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Photon statistics of the light transmitted and reflected by a two-dimensional atomic array
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This work proposes to investigate the photon statistics of the light transmitted and reflected by a two-
dimensional array of interacting atoms. The reflected beam is characterized by photon antibunching. On the
other hand, in the transmitted beam the indistinguishability between the driving laser photons and the photons
reemitted by the atoms results in photon bunching. The overlap between the driving and scattered fields is
enhanced by the cooperative optical response of the atomic array. In the examples used in this paper, up to 25%
of the transmitted photons are grouped in pairs. The simulations are carried out using the stochastic method of
quantum trajectories.
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I. INTRODUCTION

Optical metasurfaces based on subwavelength arrays of
light scatterers offer the possibility of modifying the prop-
erties of light over a scale much smaller than the free-space
wavelength [1,2]. While most applications so far operate in the
classical light regime, there is growing interest in creating op-
tical metasurfaces for quantum technologies [3–5]. Recently,
optical metasurfaces were realized using two-dimensional lat-
tices of periodically spaced atoms [6], with great potential
for quantum information processing [7]. In these systems, the
photon-mediated dipole-dipole interactions cause the atoms
to behave as a collective rather than independently. This co-
operative optical response leads to a number of intriguing
properties. One of the most remarkable effects is that, for
certain lattice spacings, a two-dimensional atomic array can
act as a mirror reflecting most of the electromagnetic energy
of a Gaussian beam [6,8–11]. In addition, this kind of atomic
monolayer exhibits a variety of interesting nonlinear quantum
optical effects, such as optical phase transitions [12], bistable
optical transmission [13], and light-induced spin-spin correla-
tions [14].

The use of optical metasurfaces in quantum technologies
still requires a better understanding of their cooperative opti-
cal behavior [15,16]. Previous works on cooperative optical
phenomena have focused mainly on spontaneous emission
effects such as subradiance, superradiance, directional scatter-
ing, and subradiant excitations [17–30]. These works assume
that the photons emitted by the atoms can be distinguished
from the photons of the driving laser field. However, this
assumption is not always valid for metasurfaces and two-
dimensional atomic arrays (see Fig. 1). Indeed, for certain
lattice spacings, the field scattered by a two-dimensional
atomic array has a spatial mode profile very similar to that
of a focused Gaussian beam [9]. This implies that a large
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fraction of the photons collectively emitted by the atoms
is indistinguishable from the photons of the driving laser
field. This can, in principle, give rise to quantum interference
and entanglement, with important implications for photon
statistics.

The indistinguishability between the driving laser photons
and the photons reemitted into the laser beam mode has an
important effect on photon statistics because it is closely
related to photon absorption and stimulated emission [31].
Indeed, absorption and stimulated emission require an over-
lap between the spatial mode profiles of the driving laser
field and the dipole field of the atom. Interferences between
both fields change over time from destructive to constructive
during a Rabi cycle. When the interference is destructive
(constructive), there is absorption (stimulated emission) [32].
An interesting experiment would be to place a photodetector
in the transmitted beam and to measure the photon statistics
associated with absorption and stimulated emission. Unfortu-
nately, the realization of this experiment with a single atom
involves many technical complications that have not yet been
solved, as it requires focusing the laser beam tightly to the
same size as the absorption cross section of the atom [33,34].
This paper will show that two-dimensional atomic arrays can
facilitate a similar experiment with less demanding focusing
conditions than with a single atom. This is possible thanks to
the cooperative optical response of the atomic array, which
leads to an increased optical cross section.

This paper simulates the photon statistics of the light
transmitted and reflected by a two-dimensional array of in-
teracting atoms in which the spatial mode profiles of the
driving and scattered fields overlap (see Fig. 1). For this
purpose, this paper reformulates the master equation of col-
lective spontaneous emission [35–37] in order to consider
the indistinguishability between the driving laser photons and
the scattered photons in the transmitted beam. A quantum
description of the driving laser is incorporated into the interac-
tion Hamiltonian using the theoretical framework developed
in previous works [38–42]. Simulations are carried out using
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FIG. 1. Sketch of the system. (a) A two-dimensional atom array
in the xy plane is illuminated by a resonant laser beam propagating
in the z direction. The incoming beam is focused on the plane of
the array. The incoming energy (I) splits into a reflected beam (R)
and a transmitted beam (T). A few photons are scattered (S) in
all directions. (b) Hexagonal geometry with N = 13. The atomic
separation is d . (c) Hexagonal geometry with N = 19.

a quantum trajectory algorithm [35,43–45]. The interference
between the driving and scattered fields results in the genera-
tion of photon bunching in the transmitted beam. Interestingly,
the photon statistics in the atomic array is very similar to that
caused by the processes of absorption and stimulated emission
in a single atom. The recent developments of two-dimensional
atomic arrays with an enhanced optical cross section [6]
represent a great opportunity to observe these effects with
less demanding focusing requirements than in a single-atom
system.

II. PHYSICAL DESCRIPTION OF THE SYSTEM

The system consists of a two-dimensional array of identi-
cal two-level atoms located at positions rn = (xn, yn), where
n = 1, . . . , N (see Fig. 1). The atoms are illuminated by
a resonant laser beam propagating in the z direction. The
beam is focused on the plane of the atoms and has a
Gaussian intensity profile. The lattice is chosen to be hexag-
onal with subwavelength spacing d in order to maximize
the overlap between the driving and scattered fields [see
Figs. 1(b) and 1(c)]. A homogeneous magnetic field is applied
to keep the atomic dipole moments aligned with the laser
polarization.

The beam field is in a monochromatic coherent state |α〉,
whose average number of photons per unit time is |α|2. The
complex number α is given by α = E/E1, where E is the
classical electric field and E1 = √

(4π h̄)/(ε0λAbeam) is the
electric field of one photon at the center of the focus. Here,
Abeam = πw2

0/2 is the effective cross section of the beam,
where w0 is the beam waist.

The Rabi frequency at the center of the focus is given by
� = −E peg/h̄, where peg =

√
(3ε0h̄λ3�)/(8π2) is the dipole

moment of the atomic transition. Here, λ is the photon wave-
length and � is the single-atom decay rate. The number α can
be calculated directly from � using α = −(h̄�)/(pegE1).

III. OPTIMAL OVERLAP BETWEEN THE DRIVING
AND SCATTERED FIELDS

Simulations are carried out with a lattice geometry that
optimizes the overlap between the spatial mode profiles of
the driving and scattered fields. A hexagonal lattice with sub-
wavelength spacing is a good choice for this purpose because
it scatters light with a spatial mode profile very similar to
a Gaussian beam focused on the plane of the atoms [9]. In
such a hexagonal array the off-axis scattering is suppressed.
In addition, the laser beam has to be focused so that its size
is similar to or smaller than the optical cross section of the
atomic array. The optimal values of w0 and d are found using
the methods of Refs. [8,9] (see Fig. 1). This geometry is
optimized only for a resonant laser.

One of the properties of optimal overlap between the
driving and scattered fields is that, in the low-laser-intensity
limit, the atomic array behaves like a mirror because both
fields interfere destructively with each other. In this case,
the reflected light maintains the Poissonian character of the
incoming laser beam. The low-laser-intensity limit was stud-
ied in detail in Refs. [6,8–11]. The opposite happens in the
high-laser-intensity limit (� � �). In this case, the atomic
transition saturates, allowing most of the light to be trans-
mitted. Then, the transmitted beam retains the Poissonian
character of the incoming beam.

The most interesting situation occurs for intermediate in-
tensities, in which a significant fraction, although not the
majority, of the incoming photons is transmitted. This is the
situation in which the atomic array modifies the Poissonian
statistics of the laser field to the greatest extent, and this is the
case studied in this paper.

IV. THEORETICAL MODEL

A. Quantum trajectory algorithm

The stochastic method of quantum trajectories offers a
natural way to study photon statistics in few-atom systems
[35,43–45]. The numerical algorithm used in this work as-
sumes that photons are detected by means of a set of
imaginary photodetectors covering the whole surface of a
sphere located at far-field distances. The quantum trajectory
algorithm simulates the time evolution of the atomic states
as well as the photon-counting records in the photodetectors.
The numerical method consists of calculating a series of un-
normalized stochastic wave functions |ψ j (t )〉 ( j = 1, . . . , J ),
each of which represents the quantum trajectory of a thought
experiment [35,43–45]. Every wave function |ψ j (t )〉 evolves
accordingly to the Schödinger equation

d

dt
|ψ j (t )〉 = − i

h̄
H|ψ j (t )〉, (1)

using the non-Hermitian Hamiltonian

H = HAF + HAA − i
h̄

2

Q∑
q=1

∑
s

P†
qsPqs, (2)

where HAF is the atom-field interaction Hamiltonian, HAA is
the atom-atom interaction Hamiltonian, and Pqs is the jump
operator associated with the detection of a photon on detector
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q with polarization s. The mathematical formulas of these
operators are described in Sec. IV B.

Initially, at time t = 0, |ψ j (t )〉 is assumed to be normal-
ized. Since H is non-Hermitian, the norm of |ψ j (t )〉 decreases
with time, reflecting the fact that the system is not isolated. A
photon is detected when the squared norm of the wave func-
tion has decreased to |〈ψ j |ψ j〉|2 = r1, where r1 is a random
number between 0 and 1. The detector on which the photon
is detected is determined from the Monte Carlo probabilities
〈ψ j (t )|P†

qsPqs|ψ j (t )〉. At the instant of time immediately after
photon detection, the wave function |ψ j (t )〉 is projected using
the corresponding jump operator,

|ψ j (t )〉 −→ Pqs|ψ j (t )〉√
〈ψ j (t )|P†

qsPqs|ψ j (t )〉
. (3)

This projection produces a sudden change in the quantum
state of the system, the so-called quantum jump. Then, the
computer generates another random number, r2. The second
photon is detected when the norm of the wave function has
decreased to |〈ψ j |ψ j〉|2 = r2. The process continues until the
desired number of photon counting records has been obtained.
For each trajectory j, we have the series of times at which the
photons are detected {t j1, t j2, t j3, . . . } and the corresponding
series of detectors {q j1, q j2, q j3, . . . }.

B. Mathematical formulas of the quantum operators

The simulations take into account the two following facts:
(i) The decay rates and the transition energies are modified by
the dipole-dipole interactions between atoms. (ii) The electro-
magnetic far field is the sum of the driving laser field and the
quantum field emitted by the atoms. The simulations use the
master equation of collective spontaneous emission [35–37]
with a quantum description of the laser field incorporated
into it. For this purpose, the laser field is described using the
theoretical framework of Refs. [38–42].

1. Atom-field interaction Hamiltonian

The atom-field interaction Hamiltonian in the rotating-
wave approximation is

HAF = h̄

2
g

N∑
n=1

( fnaσ †
n + f ∗

n a†σn), (4)

where g is the atom-field coupling constant at the center of
the beam focus, fn = exp [−(x2

n + y2
n )/w2

0] accounts for the
spatial variations of the field, a is the annihilation operator of
the field mode, and σn ≡ |gn〉〈en| is the operator that lowers
the state of atom n. The coupling constant is

g = −E1 peg

2h̄
. (5)

It is very practical to express g as a function of �. From Sec. II
and Eq. (5), we find

g =
√

ϑ�, (6)

where the parameter ϑ = Aatom/(4Abeam) represents the over-
lap between the laser-field mode and the dipole-field mode of
an atom located at the focus center.

The Hamiltonian HAF in Eq. (4) has the same form as
an atom-cavity interaction Hamiltonian [45]. This result may
be surprising since photon reemission into the propagating
laser-field mode is not a reversible process. The irreversibility
of this process is actually taken into account by adding the
product of jump operators P†

qsPqs in the total Hamiltonian H
in Eq. 1. The product P†

qsPqs contains additional terms aσ †
n that

account for photon scattering. The demonstration that HAF

actually represents the atom-field interaction Hamiltonian can
be found in Appendixes A and B.

2. Atom-atom interaction Hamiltonian

Atoms interact with each other via photon exchange. The
atom-atom interaction Hamiltonian is

HAA = h̄
N∑

n 	=m=1

�nmσ †
n σm, (7)

where the energy shift �nm can be derived from the dipole-
dipole potential [35],

�nm = 3�

4

[
−(1 − |û · r̂nm|2)

cos ξnm

ξnm

+ (1 − 3|û · r̂nm|2)

(
sin ξnm

ξ 2
nm

+ cos ξnm

ξ 3
nm

)]
, (8)

where û is the polarization unit vector of the atomic dipole
moment, r̂nm is the unit vector in the direction of rnm = rn −
rm, and ξnm ≡ 2πrnm/λ.

3. Jump projectors for N = 1

The single-atom system can be simulated with only two
jump operators: one for the direction of the laser beam (for-
ward scattering) and one for all other directions (backward
and sideways scattering). These operators are, respectively,
[38–42]

Pf = −ia +
√

ϑ�σ, Pb =
√

(1 − ϑ )�σ, (9)

where ϑ� is the decay rate into the laser beam mode and (1 −
ϑ )� is the decay rate in all other directions. Note that Pf is
the sum of two terms, which represent the detection of a laser
photon and the detection of a scattered photon. To correctly
consider the phases of the fields, the Gouy phase −i must be
written in front of a [46]. The next section will show how to
extend this formalism to many-atom arrays.

4. Jump operators for N > 1

The jump operators Pqs are defined such that
〈ψ j (t )|P†

qsPqs|ψ j (t )〉 is the photon flux with polarization
s, at time t , registered by photodetector q. We can then
write [46]

Pqs =
√

2cε0

h̄ω
E (+)

T (R, θq, φq) · ŝ(θq, φq), (10)

where E (+)
T (R, θq, φq ) is the electric-field operator at photode-

tector q and ŝ is the polarization unit vector in the direction of
polarization s. The total number of photodetectors Q must be
high enough that the directional emission pattern is correctly
simulated and the electromagnetic energy is conserved. In
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FIG. 2. The Cartesian vector basis {x̂, ŷ, ẑ} is used in the plane of
the atom array. The basis B ≡ {R̂, θ̂, φ̂} of the orthogonal unit vectors
in the directions of increasing spherical coordinates is used at the
positions of the detectors. Here, θ is the polar angle with respect to
the direction z, and φ is the azimuthal angle.

typical simulations, Q � 700. The photodetectors cover the
whole surface of a sphere of radius R at far-field distances.
The position of each photodetector q is expressed in spherical
coordinates (R, θq, φq). The two polarization states of the far
field, ŝ = θ̂, φ̂, are the orthogonal unit vectors in the directions
of increasing spherical coordinates, θ and φ, respectively (see
Fig. 2).

The electric-field operator is E (+)
T (R, θ, φ) =

E (+)
D (R, θ, φ) + E (+)

L (R, θ, φ), where E (+)
D (R, θ, φ) is the

dipole field emitted by the atoms and E (+)
L (R, θ, φ) is the

laser field. The former is given by [46]

E (+)
D (R, θ, φ) = k2 peg

4πε0
uD(θ, φ)

eikR

R
σ̃ (θ, φ), (11)

where k is the wave number,

σ̃ (θ, φ) =
N∑

n=1

e−ikr̂n·R̂σn (12)

is the collective atomic operator, r̂n is the unit vector in
the direction of rn, R̂ = (sin θ cos φ, cos θ cos φ,− sin φ),
and uD(θ, φ) = T (θ, φ)[(R̂ × û) × R̂]. Here, T (θ, φ) is the
change-of-basis matrix from {x̂, ŷ, ẑ} to {R̂, θ̂, φ̂}, which is
given by

T (θ, φ) =
⎛
⎝sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

⎞
⎠.

The laser-field operator is

E (+)
L (R, θ, φ) = −iE1F(θ, φ)

eikR

R
a, (13)

with

F(θ, φ) 
 ûL(φ)
zR

cos θ
exp

[
−

(πw0

λ
tan θ

)2]
, (14)

where ûL(φ) = T (θ = 0, φ)û and zR = πw2
0/λ is the

Rayleigh length. Equation (14) assumes that the laser far
field is the same as that generated by reflecting a collimated
Gaussian beam by a spherical mirror whose optical axis is in
the direction of beam propagation. Alternative expressions use√

cos θ instead of cos θ [see Eq. (14)] to consider the effect of
a realistic lens [34]. I have checked that this difference does
not practically affect the reflectivity and transmissivity of the
atom array in the geometries used in the simulations.

Using Eqs. (11)–(14), we can write

Pqs = Lqse
ikRa + Dqse

ikRσ̃q, (15)

where

Lqs = −iF(θq, φq) · ŝ(θq, φq)

√
��q

A
, (16)

Dqs =
√

3�

8π
ûD(θq, φq) · ŝ(θq, φq)

√
��q, (17)

where σ̃q ≡ σ̃ (θq, φq) is the collective atom operator for the
direction of photodetector q and ��q is the solid angle cov-
ered by photodetector q. Since the photodetectors cover the
whole surface of a sphere in the far field,

∑
q �q = 4π .

To verify the validity of the method, Appendixes A and B
demonstrate that the formulas shown in this section yield the
same atomic dynamics as the well-established master equa-
tion of collective spontaneous emission, in which the laser is
treated classically [35–37]. Although both methods lead to the
same atom dynamics, treating the laser as a classical field does
not capture the photon statistics in the far field.

V. RESULTS

The complete time series of photon detection events of
the simulated quantum trajectories provides the necessary
information to investigate the directional photon counting
statistics. All simulations assume circular polarization, û =

1√
2
(x̂ + iŷ), although linear polarizations would produce the

same statistical tendencies. The simulations are carried out
using the physical properties of rubidium: λ = 780 nm and
� = 2π × 6 MHz [47,48].

First, we will study a single atom at the center of the focus,
r = (0, 0). In order to maximize the atom-light coupling, the
simulations assume Abeam = Aatom, where Aatom = (3λ2)/(2π )
is the absorption cross section of the atom. Note that in the
low-laser-intensity limit the condition Abeam = Aatom does not
mean that the atom behaves like a mirror. It means only that
the atom scatters all the incoming photons in all directions,
including both forward and backward directions. Figure 3
shows the distributions of time intervals between two adjacent
photons, known as the waiting-time distributions, in the for-
ward direction and in the backward and sideways directions.
For comparison with the classical statistics, both plots include
the Poisson distribution corresponding to the same number
of photons per unit time. The waiting-time distribution in the
forward direction is larger than the Poisson distribution for the
smallest waiting times, �t � 50 ns [Fig. 3(a)]. This indicates
photon bunching; that is, the transmitted photons are more
likely to arrive at the same time than in the classical case. On
the contrary, the distribution of the backward and sideways
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FIG. 3. Normalized waiting-time distributions (a) in the forward
direction and (b) in the backward and sideways directions for N = 1
(red bars). Both plots show the simulations for the Poisson dis-
tribution with the same number of photons per unit time (solid
black curves). The bin width of both histograms is 10 ns. The Rabi
frequency is � = 2π × 3 MHz. The beam waist is w0 = 430 nm
(Abeam = Aatom).

directions shows a dip near zero [Fig. 3(b)]. This indicates
photon antibunching; that is, photons tend to arrive with some
separation, as expected for a single-photon emitter. Photon
antibunching in the backward direction constitutes resonance
fluorescence [45], whereas photon bunching in the forward
direction is caused by the atom-field correlations of stimulated
emission.

To gain more insight into the origin of nonclassical photon
statistics, let us look at the time evolution of an individual
quantum trajectory. Figure 4(a) shows the excited-state pop-
ulation over a short time interval. Each time a photon is
detected, a quantum jump occurs in the atomic state. Detection
of a photon in the backward and sideways directions (blue
triangles) projects the atom into its ground state, whereas de-

FIG. 4. (a) Time evolution of the excited-state population of the
atom over a short time interval for N = 1. Red circles (blue triangles)
mark detections of photons in the forward (backward and sideways)
direction. (b) Normalized probability of photon detection in the for-
ward direction. The Rabi frequency is � = 2π × 3 MHz. The beam
waist is w0 = 430 nm (Abeam = Aatom).

tection in the forward direction (red circles) usually produces
a sudden increase of the excited-state population. The sudden
increase in the excited-state population may be surprising
since photon detection is usually associated with decay into
the ground state. This effect is the consequence of the indis-
tinguishability between the photons of the driving field and
the photons of the scattered field, as explained in Ref. [38].
The forward photon flux depends on the phase of the scat-
tered field, which changes randomly over time due to the
stochastic nature of the quantum jumps. Its value is given by
the phase difference between the excited- and ground-state
coefficients of the wave function. For low laser intensities,
its average value is close to −π/2 + arg (�) [45], where the
phase of the Rabi frequency is chosen to be arg (�) = −π

in all simulations. When a photon is detected in the forward
direction, the application of the jump operator Pf on the
wave function produces two terms in the ground-state coef-
ficient [see Eq. (9)]. These two terms have almost opposite
phases, which results in a reduction in the absolute value of
the ground-state coefficient and a consequent increase in the
excited-state population. In addition, photon detection in the
forward direction tends to increase the probability of photon
detection in the forward direction, p f ≡ 〈ψ (t )|P†

f Pf |ψ (t )〉, as
shown in Fig. 4(b). The probability p f sometimes may also
decrease after photon detection if the scattered-field phase
is away from its mean value at the moment of detection.
Nonetheless, despite the randomness of the quantum jumps,
the overall effect is photon bunching in the forward direction.
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FIG. 5. (a) Radiation intensity for the atom array in Fig. 1(b) as a
function of the polar angle θ . The simulations use � = 2π × 1 MHz,
w0 = 900 nm (Abeam = 4.4Aatom), and d = 660 nm. (b) Radiation
intensity for the atom array in Fig. 1(c). The simulations use � =
2π × 0.5 MHz, w0 = 1.1μm (Abeam = 6.3Aatom), and d = 660 nm.

We are now going to study multiatom systems. Two hexag-
onal geometries with N = 13 and N = 19 are considered, as
shown in Figs. 1(b) and 1(c). Figure 5 shows the light intensity
as a function of the polar angle θ with respect to the z direc-
tion. The reflected power in the 13-atom (19-atom) system
is 55% (82%) of the incoming power, and the transmitted
power is 14% (5%). The rest of the power is scattered in the
side directions. We consider that transmitted (reflected) pho-
tons are those whose polar angle is θ < 2θ∞ (θ < π − 2θ∞),
where θ∞ = λ/(πw0) is the divergence angle of a Gaussian
beam. This is ∼16◦ (∼13◦) in the simulations with N = 13
(N = 19).

Figures 6 and 7 show the normalized waiting-time dis-
tributions for N = 13 and N = 19, respectively. Like in the
single-atom system, the transmitted photons are bunched, and
the reflected photons are antibunched. The deviations from
Poisson statistics are more pronounced for smaller waiting
times. In the transmitted beam for N = 13 (N = 19) the prob-
ability that �t � 75 ns (�t � 175 ns) is 
 0.1 (
0.12), while
it is only 
 0.05 (
 0.01) in the Poisson distribution. This
means that up to 
20% (
25%) of transmitted photons are
grouped in pairs. Interestingly, the largest deviations from
classical statistics are found for N = 19.

Almost all bunches are formed by photon pairs. Bunches
of three or more photons are unlikely for the laser intensities
considered in these simulations. They become more likely for
higher laser intensities. However, increasing the laser intensity
also leads to smaller temporal separations between bunches,
thus producing an increasingly Poissonian statistics.

The question now is whether deviations from the Poisson
statistics can be observed in an experimentally feasible time.
Building a histogram with very narrow bins can take too long
under certain experimental conditions. Fortunately, the evalu-
ation of the number of photon pairs does not require obtaining
the complete histogram. To know the number of photon pairs
in the forward direction, it is sufficient to count the number of
waiting-time intervals below a certain value. We consider that
there is a photon pair when the time interval is �t � 75 ns for
the 13-atom system and �t � 175 ns for the 19-atom system.
These values correspond to higher waiting-time probabilities
than in the Poisson distribution in the histograms in Figs. 6(a)
and 7(a), respectively. The insets in Figs. 6(a) and 7(a) plot
the number of photon pairs divided by the number of photons

FIG. 6. Normalized waiting-time distributions of the (a) trans-
mitted and (b) reflected beams for the atom array in Fig. 1(b) with
N = 13 (red bars). The bin width of both histograms is 25 ns.
The simulations use � = 2π × 1 MHz (|α|2 = 4.6 × 106 s−1), w0 =
900 nm (Abeam = 4.4Aatom), and d = 660 nm (d 
 0.85λ). Inset: Cu-
mulative distribution functions (CDFs) for �t � 75 ns, which repre-
sents the number of photon pairs divided by the total photon number
in the forward direction, as a function of time for a particular quan-
tum trajectory (red). Both plots show the simulations for the Poisson
distribution with the same number of photons per unit time (solid
black curves).

detected in the forward direction as a function of time for a
particular quantum trajectory. These functions are also known
as the cumulative distribution functions (CDFs) because they
integrate over all waiting times �t below a certain value.
As we can see, it takes only a few hundred microseconds
for the deviations from Poisson statistics to become clearly
observable. During this time each atom scatters �70 photons.
A two-dimensional atomic array that is robust against such
a number of scattered photons is possible, as demonstrated
in recent experiments [6]. In the example with N = 19, after
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FIG. 7. (a) Normalized waiting-time distributions of the
(a) transmitted and (b) reflected beams for the atom array
in Fig. 1(c) with N = 19 (red bars). The bin width of both
histograms is 25 ns. The simulations use � = 2π × 0.5 MHz
(|α|2 = 1.6 × 106 s−1), w0 = 1.1 μm (Abeam = 6.3Aatom), and
d = 660 nm (d 
 0.85λ). Inset: CDFs for �t � 175 ns, which
represents the number of photon pairs divided by the total photon
number in the forward direction, as a function of time for a particular
quantum trajectory (red). Both plots show the simulations for the
Poisson distribution with the same number of photons per unit time
(solid black curves).

random initial dynamics, the CDF tends to the constant value
0.13, which means that up to 25% of the transmitted photons
are grouped in pairs.

Figure 8(a) shows the number of excited atoms for an indi-
vidual quantum trajectory

∑N
n=1〈σ †

n σn〉, where σn ≡ |gn〉〈en|
is the operator that lowers the state of atom n. Figure 8(b)
shows the photon transmission probability p f divided by its
time average. The effects are similar to those for the single-
atom system shown in Fig. 4. Detection of a photon in the
backward direction removes one excitation from the atomic

FIG. 8. (a) Time evolution of the number of excited atoms∑N
n=1〈σ †

n σn〉 over a short time interval of an individual quantum
trajectory for N = 19. Blue triangles (red circles) mark detections of
photons in the backward (forward) direction. (b) Normalized prob-
ability of photon detection in the forward direction. The parameters
are the same as in Fig. 7

array, whereas detection of a photon in the forward direction
can produce a sudden increase in the excited-state popula-
tion, depending on the phase of the atomic dipole moment
at the time of photon detection. The overall effect is photon
bunching in the transmitted beam. The arguments used for
the one-atom system are also valid for the atomic arrays,
except that here, the scattered field is the superposition of the
individual fields of all the atoms and the jump operator is Pqs

[see Eq. (15)].
Strikingly, as the number of atoms increases, photon

bunching in the transmitted beam does not disappear. This
is due to the cooperative nature of the interactions between
the atoms and the Gaussian beam mode. When a photon
is detected in the forward direction, the whole ensemble is
projected onto a state that has lower reflectivity and higher
population in the excited state. This increases the probabil-
ity of a second photon count. Something different happens
with the reflected light. As the number of atoms increases,
the photon statistics of the reflected beam approaches the
Poisson distribution. The reason is that multiple excitations
in the atomic array are not forbidden, and the probability of
simultaneous reflection of more than one photon is not zero.

VI. SUMMARY

This paper has described a quantum trajectory method to
simulate the photon statistics with angular resolution of an
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atomic array illuminated by a laser field. The most interesting
effect occurs in the transmitted beam, where the photons of
the laser are indistinguishable from the photons reemitted by
the atoms in the direction of beam propagation. The quantum
interference between the laser field and the dipolar field of
the atoms gives rise to photon bunching in the transmitted
beam. This photon statistics is a signature of the cooperative
quantum nature of atom-light interactions in atom arrays with
subwavelength spacing. In the example with N = 19, up to
25% of the transmitted photons are grouped in pairs. The
proposed measurements are experimentally feasible using the
two-dimensional atomic arrays realized in recent works [6].

APPENDIX A: MASTER EQUATION FOR THE INTERNAL
DYNAMICS OF THE ATOMS

The quantum trajectory algorithm used in the simulations
is based on the master equation of collective spontaneous
emission [35–37] with a quantum description of the laser field
incorporated into it. On the other hand, we know that the
atomic dynamics can be simulated by describing the laser
field classically. In fact, the only reason to have described
the laser as a quantum field is to take into account the in-
distinguishability between the laser photons and the forward
scattered photons, as this is needed to simulate the directional
photon statistics in the far field. This Appendix will show that
the commonly used master equation of collective spontaneous
emission [35–37], in which the laser field is described classi-
cally, can be derived from equations in Sec. IV B, where the
laser is described as a quantum field. This Appendix will also
show that the Hamiltonian HAF in Eq. (4), which has the form
of an atom-cavity interaction Hamiltonian, can be transformed
into the atom-laser interaction Hamiltonian described in most
quantum optics books without quantum field operators [45].

First, we write the master equation of collective sponta-
neous emission in which the laser field is described classically
[36,45],

∂

∂t
ρA = − i

h̄
[Heff, ρA] + LAρA, (A1)

where ρA is the density operator of the atom array; Heff is the
effective Hamiltonian of the atom-field interactions,

Heff = h̄�

N∑
n=1

( fnσ
†
n + f ∗

n σn); (A2)

and LA is the Lindblad operator of the collective atomic decay,

LAρ =
N∑

n 	=m=1

�nm

2
(2σnρσ †

m − σ †
mσnρ − ρσ †

mσn). (A3)

Here, �nm are the coefficients of spontaneous photon emission
[35,36],

�nm = 3�

2

[
(1 − |u · r̂nm|2)

sin ξnm

ξnm

+ (1 − 3|u · r̂nm|2)

(
cos ξnm

ξ 2
nm

− sin ξnm

ξ 3
nm

)]
, (A4)

where ξnm ≡ 2πrnm/λ.

In what follows, this Appendix will demonstrate that
Eqs. (A1)–(A4) can be derived from the equations in the main
text. The Schödinger equation in Eq. (1) corresponds to the
following master equation [45]:

∂

∂t
ρ = − i

h̄
[HAF + HAA, ρ] + Lρ, (A5)

where ρ is the density operator of the atom-field system and
L is the Lindblad operator,

Lρ ≡
Q∑

q=1

∑
s

(
PqsρP†

qs + 1

2
P†

qsPqsρ + 1

2
ρP†

qsPqs

)
. (A6)

The operator L can be separated into three parts,

Lρ ≡ (LF + LA + LAF)ρ, (A7)

where LF contains the terms |Lqs|2 with the products of field
operators, LA contains the terms |Dqs|2 with the products
of collective atomic operators, and LAF contains the crossed
terms L∗

qsDqs and LqsD∗
qs with the products of field and atomic

operators. In the following sections, the operators LF , LA,
and LAF will be transformed into convenient mathematical
expressions that allow us to derive Eqs. (A1)–(A4) from the
equations in Secs. IV A and IV B. The procedure consists
of summing over all directions and polarizations to arrive at
simplified expressions for the operators.

1. Operator with the field terms, LF

First, we prove that LF takes the form of the Lindblad
operator of an open field. Using Eqs. (15)–(17), (A6), and
(A7), we find

LF ρ =
Q∑

q=1

∑
s

|Lqs|2
2

(2aρa† − a†aρ − ρa†a). (A8)

In order to sum over all directions and polarizations, we use
the following identity, which can be verified by finite-element
integration:

Q∑
q=1

∑
s

|F∗(θq, φq)|2��q = Abeam. (A9)

Note that the result in Eq. (A9) is a necessary condition for
the conservation of the electromagnetic energy. We now can
write

Q∑
q=1

∑
s

|Lqs|2 = −i. (A10)

Using Eqs. (A8) and (A10), we obtain the desired result,

LF ρ = − i

2
(2aρa† − a†aρ − ρa†a). (A11)

2. Operator with the atomic terms, LA

The expression for LA can be obtained by combining
Eqs. (15)–(17), (A6), and (A7). We find

LAρ =
Q∑

q=1

∑
s

|Dqs|2
2

(2σ̃qρσ̃ †
q − σ̃ †

q σ̃qρ − ρσ̃ †
q σ̃q). (A12)

053709-8



PHOTON STATISTICS OF THE LIGHT TRANSMITTED … PHYSICAL REVIEW A 104, 053709 (2021)

FIG. 9. Time evolution of the ground-state population for a sin-
gle atom located at the center of the focus. The Rabi frequency is
� = 2π × 25 MHz. Red dashed line: Average over 5000 trajectories
using the quantum trajectory method described in Secs. IV A and
IV B (w0 = 1.2λ). Solid black line: average over 5000 trajectories
using a quantum trajectory method based on Eqs. (A1)–(A4), as
explained in Refs. [26,36].

Next, Eq. (A12) must be transformed into an expression with
single-atom operators using Eq. (12). For this, we first verify
the following equation by finite-element integration:

Q∑
q=1

∑
s

e−ik(r̂n−r̂m )·R̂q |Dqs|2 = �nm. (A13)

Finally, by combining (A12) and (A13), we arrive at Eq. (A3).

3. Operator with the cross terms, LAF

The Lindblad operator LAF contains the cross terms L∗
qsDqs

and LqsD∗
qs. To express LAF as a function of single-atom

operators, we use

Q∑
q=1

∑
s

L∗
qsDqs = −ig

N∑
n=1

f ∗
n , (A14)

FIG. 10. Time evolution of the triple ground-state population
for a three-atom system with r1 = (0, 0), r2 = (d, 0), and r3 =
(0, 0.7d ), where d = 0.6λ. The Rabi frequency is � = 2π ×
10 MHz. Red dashed line: average over 1000 trajectories using
the quantum trajectory method described in Secs. IV A and IV B
(w0 = 1.2λ). Solid black line: average over 5000 trajectories using
a quantum trajectory method based on Eqs. (A1)–(A4), as explained
in Refs. [26,36].

FIG. 11. (a) Excited-state populations and (b) dipole moment
phases in a three-atom system in the low-laser-intensity limit as a
function of the atom-atom separation. The positions are r1 = (0, 0),
r2 = (d, 0), and r3 = (0, 0.7d ), where d varies from 0.5λ to 2λ and
w0 = 2d . Solid lines: Calculations using the method of Refs. [8,9],
which assumes that the atoms are classical dipoles. Circles: calcu-
lations with the quantum trajectory method described in Secs. IV A
and IV B. Crosses: calculations using a quantum trajectory method
based on Eqs. (A1)–(A4) [26,36].

which is obtained from

Q∑
q=1

∑
s

F∗(θq, φq) · ûD(θq, φq )��qe−ikr̂n·R̂q = λ f ∗
n , (A15)

where R̂q = (sin θq cos φq, cos θq cos φq,− sin φq). Equation
(A15) was checked by finite-element numerical integration.
In this way, we find

LAFρ = i

2
g

N∑
n=1

fn(2aρσ †
n − σ †

n aρ − ρσ †
n a)

− i

2
g

N∑
n=1

f ∗
n (2σnρa† − a†σnρ − ρa†σn). (A16)
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4. Elimination of the field operators

The final step of the demonstration consists of inserting the
expressions for LF , LA, and LAF into Eqs. (A5)–(A7). Since
the field is in the classical state |α〉, the following substitutions
are made: a → α and a† → α∗. Using � = 2gα, we arrive at
Eqs. (A1)–(A4), as desired.

APPENDIX B: COMPARISON BETWEEN
DIFFERENT METHODS

This Appendix compares the numerical solutions obtained
with different methods in order to check that the calculations
have been performed correctly. Figures 9 and 10 show the
ground-state populations calculated for two particular cases,
with N = 1 and N = 3. Calculations were carried out by
means of quantum trajectories, either using the equations in
Secs. IV A and IV B (red dashed lines) or using Eqs. (A1)–
(A4) (black solid lines). Both methods give practically the
same solution, which corroborates the validity of our algo-

rithm. The very small differences between the two methods
are most likely due to the fact that Eq. (14) is an approxima-
tion of the far field.

The quantum trajectories of Eqs. (A1)–(A4) are calculated
using source-mode jump operators. Here, I do not give the
details of how to obtain the source-mode jump operators be-
cause this has been exhaustively described elsewhere [26,36].
In a few words, the set of N source-mode jump operators is
obtained by diagonalizing the matrix of coefficients �nm in
Eq. (A4). Unlike the jump operators Pqs, source-mode jump
operators cannot be identified with a particular photon detec-
tion event.

Figure 11 shows the excited-state populations 〈σ †
n σn〉 and

the dipole moment phases arg{〈σn〉} of a three-atom system
in a classical field (n = 1, 2, 3). The results obtained with
three different methods are compared with each other: the
quantum trajectory method from Sec. IV A, the quantum
trajectory method using Eqs. (A1)–(A4), and the classical
method of Refs. [8,9], which is valid in the low-laser-intensity
limit.
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