another useful insight to be gained from Eq. (19) is that
the minimum Fj and, hence, maximum CRB is achieved
for |y| =1 (6 = 7 /2). The quantum Fisher information in
this case is Fp = 2j. The related maximum of the CRB thus
corresponds to the SNL. Geometrically, this means that any
antipodal SSCS in the z = 0 equatorial circle of the Bloch
sphere performs at the SNL precision. Any antipodal SSCS
that does not belong to this circle suppresses the SNL, provid-
ing quantum enhancement of precision. The phase-estimation
precision attainable with antipodal SSCS thus ranges from the
SNL, achieved for the states lying on the equator of the Bloch
sphere, to the HL, attained with the pole states. The precision
increases with the distance from the equator.

f3=4P@j—1) +j—j1. (19)

D. Fisher-information insights into quantum precision
enhancement
It is readily seen from Fig. 3 that, for all the spins examined
in these calculations, SSCS with ¢ = & provide a higher
precision compared with SSCS with ¢ = 0. This property of
SSCS can be understood by inspecting their quantum Fisher
information for ¢ = 0 and 6 = 1:

i(2j —1 1 1 5.
Fo=t g (1544 547) +i 7] o

where

_ 2|y|
1+ y?

At =m /2, both ¢ =0 and ¢ = w SSCS perform at the
SNL level.

As shown by Huang et al. [25], for the states (6) with j >
20 and 0 < 77 /20, the CRB can be approximated as

1+tan29/2) .

_ 21
1 —tan26/2 @h

Aécrp (
where N = 2j.
To gain insights into this relation from the perspective of
a more general result as expressed by Eq. (20), we observe
that A%/ <« 1 can be met by letting  # 7 /2 and j > 1, i.e.,
under conditions that are much more general compared with
the inequalities j > 20 and 6 < 77 /20 of Ref. [25]. With 0 #
/2 and j > 1, Eq. (20) leads to

1
fQ:4[j2—j(2j—1)§A2]. (22)
Since j > 1, j(2j — 1) ~ 22, we find
. 1—1y)?
F :421—A2=N2[ } 23
0 =4j7( 1 e (23)

Because |y| = tan?6/2, Eq. (23) recovers the result of
Huang et al. [25]. Moreover, antipodal SSCS with a large spin
can also provide Fy as defined by Eq. (23).

We now consider SSCS with ¢ = /2. Closed-form ana-
lytical expressions for the quantum Fisher information and the
CRB of such states are obtained by combining Eq. (10) with

G — j [_wmm&m—mm”
- Y cos(F NIy 1+ |y|2)% ’
I+ = (+ b
(24)
and
g —_J%—D L+t 2 sinG DIy YT
Py TG (PR (P

I+ e

(25)

In Fig. 3, we compare the behavior of the CRB A&cgp of

¢ = /2 SSCS as a function of 8 with the CRB of ¢ =0
and 7w SSCS. To find the maximum Aécgrp values of ¢ =
/2 SSCS [black dashed lines in Figs. 3(a)-3(c)], we set
0 = /2 in Egs. (10), (24), and (25) to derive Aécrg = 1/2
for j = 3/2, Aécrg = 1/+/8 for j = 2, and Aécgp ~ 0.48 for
Jj = 7/2. As can be seen from Figs. 3(a) and 3(b), the ¢ = 7 /2
SSCS with j =3/2 and j =2 provide a higher precision
compared with their ¢ = 0 and 7 counterparts. For j = 7/2,
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FIG. 4. The CRB Aécgs for |@, j) = N(161, ¢, j) + 162, ¢ +
¢, j)) as a function of 6, and 6, for ¢ =x with j =3 (a) and
j =10 (b).

however, this trend is reversed, as ¢ = 0 and 7 states provide
a higher precision, especially around 6 = 7 /2 [Fig. 3(c)]. We
can appreciate now that both the spin and the phase ¢ are
significant for the metrological performance of superposition
spin coherent states. An important and, perhaps, counterintu-
itive conclusion to be drawn from Fig. 3 and Egs. (19)- (23) is
that larger photon numbers do not automatically translate into
a higher precision. A fine tuning of the phase ¢ is needed for
the best metrological performance of high-N SSCS.

In Fig. 4, we present the CRB Aécrp for general-form
SSCS |g, j) = N(161, ¢, j) + 102, ¢ + ¢, j)) as a function of
0, and 6, for two values of j: j =3 [Fig. 3(a)] and j = 10
[Fig. 3(b)]. For both j, the phase estimation error is seen to be
large when 6; = 6,. The error decreases as the states move
apart, toward the opposite poles of the Bloch sphere. The
HL precision is achieved when the states reach the respective
poles. Thus, the spin coherent states,

IV, j) = N8, 9. j)+10, ¢+ 7, j)), (26)

can never surpass the SNL, regardless of their spins and co-
herence parameters.

For a special case of a single-spin coherent state, |, j) =
|6, @, j), our general expression for the quantum Fisher infor-
mation yields

lyI?

=8j———— =2jA, 27
0 J(1+|V|2)2 J 27

showing that a single-spin coherent state never surpasses the
SNL.

IV. CONCLUSION

To summarize, we have presented a closed-form analyti-
cal description of the metrological performance of a generic
SSCS used as probes for quantum phase estimation. Work-
ing in this framework, we have derived transparent analytical
expressions for the pertinent quantum Fisher information and
the related quantum CRB. Based on this analysis, we have
identified a general class of superposition spin coherent states
enabling quantum metrology with Heisenberg-limit precision.
Within this class, the antipodal SSCS N(|0, ¢, 1) + |7 —
0, ¢ + ¢, 1)) have been shown to be of special significance
as they reach the HL in phase estimation for any 6. We
have demonstrated that both the spin j and the phase ¢ are
significant for the metrological performance of general-form
superposition spin coherent states N (|0, @, j) + |7 — 0, ¢ +
¢, j)). Perhaps counterintuitively, larger photon numbers N
do not automatically translate into a higher precision of phase
estimation. A fine tuning of ¢ is needed for the best metro-
logical performance of high-N SSCS. Bloch-sphere analysis
of antipodal SSCS shows that the phase-estimation precision
attainable with such states increases with the distance from
the equator of the Bloch sphere, growing from the SNL level
for the equatorial states all the way up to the HL for SSCS that
can be represented as superpositions of the poles of the Bloch
sphere, e.g., NOON states.
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