
PHYSICAL REVIEW A 104, 053711 (2021)

Transmission spectra of the driven, dissipative Rabi model in the ultrastrong-coupling regime
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We present theoretical transmission spectra of a strongly driven, damped flux qubit coupled to a dissipative
resonator in the ultrastrong-coupling regime. Such a qubit-oscillator system, described within a dissipative Rabi
model, constitutes the building block of superconducting circuit QED platforms. The addition of a strong drive
allows one to characterize the system properties and study novel phenomena, leading to a better understanding
and control of the qubit-oscillator system. In this work, the calculated transmission of a weak probe field
quantifies the response of the qubit, in frequency domain, under the influence of the quantized resonator and
of the strong microwave drive. We find distinctive features of the entangled driven qubit-resonator spectrum,
namely resonant features and avoided crossings, modified by the presence of the dissipative environment. The
magnitude, positions, and broadening of these features are determined by the interplay among qubit-oscillator
detuning, the strength of their coupling, the driving amplitude, and the interaction with the heat bath. This work
establishes the theoretical basis for future experiments in the driven ultrastrong-coupling regime.
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I. INTRODUCTION

Current developments in Circuit quantum electrodynamics
(QED) are establishing superconducting devices as leading
platforms for quantum information and simulations [1–5]. In
particular, quantum optics experiments with qubits coupled
to superconducting resonators are now performed in (and be-
yond) the so-called ultrastrong-coupling (USC) regime, with
the qubit-resonator coupling reaching the same order of mag-
nitude as the qubit splitting and resonator frequency [6–16].
The strong entanglement between light and matter in the
USC regime carries the potential for designing novel quantum
hybrid states and for achieving ultrafast information transfer
[17].

In circuit QED platforms, the qubits are essentially based
on superconducting loops interrupted by Josephson junctions,
the nonlinear elements that provide the anharmonicity re-
quired to single out the two lowest energy states [18]. In the
flux configuration [19], the qubit states are superpositions of
clockwise and anticlockwise circulating supercurrents, corre-
sponding to the two lowest energy eigenstates of a double-well
potential seen by the flux coordinate. The double well can be
biased by applying an external magnetic flux, and transitions
between states in this qubit basis, where the states are local-
ized in the wells, occur via tunneling through the potential
barrier.

The standard theoretical tool to account for the coupling of
superconducting qubits to their electromagnetic or phononic
environments is provided by the spin-boson model, consisting
of a quantum two-level system interacting with a heat bath
of harmonic oscillators [20,21]. This model has been the
subject of extensive studies as an archetype of dissipation in

quantum mechanics, and the different coupling regimes of
spin-boson systems and the associated dynamical behaviors
have been theoretically explored by using a variety of ap-
proaches [21,22]. Only recently though, progress in the design
of superconducting circuits has opened the possibility of at-
taining experimental control on the strong qubit-environment
coupling regime [23–28].

In circuit QED, an appropriate description for qubit-
resonator systems is provided by the Rabi Hamiltonian, whose
interaction part is featured by terms known as rotating and
counterrotating terms. In this context, USC refers to an inter-
action regime where the rotating wave approximation, which
allows for a description in terms of the Jaynes-Cummings
Hamiltonian, appropriate for atom-cavity systems, fails, as the
counterrotating terms cannot be neglected [15,16]. A refined
classification of the different regimes of the Rabi model is
provided in [29]. The USC regime of circuit QED is still the
subject of much theoretical work; see for example [10,11,30–
33]. However, the intricacies of the driven Rabi problem in
the USC regime [34] have been largely unexplored so far.
Experiments on strongly driven qubits have demonstrated the
possibility of controlling properties of engineered quantum
two-level systems by intense light [25,35,36]. For example,
complex Landau-Zener patterns of avoided crossings could
be controlled by tuning the driving amplitude, in agreement
with theoretical expectations [5,37–39]. In recent works, spec-
troscopical signatures of drive-induced new symmetries [40]
and nonadiabatic effects [41] in quantum systems have been
addressed.

Experimentally, transmission spectroscopy has been shown
to be a powerful tool to characterize the complex spectrum of
the Rabi problem [9,13,14,42]. Usually, the probe couples to
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the resonator, from which properties of the qubit can be in-
ferred. As shown in this work, a probe coupled to the qubit can
also provide precious information. Alternatives to the spec-
troscopy of the qubit to investigate USC systems exist. For
example, spectroscopy of ancillary qubits has been proposed
in [43] to probe the ground states of ultrastrongly coupled
systems. Moreover, methods alternative to the analysis of the
transmission spectra have been recently devised to probe the
USC regime [44,45].

In this work, we consider a dissipative flux qubit ultra-
strongly coupled to a superconducting resonator, modeled as
a harmonic oscillator, which in turn interacts with a bosonic
heat bath. The qubit is probed by a weak incoming field
whose transmitted part provides information on the dynamics
under the influence of the resonator and its environment, as
demonstrated in a variety of experiments [46–50]. In addition,
the qubit is subject to an intense microwave field, the drive.
Despite the rich literature on the topic, the impact of an intense
microwave drive on the dissipative Rabi model in the USC
regime has not been investigated so far. The setup considered
describes quantum optics experiments in circuit QED but also
the coupling of a qubit to a detector [51–53], and the qubit-
bath coupling mediated by a waveguide resonator in a heat
transport platform in the quantum regime [54].

We address the spectral properties of the driven USC sys-
tem in a twofold way. On the one hand, quasienergy spectra
of the driven and closed Rabi model are studied analytically
using the Floquet–Van Vleck approach of Ref. [34]. On the
other hand, the transmission spectra of the open Rabi model
are first numerically evaluated in the absence of the pump
drive in the weak- and strong-dissipation regimes. This allows
us to set up the impact of dissipation on this strongly entangled
quantum system. In a last step, the full driven, open USC
system is analyzed. We notice that weak dissipation affect-
ing the USC system as a whole can be treated via a master
equation approach, e.g., along the lines of [8,55]. Since our
USC system is probed through the qubit, we conveniently map
the dissipative Rabi model to an effective spin-boson model
where the spin interacts directly with a bosonic bath charac-
terized by an effective spectral density. The latter function is
peaked at the oscillator frequency [56], and thus describes a
so-called structured environment. Using the same approach
as the one developed in [25,57] to analyze the measured
transmission of a probe field in the presence of an Ohmic
environment, here we first calculate the transmission spectra
of the undriven qubit, considering different qubit-resonator
coupling strengths. Specifically, according to the dissipation
regime, the qubit response function is evaluated by using
the weak USC system-environment approach developed in
[58] or within the so-called noninteracting blip approximation
(NIBA), which allows one to treat dissipation (and hence the
effects of the resonator) in a nonperturbative way [37]. Finally,
we look at the impact of a strong pump field within the NIBA.

The qualitative difference between the setup of Ref. [25],
featuring a driven qubit ultrastrongly coupled to an Ohmic
environment, and the one in this work, where the driven qubit
is ultrastrongly coupled to a dissipative quantum resonator, is
reflected in the transmission spectra. In absence of the drive,
the spectra show clear signatures of the entanglement between
qubit and resonator in the form of avoided crossings and

resonances, whose positions depend on the qubit-resonator
coupling strength. Furthermore, renormalization effects due to
the dissipative environment have to be properly taken into ac-
count for a quantitative description. When the drive is added,
novel avoided crossings and resonances reveal the interplay
between the resonator photons and the driving field.

The paper is structured as follows. In Sec. II, the driven,
dissipative Rabi model and its mapping to an effective, driven
spin boson model is discussed. In Sec. III, spectral proper-
ties of the nondissipative Rabi model in the USC regime are
analyzed, while a formal expression for the transmission is
reported in Sec. IV. Numerical results are shown in Sec. V,
and interpreted on the basis of the analytical results of Sec. III.
Finally, conclusions are drawn in Sec. VI.

II. THE DRIVEN, DISSIPATIVE RABI MODEL

For a realistic description of experiments studying USC
systems, the inclusion of decoherence and dissipative ef-
fects induced by the electromagnetic environment or by other
sources is unavoidable. Previous work used a modified master
equation to include the effect of dissipation in the perturbative
USC regime [8,55,59]. In the following, we consider a driven,
dissipative flux qubit coupled to a resonator which is in turn
subject to dissipation. Specifically, qubit and resonator inter-
act with two independent Ohmic heat baths, denoted by 1 and
r, respectively. The qubit is characterized by the tunneling ma-
trix element �, while the resonator is modeled as a harmonic
oscillator of frequency �. These two systems are coupled with
an interaction strength quantified by the frequency g. If g is of
the order of � and � the system is in the ultrastrong-coupling
regime. The full Hamiltonian of this driven, dissipative Rabi
model, which is sketched in Fig. 1(a), is

H (t ) = − h̄

2
[�σx + ε(t )σz] + h̄�B†B − h̄σzg(B† + B)

+
N1∑

k=1

h̄ω1kb†
1kb1k − h̄

2
σz

N1∑
k=1

λ1k (b†
1k + b1k )

+
Nr∑

k=1

h̄ωrkb†
rkbrk − h̄(B† + B)

Nr∑
k=1

λrk (b†
rk + brk )

+ h̄(B† + B)2
Nr∑

k=1

λ2
rk

ωrk
, (1)

see Appendix A, where the qubit operators σz = |↓〉〈↓| −
|↑〉〈↑| and σx = |↓〉〈↑| + |↑〉〈↓| are expressed in the so-
called qubit basis of localized right- and left-well states
|↓〉, |↑〉. The qubit is driven by the time-dependent bias

ε(t ) = ε0 + εp cos(ωpt ) + εd cos(ωdt ), (2)

which is the sum of a static part ε0, a weak probe (p), and a
drive (d) with arbitrary amplitude, which we will assume to
be of high frequency; see Fig. 1(c).

The bosonic creation and annihilation operators B†, b†
1/rk ,

and B, b1/rk create and destroy an excitation in the resonator
and in the kth harmonic oscillator of the qubit/resonator
bath, respectively. The angular frequencies λ1/rk correspond
to the coupling strengths with the individual modes of the
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FIG. 1. Model and experimental design of the driven dissipative Rabi model. (a) The dissipative Rabi model is realized by coupling a flux
qubit to an Ohmic heat bath, denoted with 1, and to a resonator, which is in turn coupled to an Ohmic environment, denoted with r. (b) The
model is mapped into a two-bath spin-boson model, where the qubit is coupled to two heat baths. The first is the original bath 1 while the
second, denoted by 2, is a structured effective bath. (c) Detail of the two-tone spectroscopy protocol where the transmission line is used to probe
the driven qubit, the drive being applied via the transmission line as well. (d) Simplified circuit implementation of the USC system displaying
the qubit (large loop interrupted by three Josephson junctions) and the LC resonator (smaller loop). The qubit and resonator are galvanically
connected to enhance the coupling strength into the USC regime. The qubit and resonator probing lines correspond to their respective Ohmic
environments.

respective baths. Note that by removing the resonator and
its bath from the full Hamiltonian (1), we are left with the
standard spin-boson Hamiltonian [20]. On the other hand, re-
moving the baths coupled to qubit and resonator, the standard
Rabi Hamiltonian is recovered.

Each bath is fully characterized by the spectral density
function

G(ω) =
∑

k

λ2
kδ(ω − ωk ). (3)

In the continuum limit, we assume an Ohmic spectral den-
sity with exponential cutoff for the qubit, i.e., G1(ω) =
2α1ωe−ω/ωc , with ωc a high-frequency cutoff, and a strictly
Ohmic spectral density Gr (ω) = κω for the resonator. The
dimensionless dissipation strengths are related to the fric-
tion coefficient in the Caldeira-Leggett model [21,60,61]; see
Appendix A.

Figure 1(d) shows a schematic of the implementation of
the driven, dissipative Rabi model using a superconducting
circuit. A 3-junction flux qubit is galvanically attached to an
LC resonator in order to attain ultrastrong-coupling strengths,
while keeping the interaction linear. In addition, two super-
conducting waveguides couple to the qubit and resonator, in
order to define their own respective Ohmic baths. The cou-
pling to the baths determines the decay rate of each system,
with an additional loss channel due to intrinsic microscopic
noise present in the neighborhood of the circuit. In order to
experimentally implement the system proposed in this work,
coupling strengths in the range g/� = 0.3–0.5 are most suit-
able. Coupling strengths g/� > 1 have already been achieved

in qubit-resonator systems employing shared Josephson junc-
tions as couplers [13]. While providing the desired coupling
strength, the junctions also contain a nonlinearity that may
introduce modifications to the standard Rabi model. Using
linear inductors it is also possible to attain ultrastrong cou-
plings [12]. Thin-film aluminum would require a shared wire
of significant length due to its low kinetic inductance. An
alternative is to employ superinductance material compatible
with aluminum such as granular aluminum [62,63]. This ma-
terial behaves as a linear inductor up to very large currents
with inductances 0.1–1 nH per unit area and is therefore
very suitable as an ultrastrong qubit-resonator coupler. In our
coupling regimes of interest, we can estimate the necessary
parameters using g/� = LcIp{[2�(Lc + Lr )]/h̄}−1/2, which
yields the desired range 0.3–0.5, with qubit persistent cur-
rent Ip = 100 nA, shared coupling inductance Lc = 0.4 nH,
resonator inductance Lr = 3.5 nH, and resonator frequency
�/2π = 1 GHz.

The full Hamiltonian of the model, Eq. (1), can be mapped
to that of the two-bath spin-boson model depicted in Fig. 1(b),
which reads

HSB(t ) = − h̄

2
[�σx + ε(t )σz] − h̄

2
σz

∑
νk

λνk (a†
νk + aνk )

+
∑
νk

h̄ωνka†
νkaνk . (4)

In this effective Hamiltonian, the qubit is directly coupled to
two bosonic baths indexed with ν = 1, 2: the bath 1 is the
same Ohmic bath coupled to the qubit as in Eq. (1). The
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second, ν = 2, is a new, effective bath whose spectral density,
in the continuum limit, reads [52,56,64–66]

G2(ω) = 2α2ω�4

(�2 − ω2)2 + (γω)2
. (5)

This effective spectral density is structured, meaning that
it displays a peak centered at the oscillator frequency �

with width γ = 2πκ�. The latter frequency is the memo-
ryless damping kernel of the resonator’s Ohmic bath; see
Appendix A. The corresponding effective coupling strength
α2 is given by the dimensionless parameter α2 = 8κg2/�2. In
the limit � � � the qubit sees a bath with a low-frequency
Ohmic behavior. By taking the limit κ → 0 (i.e., disconnect-
ing the Ohmic bath interacting with the resonator), we obtain
limκ→0 G2(ω) = 4g2δ(ω − �), which consistently describes
the bath ν = 2 as comprising a single oscillator coupled to
the qubit with strength λ = 2g. The resulting interaction term
in Eq. (4) reproduces the qubit-resonator coupling term in
Eq. (1). This problem displays high complexity due to the
strong driving on the qubit, the ultrastrong coupling between
qubit and resonator, as well as environmental effects on both
qubit and oscillator. In order to gain physical insight, we first
recall some features of the spectrum of the driven Rabi system
in the absence of dissipation.

III. ANALYTICAL TREATMENT OF THE CLOSED RABI
MODEL IN THE USC REGIME

A. Closed Rabi model in the USC regime

We start with the nondriven, nondissipative Rabi model,
whose spectrum has been discussed in various works by
now; see, e.g., [8,10,11,67,68]. Because of the coupling to
the qubit, the states of the resonator are displaced in one of
two opposite directions depending on the persistent-current
state of the qubit. In mathematical terms, this gives rise to
displaced coherent states of the oscillator. The energy eigen-
states of the Rabi system are then a coherent superposition
of product states for the qubit and the displaced oscillator.
Following the polaron approach, an approximate analytical
expression for the spectrum of the Rabi model can be derived
using Van Vleck perturbation theory in the qubit’s tunneling
parameter �. The approximation is nonperturbative in the
qubit-resonator coupling strength g and performs excellently
[11] for negative detuning (� > �).

For � = 0, the eigenstates of the system are composed of
tensor products of displaced oscillator and qubit eigenstates.
The exact spectrum is given by the combination of qubit and
resonator energies

E∓, j = ∓ h̄

2
ε0 + h̄ j� − h̄

g2

�
, j = 0, 1, 2, . . . . (6)

A finite tunneling � mixes the eigenstates nontrivially. To
find an approximate analytical solution, we notice that for
static bias values ε0 = l� one can identify twofold-degenerate
subspaces in the complete Hilbert space of the problem:
E+, j = E−,l . A finite tunneling removes the degeneracy and
induces coupling among the dressed states. Using Van Vleck
perturbation theory to lowest order in the tunneling one finds

the modified energies [11]

El
∓, j 	 h̄

[(
j + l

2

)
� − g2

�
+ 1

8

(
ε

(2),l
↓, j − ε

(2),l
↑, j+l

) ∓ 1

2
�l

j

]
,

(7)

where l identifies the degeneracy points ε0 = l�. For ex-
ample, around ε0 = 0 the energy levels are, in ascending
order, E0

−,0, E0
+,0, E0

−,1, . . . , and around ε0 = � they are
given by E0

−,0, E1
−,0, E1

+,0, . . . , while for ε0 = −� we have
E0

−,0, E−1
−,1, E−1

+,1, . . . . For the level splitting in Eq. (7) it is
found

�l
j =

√[
ε0 − l� + 1

4

(
ε

(2),l
↓, j + ε

(2),l
↑, j+l

)]2

+ (
�

j+|l|
j

)2
, (8)

where the so-called diagonal corrections are given by

ε
(2),l
↓/↑, j =

∞∑
k = − j
k �= ±l

(
�

k+ j
j

)2

ε0 ∓ k�
. (9)

The dressed tunneling elements carry information on the over-
lap of the displaced oscillator states. They read

�
j′
j =� [sgn( j′ − j)]| j′− j| D| j′− j|

min{ j, j′}(α̃), (10)

with j and j′ the number of oscillator quanta involved in the
dressing,

Dk
j (α̃) = α̃k/2

√
j!

( j + k)!
Lk

j (α̃)e− α̃
2 , (11)

and α̃ = (2g/�)2. Here, Lk
j (α̃) are the generalized Laguerre

polynomials defined by the recurrence relation

Lk
j+1(α̃) = (2 j + 1 + k − α̃)Lk

j (α̃) − ( j + k)Lk
j−1(α̃)

j + 1
, (12)

with Lk
0(α̃) = 1 and Lk

1(α̃) = 1 + k − α̃. For |ε0| < � we fix
l = 0.

For � = ε0, corresponding to l = 1, one finds for the
avoided crossing involving the first and second excited state,
�1

0 = �
√

α̃e−α̃/2. In the limit of small α̃, one can expand the
dressed tunneling splittings in order to obtain the famous Rabi
splitting of the Jaynes-Cummings model which, at resonance,
assumes the value 2h̄g

√
j + 1. Noticeably, in the high-photon

limit, j, j′ → ∞, and for finite j − j′, this dressing by
Laguerre polynomials becomes a dressing by Bessel functions
known for quantum systems under intense electromagnetic
fields [37]. The interplay between quantum and classical ra-
diation is the topic of the next subsection.

B. Driven Rabi model

We include now a drive on the qubit. The picture is en-
riched, with respect to the static case, by the presence of
new resonances and by the modulation induced by the Bessel
functions, which stems from the classical drive, on top of
the Laguerre dressing given by the quantum oscillator, i.e.,
the resonator. The spectrum can now be calculated within a
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dressed Floquet picture, with quasienergies known exactly for
the case � = 0. Similarly to the static case, twofold degenera-
cies now occur when ε0 = l� − mωd. Within leading order

Floquet–Van Vleck perturbation theory in �, the quasienergy
spectrum of the driven, nondissipative Rabi model now reads1

[34]

Em,l
∓,n, j = h̄

[
−

(
n + m

2

)
ωd +

(
j + l

2

)
� − g2

�
+ 1

8

(
ε

(2),m,l
↓,n, j − ε

(2),m,l
↑,n+m, j+l

) ∓ 1

2
�m,l

n, j

]
, (13)

where the indexes n and j denote the Floquet mode and oscillator quantum number, respectively, while m and l give the resonance
condition. The doublets’ amplitudes are now given by, cf. Eq. (8),

�m,l
n, j 	

√[
ε0 + mωd − l� + 1

4

(
ε

(2),m,l
↓,n, j + ε

(2),m,l
↑,n+m, j+l

)]2

+ (
�

n+m, j+|l|
n, j

)2
, (14)

where the diagonal corrections read

ε
(2),m,l
↓/↑,n, j =

∞∑
p = −∞
p �= −m

∞∑
k = − j
k �= ±l

(
�

n+p, j+k
n, j

)2

ε0 + pωd ∓ k�
. (15)

The tunneling elements are further dressed by Bessel func-
tions as

�
n′, j′
n, j = Jn′−n(εd/ωd )� j′

j , (16)

with �
j′
j defined in Eq. (10). Noticeably, the bare tunneling

splitting is now dressed by both quanta of the resonator and of
the driving microwave radiation.

At the symmetry point, ε0 = 0, the resonances still occur
when mωd 	 l�. For example, in the case m = 1, l = 2, one
finds avoided crossings with tunneling splitting �

n+1, j+2
n, j =

J1(εd/ωd )� j+2
j . As we shall see in Sec. V, these resonances

dominate the low-energy transmission of the driven Rabi
model for the chosen parameter set. Before this, we illustrate
in the coming section how to relate the qubit transmission
spectra, namely the spectral properties of the Rabi model as
probed in the experimental setup, see Figs. 1(c) and 1(d), to
the steady-state response of the qubit.

IV. TRANSMISSION

In actual experiments, see Fig. 1(c), the probe field V p
in(t ) =

fZεp cos(ωpt ) is applied to the qubit via an external transmis-
sion line. Following [25,69], the corresponding transmitted
field is Vtransm(t ) = V p

in(t ) − f Ṗ(t )/2, where P(t ) := 〈σz(t )〉
is the so-called qubit population difference in the localized
qubit basis. The proportionality constants fZ and f depend
on the details of the experimental setup and have dimensions
of a magnetic flux. In terms of the Fourier-transformed probe
and transmitted fields calculated at the probe frequency, the
transmission is defined as the square modulus of the complex
coefficient

T (ωp) = Ṽtransm(ωp)/Ṽ p
in(ωp). (17)

At the steady state, the population difference has the period
of the probe, also in the presence of a high-frequency drive,

1We keep the same convention for the indexes as in [11].

provided that we average over its period 2π/ωd the kernels
of the exact generalized master equation (GME) for P(t ); see
Appendix B. Expanding in Fourier series the time-periodic
asymptotic population difference Pas(t ) = limt→∞ P(t ) as2

Ṗas(t ) =
∑

m

−imωp pme−imωpt , (18)

where

pm = ωp

2π

∫ π/ωp

−π/ωp

dt Pas(t )eimωpt , (19)

we find for the transmission at the probe frequency ωp, within
linear response to the probe field,

T (ωp) = 1 + iN h̄ωpχ (ωp), (20)

where N = f / fZ and χ (ωp) = p1/h̄εp. Hence, the theoretical
quantity of interest is the linear susceptibility evaluated at the
probe frequency. Its form depends on the considered dissi-
pation regime. In the next subsection we provide an explicit
approximate expression for the response function.

Linear susceptibility within the NIBA

Within the NIBA [20,21,70], the GME that describes the
driven, dissipative qubit dynamics yields an analytical ex-
pression for the linear susceptibility χ (ωp), see Appendix C,
which is nonperturbative in the qubit-baths coupling. It reads

χ (ωp) = (h̄ωp)−1

−iωp + k̂+
0 (−iωp)

[
κ̂−

+1(0) − κ̂+
+1(0)

k̂−
0 (0)

k̂+
0 (0)

]
,

(21)
where the GME kernels are defined as

k̂±
0 (λ) =�2

∫ ∞

0
dτ e−λτ e−Q′(τ )c±[Q′′(τ )]

× J0

[
2εd

ωd
sin

(ωdτ

2

)]
c±(ε0τ ),

κ̂±
1 (0) = ∓ �2

∫ ∞

0
dτ eiωpτ/2e−Q′(τ )c±[Q′′(τ )]

× J0

[
2εd

ωd
sin

(ωdτ

2

)]
sin(ωpτ/2)c∓(ε0τ ), (22)

2Note the different convention used for the signs with respect to
Ref. [25].
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FIG. 2. Transmission spectra of the static system with resonator frequency � = 1.5� and different values of the qubit-resonator coupling
g. The transmission is evaluated using Eq. (20) with N chosen differently for each plot in order to have the minimum of the transmission
assuming the value |T |2 	 0. (a) Weak dissipation: The susceptibility χ (ωp) is calculated using the approach of [58] with dephasing rates
from the Bloch-Redfield master equation in the dressed basis of the USC system. The dashed white lines are the transition energies between
the ground and the first excited states of the closed Rabi model obtained by numerical diagonalization. The resonator’s Hilbert space is
truncated to the first 10 energy levels. (b) Strong dissipation: The susceptibility is calculated with the path-integral approach within the NIBA,
Eq. (21), starting from the effective bath mapping in Eq. (4). The dashed lines are given by the frequency gaps �̃l

0, Eq. (24), with l = 0, ±1.
In both panels the cutoff frequency of the qubit bath is ωc = 10� and temperature is kBT = 0.1h̄� for both baths.

with c+(x) = cos(x) and c−(x) = sin(x); see also [25,37,57].
Here, J0(x) is the Bessel function of the first kind [71],
which stems from averaging the kernels over the drive period;
see Appendix D. The baths’ correlation function is the sum
Q(t ) = ∑

ν Qν (t ), where

Qν (t ) =
∑

ν

∫ ∞

0
dω

Gν (ω)

ω2

×
[

coth

(
h̄ωβν

2

)
(1 − cos ωt ) + i sin ωt

]
, (23)

with βν := (kBTν )−1 the inverse temperature of bath ν. Ex-
plicit expressions for Qν (t ) are provided in Appendix B.

The NIBA is perturbative in the qubit splitting � and
provides accurate results in the case of zero bias, ε0 = 0,
and in the presence of a finite bias for sufficiently strong
dissipative coupling and/or high temperatures. This is due
to the enhanced downward renormalization of � by increas-
ing α and to the fact that the real parts of the correlation
functions Q(t ) suppress effectively the time-nonlocal corre-
lations in the two-state path integral, rendering the present
NIBA treatment appropriate [21]. These considerations hold
for both the Ohmic and the effective structured bath acting
on the qubit; see Eqs. (B5)–(B10). In the presence of a high-

frequency drive, the additional drive-induced renormalization
of the qubit parameter �, Eq. (16), extends the reach of this
approximation scheme to regimes of lower dissipation. The
NIBA has been applied in the presence of multiple baths,
notably in the context of heat transport; see, e.g., [72–75].

In the following, for the case of a biased qubit and weak
dissipation or low temperatures, we use a weak damping mas-
ter equation approach. The NIBA is used for strong dissipation
and in the presence of a drive in its range of applicability,
which includes the unbiased case at weak dissipation. Trans-
mission spectra of the static and driven setup are shown in the
following section for both dissipation regimes.

V. TRANSMISSION SPECTRA

In the following, we show the results for the transmission
with the probe on the qubit, Eq. (20), with the resonator
frequency set to � = 1.5�, both in the static case and in
the presence of the drive on the qubit. In the latter setting,
we fix the drive frequency to the value ωd = 2.7�. In order
to see how the picture of the static Rabi model is impacted
by a classical drive on the qubit, we start by showing in
Fig. 2 the static case in two dissipation regimes, which in turn
provides insight on the effect of dissipation on the spectra.
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In the first, where the USC system is weakly coupled to the
environment, we calculate the susceptibility χ (ωp) using
the approach developed in [58] with dephasing rates from the
Bloch-Redfield master equation calculated in the dressed ba-
sis of the USC system. In the other regime considered, which
is of strong dissipation, we use the path-integral approach
within the NIBA, Eqs. (21)–(23), for the spin-boson model
with the effective bath mapping, Eq. (4). For both cases, we
consider three values of the qubit-resonator coupling, namely
g/� = 0.2, 0.5, and 1, the latter two being well into the USC
regime. The picture that emerges from the spectra differs, es-
pecially at strong dissipation, from the standard spectroscopy
of USC systems, where the transmission of a weakly dis-
sipative USC system is recorded by probing the resonator
[13]; see Appendix E for a comparison. In our transmission
measurement protocol, which essentially measures the qubit
operator σz, the transmission is given by the difference in
populations of the states |↑〉, |↓〉 of the qubit basis. As such,
the resonator is traced out from the dynamical response of
the system, its presence being reflected in the pattern of
resonances involving qubit and resonator. Qualitatively, this
leads to a spectrum resembling the one of the qubit alone,
with a principal feature, a pronounced dip centered at ε0 = 0,
which is faithfully reproduced by the transition frequency �̃0

0
that is renormalized by the Ohmic bath acting on the qubit.
There are, however, two major modifications that are peculiar
to the Rabi model. (i) Emission and absorption of l oscilla-
tor quanta produce sidebands of the main spectral features.
(ii) Avoided crossings are visible at weak dissipation, where
the environment-induced renormalization of the bare qubit
splitting � and oscillator frequency � are negligible, which
signals the strong resonator-qubit entanglement, according to
Eqs. (7) and (8).

For our analysis, we introduce the bath-renormalized tran-
sition frequencies

�̃l
j = (

Ẽ l
+, j − Ẽ l

−, j

)/
h̄, (24)

see Eqs. (7) and (8), where Ẽ l
±, j give the eigenenergies [or

quasienergies, with appropriate additional indexes, Eq. (13)]
of the closed Rabi model around the bias point ε0 = l�. When
comparing with the NIBA results, these renormalized energies
are calculated by substituting the bare qubit splitting � with
its dissipation-renormalized version: � → �T , where �T =
�r (2πkBT/h̄�r )α1 and �r = �(�/ωc)[α1/(1−α1 )] [21].

In the absence of the resonator, the principal dip at zero
static bias would occur at ωp ∼ � for weak dissipation, with
a downward renormalization for increased system-bath cou-
pling; see Fig. 2 of Ref. [25]. In Fig. 2, the presence of the
(dissipative) resonator moves this principal feature toward
lower frequencies upon increasing g. This effect can be un-
derstood in terms of the renormalization of � by Laguerre
polynomials discussed in Sec. III A, see Eq. (10), which
yields the spectrum of the Rabi model. Thus, now the main
dip is centered at ωp = �̃0

0|ε0=0 	 �T exp(−α̃/2), where α̃ =
(2g/�)2. Here and in what follows, we neglect for simplicity
the second-order corrections ε

(2),l
↓/↑, j , Eq. (9).

The avoided crossings present at weak dissipation,
Fig. 2(a), are given by the difference between the transi-
tion energies E2 − E0 and E1 − E0 at ε0 = �, namely by the

dressed tunneling element E2 − E1 = E1
+,0 − E1

−,0 	 |�1
0| =

�α̃1/2 exp(−α̃/2)/
√

2, see Eqs. (7) and (10), showing a non-
monotonic behavior with respect to g. This nonmonotonicity
is more evident at resonance (see Fig. 6). The crossing pattern
at strong dissipation, Fig. 2(b), in the region ε0 ∼ 0 is well
reproduced by the frequency gaps �̃0

0 and �̃±1
0 which render

the transitions |↑〉 ↔ |↓〉 with the oscillator in a fixed state
l , adiabatically following the qubit transitions [10], which is
consistent with a strongly suppressed qubit splitting. We note
that the avoided crossings are suppressed by dissipation. Fig-
ure 2 shows that, in the static case, there is no response from
the qubit outside the region |ε0| � ωp. This is because, con-
trary to the driven case, see Fig. 3, the weak probe does not in-
duce qubit transitions as its frequency cannot match the qubit

frequency gap
√

�2
T + ε2

0 . In Appendix F, we compare, in an
intermediate-dissipation regime, the results from the two dif-
ferent approaches used here. Both treatments well reproduce
the main resonance involving the ground/first excited state
transition. However, in agreement with the findings in Fig. 2,
strong differences appear for the higher-lying excitations.

A similar, though richer, picture is revealed by Fig. 3,
where we consider the spectra in the same strongly dissipative
setting of Fig. 2(b) in the presence of the drive, for three
values of the drive amplitude εd, the first being εd = 0 for
reference. While varying εd, we fix the coupling to g = 0.5�.
Here, additional renormalization of � with appropriate Bessel
functions is expected; see Eqs. (14) and (16). For the main
transmission dip, the zero-order Bessel function is involved,
and its location is found to be at

ωp = �̃0,0
0,0|ε0=0 	 |�T exp(−α̃/2)J0(εd/ωd )|. (25)

In the resulting set of spectra, the drive amplitude εd takes
the role played by g in the static case, in that εd tunes the
frequency of the main transmission dip and the size of the
drive-induced avoided crossings. A detailed account of this
effect for zero static bias is provided in Fig. 4(b). Additional
features emerge in the driven case displayed in Fig. 3 which
are due to multiple resonances of the bias with the drive
frequency. These resonances yield replicas of the Rabi pattern,
in the form of sidebands, reproduced by the transition fre-
quencies �̃00

0,0, �̃
0,±1
0,0 , �̃±1,0

0,0 , �̃1,1
0,0, and �̃−1,−1

0,0 , the last three
involving the drive frequency ωd; see Eqs. (13) and (14).
An interesting feature emerging by comparison of the central
and the right panels of Fig. 3 is that, while the central pat-
tern fades for increased drive amplitude, the side replicas are
enhanced, as the strong drive is able to induce these multipho-
ton transitions (which are absent in the probe-only spectra).
Mathematically, this is due to the fact that, depending on the
bias, the dressed tunneling element is modulated by Bessel
functions Jn(x) with different index n. In the case of Fig. 3,
the central pattern, ε0 ∼ 0, is modulated by J0(εd/ωd ) and the
side replicas by J1(εd/ωd ).

Such Bessel pattern is highlighted in Fig. 4. In panel (a),
the qubit transmission in the driven case is shown as a func-
tion of the static bias and of the drive amplitude, displaying
the V-shaped trace centered at zero bias. The modulation by
J0(εd/ωd ) causes the suppression of the qubit response at zero
bias when the first zero of J0 is reached. The plot shows the
system’s response at a specific probe frequency ωp. By setting
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FIG. 3. Transmission spectra of the driven system at strong dissipation. The qubit-resonator coupling is fixed to g = 0.5� and three values
of the drive amplitude are considered. From left to right: εd/� = 0, 2, and 4. The remaining parameters are as in Fig. 2(b). Note that the panel
on the left (static case) coincides with the central panel of Fig. 2(b) with the frequency gaps �̃l

0 given by Eq. (24). The drive frequency is fixed
to the value ωd/� = 2.7. We note that increasing the driving strength has the twofold effect of downward-renormalizing the frequency of the
principal dip a zero bias, similarly to what happens as g is increased in the static system [see Fig. 2(b)], and of creating a pattern of multiphoton
resonances described by �̃m,l

0,0 [dashed lines, Eqs. (14) and (24)]. The golden dashed lines, m �= 0, involve the drive frequency ωd.

the static bias to zero, we study in Fig. 4(b) the full spectrum
vs the drive amplitude at weak dissipation, a regime where the
NIBA is reliable for ε0 = 0 [65]. Such spectrum reveals that
the renormalized transition frequency �̃0

0 follows the Bessel
pattern induced by J0(εd/ωd ) as suggested by Eq. (16).

The same is true for both panels of Fig. 5, where we
show the spectrum at zero static bias as a function of the
qubit-resonator coupling strength, for εd = 0 and εd = 4�. In
panel (a), the features in the transmission are reproduced by
the transition frequencies in Eq. (8) with � → �T . Panel (b)
of Fig. 5 shows that the condition l = 0 at zero bias, used for
the spectrum of the static system, is no more generally true.
Indeed, as can be seen from Eq. (14), the drive introduces
novel resonance conditions with l �= 0, i.e., when l� 	 mωd.
In turn, this allows the contribution of dressed tunneling

elements of the type �
n+m, j+l
n, j . By inspection of Eqs. (10)

and (13)–(16), we see that, if m = 1 and l = 2, the dress-
ing involves J1(εd/ωd )α̃L2

j (α̃) exp(−α̃/2), which, already for
j = 0, yields a nonmonotonic behavior of the corresponding
resonance with respect to α̃ = (2g/�)2. The combined effect
of the different resonances in the presence of the driving at
ε0 = 0 is the splitting of the main resonance in Fig. 5(b).
This feature is not visible in the absence of driving, Fig. 5(a),
because l = 0 and the resulting dressed tunneling element �

j
j

in Eq. (8) yields a simple exponential suppression.

VI. CONCLUSIONS

We have theoretically investigated the transmission spectra
of the driven, dissipative Rabi model in the USC regime.

FIG. 4. Bessel pattern from drive-induced renormalization of the resonances. (a) Transmission as a function of the static bias ε0 and of the
drive amplitude εd, at fixed probe frequency ωp/� = 0.55 and with α1 = 0.1 and κ = 0.05. (b) Transmission spectrum, as a function of the
drive amplitude, for ε0 = 0, at lower dissipation strength, α1 = 0.05 and κ = 0.005. For both panels, the remaining parameters are as in Fig. 3.
The solid and dashed curves in panel (b) are given by the renormalized transition frequencies �̃0,l

0,0, see Eqs. (14) and (24), where in the present
unbiased case, �̃0,+1

0,0 = �̃0,−1
0,0 . In the transition frequency �̃0,0

0,0 it is clearly visible the Bessel pattern induced by the function J0(εd/ωd ) due to
the drive; see Eq. (25). In particular, the dip at εd/ωd ≈ 2.4 corresponds to the first zero of such Bessel function.
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FIG. 5. Laguerre renormalization at ε0 = 0. Transmission at zero bias vs the qubit-resonator coupling g. (a) Static case, εd = 0. (b) Driven
case with εd = 4�. For both panels the other parameters are as in Fig. 4(b). Panel (a) displays, in the transition �̃0

0, the Laguerre pattern from
L0. In panel (b), the splitting of the resonance is given by higher order Laguerre polynomials stemming from the interplay of the resonator with
the drive [34]. The frequencies �̃m,l

n, j are given by Eq. (14) with the substitution � → �T .

While transmission spectra generically carry information
about spectral properties of the underlying quantum system
being probed, the intensity and even the presence of reso-
nance features crucially depend on which part of the system is
coupled to the probe signal. Recent experiments by Yoshihara
et al. [13] have provided spectroscopic data of the (undriven)
Rabi model in the deep USC regime, with the probe on the
resonator. In the setup considered in this work, the probe
couples to the qubit. Hence, the relevant observed quantity
is the population difference between the qubit’s supercurrent
states. This in turn implies, especially at strong dissipation, a
different spectral response than so far reported in the literature
[13,14]. To highlight the differences between the two probe
settings, a comparison is provided in Appendix E; see also the
experimental spectra in Figs. 2 and 3 of Ref. [13].

When probing the qubit, the strong coupling to the quan-
tized resonator leads to sidebands in the spectrum, reflecting
multiple absorption or emission of resonator’s quanta. Fur-
thermore, the doublet structure of the Rabi system is reflected
in avoided crossings between subbands. When the drive is
present, additional photon sidebands appear which also dis-
play avoided crossings. An advantage of this setup is the
possibility of tuning the light-matter coupling in a continuous
way. Indeed, the size and position of the avoided crossings
depend on both the driving parameters as well as on the
qubit-resonator coupling strength. Characteristic Bessel and
Laguerre evolutions upon varying the driving and coupling
strength witness the interplay between the classical drive and
the resonator in the nonequilibrium steady-state response of
the qubit.

The platform studied in this work is also suited for inves-
tigating the phenomenon of photon blockade [76,77], where
a coherent drive on a cavity coupled to an artificial atom,
the resonator-qubit system in our case, produces an out-
put of single photons. Such a nonclassical resonator output
can be detected by measuring the photon-photon correlation
function g(2)(t ) [78,79]. This phenomenon has been inves-
tigated in standard cavity-QED models described by the
Jaynes-Cummings Hamiltonian [80,81] and the effects of
the ultrastrong qubit-resonator coupling have been studied in

[79,82]. Since the phenomenon is ultimately due to the non-
linearity of the artificial atom, it is reasonable to expect that
a similar emission would be observed by coherently driving
(and probing) the qubit. In support of this expectation, the
experiment carried out in [83] already demonstrated photon
blockade by a single qubit. Although the method used here is
not suited for capturing the correlation function of the qubit
output, an extension of the formalism in this direction could
allow for studying how the phenomenon of photon blockade
in a dissipative Rabi system is affected by driving and probing
the qubit.

In summary, we presented theoretical predictions for the
spectroscopy of the driven, dissipative Rabi model. Our results
provide insight and tools to investigate the physics of USC
systems. Furthermore, they can be used to optimize the design
of future experiments and for the interpretation of spectro-
scopic results.
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APPENDIX A: CALDEIRA-LEGGETT HAMILTONIAN
AND SPECTRAL DENSITY FUNCTION

The Caldeira-Leggett model [60,61] describes an open sys-
tem bilinearly interacting via the operator X̂ with a heat bath
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of harmonic oscillators

HCL = P̂2

2M
+ V (X̂ ) + 1

2

N∑
j=1

[
p̂2

j

m j
+ mjω

2
j

(
x̂ j − c j

mjω
2
j

X̂

)2]
.

(A1)

The interaction term is X̂
∑

j c j x̂ j and the spectral density
function J (ω) is defined as

J (ω) = π

2

N∑
j=1

c2
j

m jω j
δ(ω − ω j ). (A2)

For a bosonic bath we have x̂ j = √
h̄/2mjω j (a j + a†

j ).
Introducing the dimensionless system position operator
Q̂ := X̂/X0 we can write

HCL = HS +
∑

l

h̄ω ja
†
j a j − Q̂

∑
j

h̄λ j (a j + a†
j ) + A2,

(A3)

where A2 is proportional to the square of X̂ . If the open system
is a qubit, this term is a constant since σ 2

z = 1 while for a har-
monic oscillator it constitutes a nonlinear term which ensures
position-independent friction [21]. In Eq. (A3), we introduced
the coupling with dimension of an angular frequency

λ j = X0√
2h̄m jω j

c j .

In the context of the spin-boson model, it is also customary to
define the modified spectral density function

G(ω) :=
N∑

j=1

λ2
jδ(ω − ω j ) = X 2

0

π h̄
J (ω). (A4)

For an Ohmic bath, in the continuum limit, J (ω) = Mγω,
where the friction coefficient γ coincides with the memory-
less friction kernel in the corresponding generalized Langevin
equation for the operator X̂ .

(i) If the system coupled to the bath is a harmonic os-
cillator then X̂ = X0(B† + B), with X0 = √

h̄/2M�. Setting
G(ω) = κω, Eq. (A4) yields κ = Mγ X 2

0 /(π/h̄) and we can
identify γ = 2πκ�.

(ii) For a qubit coupled to the Ohmic bath the coupling
coordinate is X̂ = (X0/2)σz, where X0 is the interwell distance
[21]. The spin-boson spectral density function is defined as
G(ω) = 2αω. From Eq. (A4) we have α = Mγ X 2

0 /(2π/h̄).

APPENDIX B: THE DRIVEN, DISSIPATIVE
RABI MODEL WITHIN NIBA

As shown in Sec. IV, the transmission is related to the
response of the qubit to the probe field via the population
difference P(t ) = 〈σz(t )〉, i.e., the expectation value of σz,
expressed in the localized (flux) states of the qubit. An exact
formal expression for P(t ) in the presence of external heat
baths, the Ohmic bath and the dissipative resonator in our
case, and of a classical time-dependent drive is found within
the path-integral representation of the qubit reduced dynamics
[84,85].

The time evolution of the population difference can be
given in terms of an exact generalized master equation (GME)

which reads [21,37]

Ṗ(t ) =
∫ t

t0

dt ′[K−(t, t ′) − K+(t, t ′)P(t ′)]. (B1)

In the presence of the time-dependent bias in Eq. (2), a closed
form for the kernels of the GME (B1) is obtained within the
noninteracting blip approximation (NIBA) [20,70]. The NIBA
kernels are nonperturbative in the dissipation strength and the
drive and read [37]

K+(t, t ′) = h+(t − t ′) cos [ζfull (t, t ′)],

K−(t, t ′) = h−(t − t ′) sin [ζfull (t, t ′)],
(B2)

with the dynamical phase reading

ζfull(t, t ′) =
∫ t

t ′
dt ′′ ε(t ′′)

= ε0(t − t ′) + εp

ωp
[sin(ωpt ) − sin (ωpt ′)]

+ εd

ωd
[sin(ωdt ) − sin (ωdt ′)], (B3)

and where

h+(t ) = �2e−Q′(t ) cos[Q′′(t )],

h−(t ) = �2e−Q′(t ) sin[Q′′(t )]. (B4)

The baths’ correlation function Q(t ) is the sum of the contri-
butions from the different baths, Q(t ) = ∑

ν Qν (t ) [72]. In our
model, Q(t ) = Q1(t ) + Q2(t ), where the contribution from
the Ohmic bath with exponential cutoff, acting directly on the
qubit (ν = 1), is, in the so-called scaling limit [21],

Q′
1(t ) = 2α1 ln

[√
1 + ω2

ct2
sinh[πt/(h̄β1)]

πt/(h̄β1)

]
, (B5)

Q′′
1 (t ) = 2α1 arctan(ωct ). (B6)

Applying Eq. (23) to the spectral density function G2(ω),
Eq. (5), one obtains for the effective bath of the dissipative
resonator (ν = 2) [56,57,65]

Q′
2(t ) = Xt + L(e−γ t/2 cos �̄τ − 1)

−Ze−γ t/2 sin �̄t + Q′
Mats(t ), (B7)

Q′′
2 (t ) = πα2 − e−γ t/2πα2(cos �̄t + N sin �̄t ), (B8)

with X = 2πα2kBT/h̄ and �̄ =
√

�2 − γ 2/4 and where

N = γ 2/2 − �2

γ �̄
,

L = πα2
N sinh (β h̄�̄) + sin (β h̄γ /2)

cosh (β h̄�̄) − cos (β h̄γ /2)
,

Z = πα2
sinh (β h̄�̄) − N sin (β h̄γ /2)

cosh (β h̄�̄) − cos (β h̄γ /2)
. (B9)

The term Q′
Mats(t ) is the following series over the Matsubara

frequencies νn := n 2πkBT/h̄:

Q′
Mats(t ) = 4πα2

�4

h̄β

+∞∑
n=1

1(
�2 + ν2

n

)2 − γ 2ν2
n

[
1 − e−νnt

νn

]
.

(B10)
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APPENDIX C: LINEAR SUSCEPTIBILITY IN THE
PRESENCE OF A HIGH-FREQUENCY DRIVE

Averaging the kernels in Eq. (B2) over a drive period Td =
2π/ωd, we make the substitution K±(t, t ′) → K±

d (t, t ′) in the
GME, where

K+
d (t, t ′) = h+

d (t − t ′) cos [ζ (t, t ′)],

K−
d (t, t ′) = h−

d (t − t ′) sin [ζ (t, t ′)],
(C1)

with the dynamical phase ζ (t, t ′) which is now independent
of the drive, as it contains exclusively the static bias and the
time-dependent probe

ζ (t, t ′) = ε0(t − t ′) + εp

ωp
[sin(ωpt ) − sin (ωpt ′)]; (C2)

cf. Eq. (B3). The drive is taken into account effectively by the
functions

h+
d (t ) = �2e−Q′(t ) cos[Q′′(t )]J0

[
2εd

ωd
sin

(ωdt

2

)]
,

h−
d (t ) = �2e−Q′(t ) sin[Q′′(t )]J0

[
2εd

ωd
sin

(ωdt

2

)]
. (C3)

The Bessel function can be expanded in Fourier series as

J0

[
2εd

ωd
sin

(ωdt

2

)]
=

∑
n

J2
n (εd/ωd )e−inωdt . (C4)

Due to the effect of the monochromatic probe, we assume
the asymptotic population difference Pas(t ) to be periodic with
the period of the probe. The function Pas(t ) is the solution of
the GME for t0 → −∞, namely

Ṗas(t ) =
∫ t

−∞
dt ′[K−

d (t, t ′) − K+
d (t, t ′)Pas(t

′)]

=
∫ ∞

0
dτ [K−

d (t, t − τ ) − K+
d (t, t − τ )Pas(t − τ )].

(C5)

The NIBA kernels are periodical in t with the periodicity of
the probe, and can be expanded in Fourier series as

K±
d (t, t − τ ) =

∑
m

k±
m (τ )e−iωpt , (C6)

where

k±
m (τ ) = ωp

2π

∫ π/ωp

−π/ωp

dt K±
d (t, t − τ )eimωpt . (C7)

Defining c+(x) = cos(x) and c−(x) = sin(x), from Appendix
D, we can write for m = 0, 1

k±
0 (τ ) =h±

d (τ )c±(ε0τ ),

k±
1 (τ ) = ∓ εp

ωp
eiωpτ/2h±

d (τ ) sin(ωpτ/2)c∓(ε0τ ),
(C8)

which are of order 0 and 1, respectively, in the ratio εp/ωp.
Under the assumption that the memory time of the kernels

is finite, tmemory < ∞, so that when the kernels are different
from zero the asymptotic population different is already at the

steady state, P(t ) = Pas(t ), we Fourier-expand Pas(t ) on the
left-hand side and inside the integral in the GME (C5).
The latter adopts the form∑

m

−imωp pme−imωpt

=
∫ ∞

0
dτ

∑
m

k−
m (τ )e−imωpt

−
∫ ∞

0
dτ

∑
m,n

k+
m (τ )e−i(m+n)ωpt pneinωpτ .

Defining

k̂±
m (λ) =

∫ ∞

0
dτ e−λτ k±

m (τ ), (C9)

Eq. (C9) reads∑
m

−imωp pme−imωpt

=
∑

m

k̂−
m (0)e−imωpt −

∑
m,n

k̂+
m (−inωp)pne−i(m+n)ωpt .

(C10)

Taking the component at frequency ωp,

− iωp p1 = k̂−
+1(0) −

∑
m+n=1

k̂+
m (−inωp)pn. (C11)

Since k̂m(λ) ∝ (εp/ωp)|m|, see Eq. (C8), we have

p1(ωXp) = 1

−iωp + k̂+
0 (−iωp)

[
k̂−
+1(0) − k̂+

+1(0)p0
]

+ O[(εp/ωp)2]. (C12)

Taking the zero-frequency component of Eq. (C9),

0 = k̂−
0 (0) − k̂+

0 (0)p0 + O(εp/ωp).

Thus, to the lowest order in the probe amplitude [37,86],

p1(ωp) = 1

−iωp + k̂+
0 (−iωp)

[
k̂−
+1(0) − k̂+

+1(0)
k̂−

0 (0)

k̂+
0 (0)

]
,

(C13)

where, from Eqs. (C8) and (C9),

k̂±
0 (λ) =

∫ ∞

0
dτ e−λτ h±

d (τ )c±(ε0τ ),

k̂±
1 (0) = ∓ εp

ωp

∫ ∞

0
dτ eiωpτ/2h±

d (τ ) sin(ωpτ/2)c∓(ε0τ ).

(C14)

The corresponding expression for the linear susceptibility
χ (ωp) = p1(ωp)/h̄εp is given in Eq. (21). This expression is
the one used throughout the present work.
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Markovian limit

For completeness we also give the susceptibility in the
Markovian limit, namely when the decay time of the kernels is
much shorter than the relevant timescales of variation of P(t ).
In this case,

Ṗas(t ) =
∫ ∞

0
dτ K−

d (t,−τ ) −
∫ ∞

0
dτ K+

d (t, t − τ )Pas(t ).

(C15)
By expanding the kernels in Fourier series we obtain the
equation∑

m

−imωp pme−imωpt

=
∑

m

k̂−
m (0)e−imωpt −

∑
m,n

k̂+
m (0)pne−i(m+n)ωpt , (C16)

whose component at frequency ωp is now

−iωp p1 = k̂−
+1(0) −

∑
m+n=1

k̂+
m (0)pne−i(m+n)ωpt

	 k̂−
+1(0) − k̂+

+1(0)p0 − k̂+
0 (0)p+1 − k̂+

+2(0)p−1.

(C17)

As a result, in the Markovian limit and to the lowest order in
εp/ωp, we have

p1(ωp) = 1

−iωp + k̂+
0 (0)

[
k̂−
+1(0) − k̂+

+1(0)
k̂−

0 (0)

k̂+
0 (0)

]
.

(C18)

APPENDIX D: CALCULATION OF k±
m(τ )

We express the dynamical phase in Eq. (C2) as

ζ (t, t − τ ) =ε0τ + εp

ωp
{sin(ωpt ) − sin [ωp(t − τ )]}

= ε0τ + 2
εp

ωp
cos(ωpt − φτ ) sin(φτ )

= ε0τ + E (t, τ ), (D1)

where φτ := ωpτ/2. Using the notation c+(x) := cos(x) and
c−(x) := sin(x), the functions of the dynamical phase in
Eq. (C1) read

c±[ζ (t, t − τ )] = c±(ε0τ )c+[E (t, τ )] ∓ c∓(ε0τ )c−[E (t, τ )].
(D2)

As a result,

k±
m (τ ) = ωp

2π

∫ π/ωp

−π/ωp

dt K±
d (t, t − τ )eimωpt

= h±
d (τ )

ωp

2π

∫ π/ωp

−π/ωp

dt c±[ζ (t, t − τ )]eimωpt

= h±
d (τ )[c±(ε0τ )F+

m (τ ) ∓ c∓(ε0τ )F−
m (τ )], (D3)

where

F±
m (τ ) = ωp

2π

∫ π/ωp

−π/ωp

dt eimωpt c±[E (t, τ )]

= eimφτ

2π

∫ π−φτ

−π−φτ

dx c±
[

2εp

ωp
cos(x) sin(φτ )

]
eimx

= eimφτ

2π

∫ π

−π

dx c±[z cos(x)]eimx, (D4)

with x := ωpt − φτ and z := 2εp sin(φτ )/ωp. In the last line
we have shifted the integration domain (of length one period)
exploiting the periodicity of the integrand. Since only the even
part of the integrand contributes to the integral in Eq. (D4), we
can write the latter as [71]

F±
m (τ ) = eimφτ

π

∫ π

0
dx c±[z cos(x)]i(1∓1)/2c±(mx)

= eimφτ

2π

∫ π

0
dx[eiz cos(x) ± e−iz cos(x)]c±(mx)

= eimφτ im−(1∓1)/2 Jm(z) ± Jm(−z)

2
, (D5)

where Jm is the Bessel function of order m which has the parity
Jm(−z) = (−1)mJm(z). As a result

F+
m (τ ) =

{
imeimωpτ/2Jm

[
2εp

ωp
sin

(ωpτ

2

)]
, m even,

0, m odd,
(D6)

and

F−
m (τ )=

{
0, m even,

im−1eimωpτ/2Jm

[
2εp

ωp
sin

(ωpτ

2

)]
, m odd.

(D7)

To lowest order in z we have Jm(z) 	 (z/2)m. Then, substitut-
ing the above expressions for F±

m (τ ) into Eq. (D3), we obtain

k±
m (τ ) 	 h±

d (τ )

×
⎧⎨
⎩

imeimωpτ/2
[

εp

ωp
sin

(ωpτ

2

)]m
c±(ε0τ ), m even,

∓im−1eimωpτ/2
[

εp

ωp
sin

(ωpτ

2

)]m
c∓(ε0τ ), m odd,

(D8)

to lowest order in εp/ωp.

APPENDIX E: COMPARISON WITH THE PROBE ON THE
RESONATOR

In contrast to the situation addressed in the present work,
where the qubit is probed, standard spectroscopy on USC sys-
tems [13] is performed by probing the resonator, namely the
operator X̂ that couples to the transmission line is proportional
to resonator position operator, X̂ ∝ B† + B. In order to high-
light the differences in the spectra, in Fig. 6 we compare the
transmission for the two probe settings in the weak-dissipation
regime. As done in Fig. 2(a), the qubit susceptibility is calcu-
lated according to the approach in [58] with dephasing rates
from the Bloch-Redfield master equation in the dressed basis
of the USC system. The spectra are shown for the same set
of values of the qubit-resonator coupling as in Fig. 2, but this
time at resonance, � = �. In both probe settings, the spectra
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FIG. 6. Transmission spectra of the static system in the weak-dissipation regime (α1 = κ = 0.005) at resonance, � = �, for different
values of the qubit-resonator coupling g. (a) Probe on the qubit. (b) Probe on the resonator. For both panels, the transmission is evaluated using
Eq. (20) and the susceptibility is calculated using the approach of [58] with dephasing rates within a Bloch-Redfield master equation approach.
The white (orange) dashed lines mark the numerically evaluated transition energies between the ground (first excited) and the higher excited
states. The remaining parameters are the same as in Fig. 2(a).

display resonances corresponding to the transition energies
of the Rabi model, with a linewidth given by the decoher-
ence rates, and no environment-induced renormalization of
the resonances’ positions, which is neglected by the theory
and assumed to be small. The results for the probe on the
qubit, Fig. 6(a), display complementary features with respect
to the ones obtained with the probe on the resonator, Fig. 6(b).
In the first setting, similarly to Fig. 2, resonances are sup-
pressed outside the region ωp > |ε0|. On the contrary, when
the probe is on the resonator the horizontal features, which
are insensitive to changes in the static bias, are the most pro-
nounced. We also note that the qubit spectrum with the largest
qubit-resonator coupling, g = � in Fig. 6(a), resembles the
ones at strong dissipation in Fig. 2(b). The reason is the strong
renormalization effect on the bare qubit splitting �, in this
case exerted by the resonator at resonance, which depends on
the ratio g/�; see Eq. (11).

APPENDIX F: INTERMEDIATE-DISSIPATION REGIME

In Fig. 7, we compare the results from the weak-dissipation
approach used in Figs. 2(a) and 6 with the ones from the
path-integral approach within NIBA. In both panels (a) and
(b) of Fig. 7 we show, for reference, the numerically evalu-
ated transition energies of the closed Rabi model. Based on

the validity of the NIBA at zero static bias we can make
two observations. First, both approaches reproduce the main
resonance involving the ground/first excited state, as given
by the numerical diagonalization of the closed Rabi Hamil-
tonian, meaning that the bath-induced renormalization of the
quit frequency is not an important effect in the intermediate
regime considered here, α = 0.01 and κ = 0.05. Second, the
weak-coupling approach fails to capture the renormalization
of the resonances involving excited states higher than the first;
see panel (b) of Fig. 7. On the other hand, one would expect
to still be able to observe, even if reduced to some degree, the
avoided crossings present in Fig. 7(a) which are completely
suppressed in the NIBA results of panel (b).

In the intermediate-dissipation regime considered here,
signatures of the bath-induced renormalization of the system’s
bare frequencies and the transition to the strong-dissipation
regime analyzed in Sec. V are expected to be revealed
in the spectra. We note however, that in this intermediate
regime the use of accurate numerical treatments to check the
validity of both approximation schemes might be appropri-
ate. These are, for example, the quasiadiabatic path-integral
approach [52] applied to the spin-boson model with the
effective bath mapping used here for the NIBA, or the matrix-
product state ansatz based on a chain mapping of the full
Hamiltonian [66].
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FIG. 7. Transmission spectra of the static system with probe on the qubit in the intermediate-dissipation regime, α1 = 0.01 and κ = 0.05,
for different values of the qubit-resonator coupling g. For both panels, the transmission is evaluated using Eq. (20) and the susceptibility is
calculated using (a) the approach of [58] with dephasing rates within a Bloch-Redfield master equation approach and (b) the path-integral
approach within NIBA. In both panels, the white dashed lines show, for reference, the numerically evaluated transition energies between the
ground and higher excited states of the closed Rabi model. The remaining parameters are the same as in Fig. 2.
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