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Noise limits on two-photon interferometric sensing
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When a photon interferes with itself while traversing a Mach-Zehnder interferometer, the output port where
it emerges is influenced by the phase difference between the interferometer arms. This allows for highly precise
estimation of the path length difference (delay) but is extremely sensitive to phase noise. By contrast, a delay
between the arms of the two-photon Hong-Ou-Mandel interferometer directly affects the relative indistinguisha-
bility of the photon pair, affecting the rate of recorded coincidences. This likewise allows for delay estimation,
notably less precise but with the advantage of being less sensitive to perturbations of the photons’ phase. Focusing
on two-photon input states, we here investigate to what degree of noise Mach-Zehnder interferometry retains its
edge over Hong-Ou-Mandel interferometry. We also explore the competing benefits of different two-photon
inputs for a Mach-Zehnder interferometer and under what parameter regimes each input performs best.
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I. INTRODUCTION

Interference lies at the heart of optical metrology:
Observing changes in the recorded interference patterns
allows for precise measurements of sample and environmen-
tal parameters. This is commonly realized with Michelson,
Mach-Zehnder, Fabry-Pérot, Sagnac, and Hong-Ou-Mandel
interferometers [1–4]. The quintessential task for interferom-
etry is estimating optical delays which manifest as phase
shifts in the traditional Mach-Zehnder (MZ) interferometer
or distinguishability in Hong-Ou-Mandel (HOM) interferom-
etry. For example, laser-interferometric gravitational wave
detectors use sensitivity to physical displacements to achieve
extraordinarily precise measurements of mechanical displace-
ments across a broad range of frequencies [5,6].

The operating principle of the MZ interferometer derives
from interference fringes with a period determined by the
optical frequency [2]; these fringes shift according to the
relative phase in the interferometer. By contrast, HOM [7]
interferometers only possess a single interference dip with
a width determined by the spectral distribution of the input
photons; this dip is displaced according to the relative delay
between the two input paths.

In both cases, path delay can be estimated from the readout
of detectors placed at the two interferometer output ports.
For the single-photon MZ interferometer this is through the
ratio of clicks between detectors [3,8,9]; in the two-photon
HOM case the delay influences the rate at which photons
bunch [10–16].

The MZ analyses can be extended to include multiphoton
inputs with nonmonochromatic [17–19] and monochromatic
light [3,20,21]. This is expected to give rise to significant
benefits through the application of nonclassical light which
can obtain more favorable scalings in the number of particles
used [3,20,21]. However, reaching the high-photon regime

where such nonclassical light becomes beneficial compared
to classical light is experimentally demanding [21]. Instead,
one of the foremost concerns is in the probing of so-called
delicate samples which are sensitive to high-photon numbers
and can genuinely benefit from the application of optimum
few-photon probe states [22–26].

The narrow wavelength-order fringes of the Mach-Zehnder
interferometry may intuitively be expected to result in higher
sensitivity than the much broader HOM dip, which varies on
the order of the inverse spectral width rather than inverse fre-
quency. In principle, MZ interferometry allows for arbitrarily
high precision with sufficiently high frequency; however, it
suffers from the phase-wrapping problem [27–29] where mul-
tiple phases can produce the same output signal. In practice,
identifying the true phase requires prior information or the
use of adaptive techniques. By comparison, the HOM effect
remains technically distinct across half the dip, affording a
much larger dynamic range at the cost of generally reduced
estimation precision.

This gap between phase-insensitive and phase-sensitive
interferometry has recently been narrowed with experiments
that have reported much improved sensitivities to HOM-based
sensing [11,12]. This raises the question of whether there
are settings where HOM interferometry, which may already
be practically desirable due to the wider dynamic range and
relatively simpler optics, can compete with or even surpass
phase-sensitive interferometry.

In this work we thus focus on interferometry with photon
pairs as input states to Mach-Zehnder and Hong-Ou-Mandel
interferometers as the archetypal phase-sensitive and phase-
insensitive interferometers. Rather than limiting our study
to monochromatic inputs, we consider Gaussian two-photon
spectral distributions such as those readily produced by
generic down-conversion sources. We will be interested in the
comparative performance between those different approaches,
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{ĉ1}
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{â1}
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FIG. 1. Generalized schematic for our four protocol configurations. The upper arm contains two phase shifts: A frequency-dependent shift
ε and a frequency-independent shift θ . Noise is subsequently modeled as some variation in these shifts. Photon modes are labeled at the
different stages of the schematic; at each stage we work with a combination of two orthogonal modes to model the initial indistinguishability
within the photon pair.

including a comparison of different two-photon MZ input
states. We later additionally compare to the results for a
single-photon MZ protocol.

With our focus on photon pair inputs, we compare the
performance of different protocols at varying degrees of phase
noise, including the high-noise limit. Our noise model is
similar to that of Refs. [30–32], which explored the ulti-
mate quantum limit of phase estimation1 in the presence of
phase diffusion. Much as the best probe states for Mach-
Zehnder interferometry are undermined by noise [31,33–35],
we may anticipate that the HOM interferometer is capable of
delivering valuable precision (relative to a two-photon Mach-
Zehnder interferometer) in high-noise regimes.

This article is organized as follows. In Sec. II we describe
our protocols with fixed frequency-dependent and frequency-
independent phase shifts. We then move to our noisy model in
Sec. III and derive the relevant probabilities and expressions
for the Fisher information. In Sec. IV we outline how our
model can be tweaked to account for frequency-independent
input photons and noise that is uncorrelated between photon
modes. Section V presents our results, where we compare the
resilience of our various protocols and models to increased
noise and also identify and discuss a number of interesting
emerging features. We summarize these results and present
some concluding comments in Sec. VI.

II. PROTOCOLS

We consider and compare four different protocols, illus-
trated in Fig. 1 with the common parameter encoding and
measurements along the different state preparations: First
a standard Hong-Ou-Mandel protocol (HOM), wherein two

1This is equivalent to delay estimation with monochromatic pho-
tons.

photons interfere at a beam splitter and detectors are placed
at the two output ports, and then three protocols using a
Mach-Zehnder interferometer (MZI), consisting of two beam
splitters such that the output ports of the first beam splitter are
directed towards the input ports of the second beam splitter,
with detectors at the outputs of the second beam splitter.
Between the two beam splitters, the upper and lower inter-
ferometer arms have path lengths δ1 and δ2, respectively. We
consider a pair of two-photon MZ protocols, one in which
both photons enter via the same initial input port (MZ2s) and
another in which both enter via different input ports (MZ2d),
and in addition a conventional single-photon MZ protocol
(MZ1).

The predominant type of noise affecting the photons
can be expressed as an unknown fluctuating phase shift
in one or both of the arms. We can write this as
e−iφ(ω), where φ(ω) has some unspecified frequency de-
pendence. Taylor expanding around ω0, we then write
e−iφ(ω) ≈ exp{−i[φ(ω0) + ∂φ(ω0 )

∂ω
(ω − ω0) + · · · ]}. Truncat-

ing terms beyond linear order in ω − ω0, we can write the
total phase shift from noise as

exp

⎡
⎢⎢⎣−i

⎧⎪⎪⎨
⎪⎪⎩

θ︷ ︸︸ ︷
φ(ω0) − ∂φ(ω0)

∂ω
ω0 +

ε︷ ︸︸ ︷
∂φ(ω0)

∂ω
ω

⎫⎪⎪⎬
⎪⎪⎭
⎤
⎥⎥⎦. (1)

Here we identify a frequency-independent component θ and
a frequency-dependent component ε to the phase shift. The
latter can be thought of as representing fluctuations in the
path length, such as those that might arise from vibrations
or heating in the system. By contrast, θ is a “pure” phase
shift that leaves the path length unaffected. The effects of
these shifts are illustrated for different frequency modes in
Fig. 2. For the remainder of these sections we will work with
unknown but fixed ε and θ ; we will later average over them in
Sec. III to capture fluctuations in time.
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FIG. 2. For a Gaussian wave packet, the effect of our fixed shifts
ε and θ on the different frequency modes is shown. The ε shift is
frequency dependent and can be thought of as some modification to
the actual delay δ. The top right shows the differing intensity of an ε

shift at differing frequencies. The θ shift is frequency independent;
the bottom left shows that all modes experience the same effect from
a θ shift. The bottom right shows a combined ε and θ shift. Our noise
model is obtained in Sec. III by averaging over these shifts.

For simplicity, we limit these shifts to the upper arm of
the interferometer, essentially assuming noise to be local-
ized noise entirely within the upper arm. Though in reality
we expect noise to be present in both arms, this local-
ization gives rise to equivalent detection probabilities with
phase-insensitive measurements. For justification and further
discussion, see Appendix B.

A. Optical modes

A biphoton state generated by spontaneous parametric
down-conversion (SPDC) will, in practice, exhibit some de-
gree of nonspatial distinguishability (such as a mismatch of
polarizations) between the two photons. Thus we write one
photon in the initial superposition

√
αâ†(ω) + √

1 − αb̂†(ω),
with b̂ some orthogonal photonic mode. The visibility α ∈
[0, 1] therefore encodes the relative indistinguishability of the
photon pair upon generation. The modes labeled in Fig. 1
(â j, b̂ j ; ĉ j, d̂ j ; and ê j, f̂ j) are then the pairs of orthogonal
photonic modes in a given arm at each stage of the proto-
col. The subscripts j = {1, 2} denote distinct spatial modes,
corresponding to the two arms of the interferometer.

B. Common optics

We describe the initial preparation illustrated by the
lower part of Fig. 1 individually in the following subsec-
tions, alongside the resulting detection probabilities. For the
MZ protocols the initial states are given in terms of the
{â1,2, b̂1,2} modes which pass through a beam splitter with
transforms

â†
1(ω) → 1√

2
[iĉ†

1(ω) + ĉ†
2(ω)],

â†
2(ω) → 1√

2
[ĉ†

1(ω) + iĉ†
2(ω)],

b̂†
1(ω) → 1√

2
[id̂†

1 (ω) + d̂†
2 (ω)],

b̂†
2(ω) → 1√

2
[d̂†

1 (ω) + id̂†
2 (ω)]. (2)

The HOM protocol inputs photons directly into the delay
stage and so the input state is written in terms of the modes
{ĉ1,2, d̂2}.

After the initial preparation stage all photons pass through
a common set of linear optics to reach the detectors where the
mode transformations are described by

ĉ†
1(ω) → e−iω(δ1+ε)e−iθ ĉ†

1(ω),

ĉ†
2(ω) → e−iωδ2 ĉ†

2(ω),

d̂†
1 (ω) → e−iω(δ1+ε)e−iθ d̂†

1 (ω),

d̂†
2 (ω) → e−iωδ2 d̂†

2 (ω), (3)

which encode the local delays alongside the phase shifts ε

and θ . The detection probabilities depend only on the path
length difference δ = δ2 − δ1. The photons then interfere at
the (final) beam splitter,

ĉ†
1(ω) → 1√

2
[iê†

1(ω) + ê†
2(ω)],

ĉ†
2(ω) → 1√

2
[ê†

1(ω) + iê†
2(ω)],

d̂†
1 (ω) → 1√

2
[i f̂ †

1 (ω) + f̂ †
2 (ω)],

d̂†
2 (ω) → 1√

2
[ f̂ †

1 (ω) + i f̂ †
2 (ω)], (4)

after which detectors measure whether a photon is found in
one of the arms. In Appendix A we derive the general detec-
tion probabilities in terms of the form of the output state.

C. HOM protocol

For the HOM protocol, we take the biphoton state [7,36]

∣∣ψ in
HOM

〉 = ∫
dω φ(ω)ĉ†

1(ωp − ω)

× [
√

αĉ†
2(ω) + √

1 − αd̂†
2 (ω)] |0〉 (5)

as input, with

φ(ω) = (2πσ 2)−1/4e−(ω−ωp/2)2/4σ 2
. (6)

Here ωp is the pump frequency and σ the spectral width [36].
Evolving |ψ in

HOM〉 according to Eqs. (3) and (4), we obtain the
output state

∣∣ψout
HOM

〉 = 1

2

∫
dω φ(ω)e−i[(δ1+ε)(ωp−ω)+δ2ω+θ]

× [iê†
1(ωp − ω) + ê†

2(ωp − ω)]

× [
√

α{ê†
1(ω) + iê†

2(ω)}
+ √

1 − α{ f̂ †
1 (ω) + i f̂ †

2 (ω)}] |0〉 . (7)
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Equations (A4) and (A5) together with Eq. (7) then give the
probabilities of detection at one or both detectors. We find

P1,HOM = P2,HOM = 1
4 (1 + αe−2σ 2(δ−ε)2

), (8)

the probability of detection at detector 1 only and detector 2
only, and

Pc,HOM = 1
2 (1 − αe−2σ 2(δ−ε)2

), (9)

the probability of coincidence at both detectors. These prob-
abilities concur with the probabilities seen in standard HOM
analyses [36].

One thing we immediately notice is that θ drops out:
The HOM protocol is not affected by arbitrary frequency-
independent phase shifts and therefore is immune to
frequency-independent noise.2 In traditional HOM analyses
one often treats P1,HOM + P2,HOM as a unified bunching prob-
ability, but we here keep them separate for consistency with
the MZ analysis.

D. Two-photon MZ protocol: Same input port

We now consider our MZ2s protocol, where both photons
enter via the same port (specifically, we choose the upper
left port). Our initial state is thus a modified version of our
biphoton state from Eq. (5):∣∣ψ in

MZ2s

〉 = 1√
1 + α

∫
dω φ(ω)[

√
αâ†

1(ω) + √
1 − αb̂†

1(ω)]

× â†
1(ωp − ω) |0〉 . (10)

The normalization of 1√
1+α

is required as both photons enter-
ing via the same port results in a visibility-dependent overlap
of their initial modes.

Up to an irrelevant global phase, we apply Eqs. (2)–(4) to
obtain the output state∣∣ψout

MZ2s

〉 = 1√
1 + α

∫
dω φ(ω)

× [sin(�−)ê†
1(ωp − ω) + cos(�−)ê†

2(ωp − ω)]

× [
√

α{sin(�+)ê†
1(ω) + cos(�+)ê†

2(ω)}
+ √

1 − α{sin(�+) f̂ †
1 (ω) + cos(�+) f̂ †

2 (ω)}] |0〉 ,

(11)

with

�− = 1
2 {θ − (δ − ε)(ωp − ω)}, (12)

�+ = 1
2 {θ − (δ − ε)ω}. (13)

Taking this output state with Eqs. (A4) and (A5), we obtain
the detection probabilities

P1,MZ2s = 1

8

[
2 + e−2σ 2(δ−ε)2 + cos[2θ − ωp(δ − ε)]

− 4e− 1
2 σ 2(δ−ε)2

cos

(
θ − ωp

2
(δ − ε)

)]
, (14)

2Because the HOM state is still separable at the stage where phase
shifts are applied, the frequency-independent shift θ can be thought
of as a global phase for the HOM case.

P2,MZ2s = 1

8

[
2 + e−2σ 2(δ−ε)2 + cos[2θ − ωp(δ − ε)]

+ 4e− 1
2 σ 2(δ−ε)2

cos

(
θ − ωp

2
(δ − ε)

)]
, (15)

Pc,MZ2s = 1

4
{2 − cos[2θ − ωp(δ − ε)] − e−2σ 2(δ−ε)2}. (16)

As both photons enter the same port, the state at every point
has the form âζ (ω)[

√
1 − αâζ (ω′) + √

αb̂ζ ′ (ω′)], where âζ

and b̂ζ are orthogonal photonic modes and âζ (b̂ζ ′ ) can be
a superposition of the spatial modes â1 and â2 (b̂1 and b̂2).
This prohibits any HOM-like interference which only occurs
when the photons enter a beam splitter in nonidentical spa-
tial (superposition) modes. Moreover, as the photonic modes
experience identical optical transforms, the nonzero distin-
guishability (α < 1) does not affect the measured outputs,
and hence the visibility dependence vanishes from the MZ2s
output probabilities.

E. Two-photon MZ protocol: Different input ports

We now consider the MZ2d protocol, where both photons
enter the MZI via different ports. This is similar to the two-
photon case of Ref. [37], though our protocol is generalized
to nonmonochromatic inputs.

Our initial state is the same as in Eq. (5), but with ĉ and d̂
relabeled as â and b̂ to reflect that we now have an additional
beam splitter. Again, up to an irrelevant global phase, we
apply Eqs. (2)–(4) to obtain the output state∣∣ψout

MZ2d

〉 = ∫
dω φ(ω)

× [sin(�−)ê†
1(ωp − ω) + cos(�−)ê†

2(ωp − ω)]

× [
√

α{cos(�+)ê†
1(ω) + sin(�+)ê†

2(ω)}
+ √

1 − α{cos(�+) f̂ †
1 (ω) + sin(�+) f̂ †

2 (ω)}] |0〉 ,

(17)

with �− and �+ as defined in Eqs. (12) and (13).
Together with Eqs. (A4) and (A5), we obtain the detection

probabilities

P1,MZ2d = P2,MZ2d = 1
8 {2 − (1 − α)e−2σ 2(δ−ε)2

− (1 + α) cos[ωp(ε − δ) + 2θ ]}, (18)

Pc,MZ2d = 1
4 {2 + (1 − α)e−2σ 2(δ−ε)2

+ (1 + α) cos[ωp(ε − δ) + 2θ ]}. (19)

Visibility dependence is seen for the MZ2d protocol, while
it was absent from the MZ2s protocol. We also note that,
like the HOM case, P1 = P2. This initially seems a major
deviation from the conventional MZ1 scenario, where varying
the phase can bias the photon towards one detector or the
other, a feature that remains present in the MZ2s protocol.
The crucial difference in this configuration is that after the
initial beam splitter, both photons have opposite phase. Setting
a phase in the upper arm that biases one photon towards a
certain detector must equally bias the other photon towards
the other detector: No combination of delay and fixed shifts
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can result in P1 or P2 more likely than the other, and hence
P1 = P2.

In the limiting case of δ = ε = 0, our MZ2d coincidence
probability in Eq. (19) concurs with the coincidence prob-
ability in Ref. [38], which examines two photons entering
opposite input ports of an MZI with equal path lengths in
both arms but a fixed frequency-independent phase shift in
one arm.

F. Single-photon MZ protocol

For the MZ1 protocol we have the input state∣∣ψ in
MZ1

〉 = ∫
dω φ(ω)â†(ω) |0〉 , (20)

with φ(ω) as defined in Eq. (6). Applying the MZ mode
evolutions described by Eqs. (2) to (4), we obtain the output
state∣∣ψout

MZ1

〉 = 1

2

∫
dω φ(ω)[(e−iδ2ω − e−i[θ+(δ1+ε)ω] )ĉ†

1(ω)

+ (ie−i[θ+(δ1+ε)ω] + ie−iδ2ω )ĉ†
2(ω)] |0〉 . (21)

The resulting detection probabilities are then

P1,MZ1 = 1

4

∫
dω|φ(ω)|2|e−iδ2ω − e−i[θ+(δ1+ε)ω]|2

= 1

2
− 1

2
e− 1

2 σ 2(δ−ε)2
cos

(
θ − ωp

2
(δ − ε)

)
, (22)

the probability of detection at detector 1, and

P2,MZ1 = 1

4

∫
dω|φ(ω)|2|ie−i[θ+(δ1+ε)ω] + ie−iδ2ω|2

= 1

2
+ 1

2
e− 1

2 σ 2(δ−ε)2
cos

(
θ − ωp

2
(δ − ε)

)
, (23)

the probability of detection at detector 2.

III. MODELING NOISE

To move from our probabilities in Sec. II to those that
model noise, we now assume some uncertainty in our previ-
ously fixed phase shifts. Assuming that both ε and θ fluctuate
around zero, we average over them with the Gaussian weight-
ing factors

Jε (ε) = e−ε2/2η2
ε

√
2πηε

, Jθ (ϑ ) = e−ϑ2/2η2
θ√

2πηθ

. (24)

Here ηε and ηθ control the width of the Gaussian weighting
factors, the strength of these noise processes. These terms give
rise to shot-to-shot variations on top of the path length δ on the
order of ηθ/ωp and ηε .

The probabilities for such noise distributions are given by

Pη
j =

∫ ∞

−∞

∫ ∞

−∞
dϑ dε Jε (ε)Jθ (ϑ )Pj . (25)

For simplicity, we have chosen to use a Gaussian noise dis-
tribution with support (−∞,∞) for frequency-independent
(θ ) noise. Note, however, that this is, for the probabilities un-
der consideration, equivalent to a more conventional wrapped
[−π, π ] Gaussian distribution. This equivalence is shown

in Appendix E, and our core results are contrasted against
results where a von Mises distribution is chosen for frequency-
independent noise.3

It is important to emphasize that although ηε and ηθ repre-
sent the degree of uncertainty in the pair of phase shifts and
these shifts may fluctuate over time as multiple photon pairs
traverse the interferometer, in a single run of the protocol both
photons will experience the same constant (but unknown) ε

and θ shifts simultaneously. This fact leads to some interesting
consequences that we will observe in Sec. V and explore in
more detail in Appendix C.

From these probabilities we calculate the Fisher infor-
mation, which quantifies the information obtained about a
parameter of interest (the path length difference δ) from an
average measurement, given a set of measurement outcomes
and their associated probabilities. For a parameter δ and mea-
surement outcomes m ∈ M, with P(m|δ) the probability of
outcome m given δ, the Fisher information can be written [39]

F (δ) =
∑

m∈M

1

P(m|δ)

(
∂

∂δ
P(m|δ)

)2

. (26)

The single-parameter Fisher information can then be used
to bound the variance of an unbiased estimator for that
parameter. With δ̃ an unbiased estimator for δ and N the num-
ber of independent measurements, the Cramér-Rao bound is
given by

var(δ̃) � 1

NF (δ)
(27)

and represents the ultimate limit on the precision of an unbi-
ased estimator δ̃.

A. The HOM protocol

For our HOM protocol the probabilities are

Pη

1,HOM = Pη

2,HOM = 1

4

(
1 + αe−2δ2σ 2/(4η2

ε σ
2+1)√

4η2
εσ

2 + 1

)
, (28)

Pη

c,HOM = 1

2

(
1 − αe−2δ2σ 2/(4η2

ε σ
2+1)√

4η2
εσ

2 + 1

)
. (29)

If we let ηε = 0, the scenario with no noise, this reduces to
Pj,HOM with ε = 0, as we would expect.

From these probabilities, we can calculate the Fisher infor-
mation

F η

HOM = 16α2δ2σ 4(
4η2

εσ
2 + 1

)2[(
4η2

εσ
2 + 1

)
e4δ2σ 2/(4η2

ε σ
2+1) − α2

] .
(30)

As we would expect, large frequency-dependent noise washes
out all information from the protocol: F η

HOM → 0 as ηε → ∞.

3The frequency-dependent (ε) noise, like δ, does not have such a
symmetry as the different frequency modes accumulate a phase due
to ε noise (or change in δ).
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B. The MZ2 protocol

For the MZ2s protocol, our noisy probabilities can be cal-
culated as in the HOM case but with an additional averaging
over θ . The resulting probabilities are

Pη

1,MZ2s = 1

8

(
2 + e−2δ2σ 2/(4η2

ε σ
2+1)√

4η2
εσ

2 + 1
+ cos(δωp)e−2η2

θ −η2
εω

2
p/2

−
4 cos

( δωp

2η2
ε σ

2+2

)
e−κ√

η2
εσ

2 + 1

)
, (31)

Pη

2,MZ2s = 1

8

(
2 + e−2δ2σ 2/(4η2

ε σ
2+1)√

4η2
εσ

2 + 1
+ cos(δωp)e−2η2

θ −η2
εω

2
p/2

+
4 cos

( δωp

2η2
ε σ

2+2

)
e−κ√

η2
εσ

2 + 1

)
, (32)

Pη

c,MZ2s = 1

4

(
2 − e−2δ2σ 2/(4η2

ε σ
2+1)√

4η2
εσ

2 + 1
− cos(δωp)e−2η2

θ −η2
εω

2
p/2

)
,

(33)

with

κ = 4
[
σ 2
(
δ2 + η2

θη
2
ε

)+ η2
θ

]+ η2
εω

2
p

8
(
1 + η2

εσ
2
) . (34)

The Fisher information can then be calculated from the
above probabilities, though the resulting expression is not par-
ticularly illuminating so we here omit it; see the Supplemental
Material [40] for the full expression. Once again, information
decays to zero as ηε is increased. However, intriguingly, the
same is not true when increasing ηθ : In this case the infor-
mation instead decays until it resembles a HOM-like Fisher
information curve, converging at around ηθ ≈ 3.5. This cu-
rious result will be discussed in more detail in Sec. V and
Appendix C.

C. The MZ2d protocol

We follow the same method to obtain the noisy probabili-
ties for the MZ2d protocol:

Pη

1,MZ2d = Pη

2,MZ2d = 1

8

(
2 − (1 − α)e−2δ2σ 2/(4η2

ε σ
2+1)√

4η2
εσ

2 + 1

− (1 + α) cos(δωp)e−2η2
θ −η2

εω
2
p/2

)
,

(35)

Pη

c,MZ2d = 1

4

(
2 + (1 − α)e−2δ2σ 2/(4η2

ε σ
2+1)√

4η2
εσ

2 + 1

+ (1 + α) cos(δωp)e−2η2
θ −η2

εω
2
p/2

)
. (36)

Once again, we omit the unwieldy Fisher information; the full
expression is given in the Supplemental Material [40]. Like
the MZ2s protocol, we see a full decay to zero at high ηε but
decay to a fixed HOM-like curve at high ηθ .

D. The MZ1 protocol

Finally, following the same method, we derive the noisy
probabilities for the MZ1 protocol,

Pη

1,MZ1 = 1

2

(
1 −

cos
( δωp

2η2
ε σ

2+2

)
e−κ√

η2
εσ

2 + 1

)
, (37)

Pη

2,MZ1 = 1

2

(
1 +

cos
( δωp

2η2
ε σ

2+2

)
e−κ√

η2
εσ

2 + 1

)
, (38)

with κ as defined in Eq. (34). The Fisher information is there-
fore

F η

MZ1 =
[
ωp sin

( δωp

2η2
ε σ

2+2

)+ 2δσ 2 cos
( δωp

2η2
ε σ

2+2

)]2

4(η2
εσ

2 + 1)2
[
(η2

εσ
2 + 1)e2κ − cos2

( δωp

2η2
ε σ

2+2

)] .
(39)

Again, as ηε increases the Fisher information tends to zero. In
this case, the same is true for frequency-independent noise via
its dependence on κ [Eq. (34)], i.e., F η

MZ1 → 0 as ηθ → ∞.

IV. TWO-PHOTON MODEL VARIATIONS

For the purpose of probing and better understanding the
origin of some of the subtleties we will discuss in the next
section, we introduce some slight variations for the noise
model, which primarily affect the two-photon MZ case.
These are explained in the following; the full expression for
the probabilities and Fisher information, for every combina-
tion of protocol and model, are given in the Supplemental
Material [40].

A. Mode-uncorrelated noise

So far we have applied a common phase shift to both the
ĉ and d̂ photonic modes and so the noise affects the indis-
tinguishable and distinguishable components in a correlated
fashion. We now consider the case where the two-photon
modes experience distinct phase shifts such that the prop-
agation transformations for the MZ2s and MZ2d protocols,
previously given in Eq. (3), now take the form

ĉ†
1(ω) → e−iω(δ1+ε1 )e−iθ1 ĉ†

1(ω),

ĉ†
2(ω) → e−iωδ2 ĉ†

2(ω),

d̂†
1 (ω) → e−iω(δ1+ε2 )e−iθ2 d̂†

1 (ω),

d̂†
2 (ω) → e−iωδ2 d̂†

2 (ω). (40)

Now ε1 and θ1 solely shift the ĉ1 mode, with ε2 and θ2 being
shifts for the d̂1 mode. The initial state and other transforma-
tions remain unchanged. This leads to a subtly different output
state, from which we can derive the probabilities as before.

For the MZ1 protocol, this obviously need not be con-
sidered as only one photon, and thus one single mode, is
considered. For the HOM protocol, the orthogonal mode does
not interfere at the beam splitter, and any phase shifts applied
drop out. Hence, this only has a tangible effect on the MZ2s
and MZ2d protocols, where a photon in a superposition of
modes interferes with itself.

A minor effect of working with mode-uncorrelated noise is
that the resulting probabilities for the MZ2s protocol are now

053704-6



NOISE LIMITS ON TWO-PHOTON INTERFEROMETRIC … PHYSICAL REVIEW A 104, 053704 (2021)

TABLE I. Comparison of the Fisher information behavior of our different protocols and mode-correlated noise (MC), mode-uncorrelated
noise (MU), frequency-entangled photon (FE), and independent photon (Ind.) variants. Here α is the visibility of our input photon pair. The
dagger entry means that for the MZ2s protocol with mode-uncorrelated noise, the visibility dependence is only present at nonzero noise. If
ηε = ηθ = 0, the information remains constant as visibility is varied.

HOM MZ2s MZ2d

MC MU MC MU MC MU

Fisher information behavior FE Ind. FE Ind. FE Ind. FE Ind. FE Ind. FE Ind.

Residual oscillating information as δ → ∞ (Fig. 5)
√ √ √ √

Visibility dependence
√ √ √ √

† †
√ √ √ √

HOM-like residual at high ηθ independent of α [Fig. 4(a)]
√ √

HOM-like residual at high ηθ inversely proportional to α [Fig. 4(b)]
√ √

HOM-like residual at high ηθ proportional to α
√ √ √ √ √ √

No HOM-like residual at high ηθ

√ √

visibility dependent as the uncorrelated noise means the two
photonic modes see different noise and so only experience the
same optics on average. This dependence naturally drops out
at zero noise.

B. Independent photons

We have previously assumed our photons to be frequency
entangled, such as a photon pair generated by SPDC. We can
also compare them to the case where the input photons are
independent (but with frequencies peaked around the same
value).

For the HOM and MZ2d protocols, the initial state then
looks like∣∣ψ in

HOM

〉 = ∣∣ψ in
MZ2d

〉
=
∫

dω1dω2φ(ω1)φ(ω2)[
√

αâ†
2(ω1)

+ √
1 − αb̂†

2(ω1)]â†
1(ω2) |0〉 , (41)

where â and b̂ can be relabeled ĉ and d̂ for the HOM case as
we omit the first beam splitter. For the MZ2s protocol we get∣∣ψ in

MZ2s

〉 = 1√
1 + α

∫
dω1dω2φ(ω1)φ(ω2)[

√
αâ†

1(ω1)

+ √
1 − αb̂†

1(ω1)]â†
1(ω2) |0〉 . (42)

The MZ1 protocol features only a single photon, so the input
is as in Eq. (20).

In deriving the output states the same transformations as
detailed in Sec. II can be followed, optionally replacing the
transformations in Eq. (3) with those in Eq. (40) if we wish
to model mode-uncorrelated noise. These output states are of
a common form, and the general detection probabilities for
states of this form are given in Eqs. (A7) and (A8). From
here, obtaining the noisy probabilities and the Fisher infor-
mation for each protocol follows the same identical steps as
for frequency-entangled photons.

V. RESULTS

The three two-photon protocols (HOM, MZ2s, and
MZ2d), for frequency-entangled and separable photons, with

photonic-mode-correlated and -uncorrelated noise are tabu-
lated in Table I along with a characterization of their behavior
in different regimes. In the following subsections we discuss
in more depth some of the more interesting observations.

For simplicity, we choose not to specify a specific value for
the pump frequency and instead scale other quantities relative
to an arbitrary ωp. The spectral width is then written as some
fraction of the pump frequency; we fix σ = ωp

100 in the fol-
lowing, which is within the experimentally viable range of the
ratios of Refs. [10,11]. While both ηθ and ηε are unbounded in
principle, their action within the Mach-Zehnder is limited to
the 2π periodicity, with ηθ ∼ 2π or ηε ∼ 4π/ωp approaching
the regime where the effective phase is uniform in 2π .

A. Frequency-dependent noise

Figure 3 illustrates how increasing frequency-dependent
noise affects our protocols. Unsurprisingly, when noise is near
zero, the HOM protocol is far outclassed by the two MZ
protocols. The MZ2d protocol performs best in this low-noise
regime, but it drops rapidly as noise increases. The MZ2s
protocol is more resilient, suffering a sizable performance hit
as noise is increased but retaining its relative advantage for
longer. The HOM protocol performs worst but experiences
only comparatively minor information loss. For all protocols
information decays as ηε is increased, as the phase shifts due
to noise grow larger and thus sensitivity to the true delay
we wish to measure, δ, is reduced. In the limit ηε → ∞ the
phase shifts from noise become effectively wholly random
and detection probabilities are thus constant at P1 = P2 = Pc

2 .
The Fisher information is therefore everywhere equal to zero.

Similar plots, for a frequency-independent photon input,
are given in Fig. 8 in Appendix D. Though the exact values
differ, the same trends follow with increasing noise. This is
also true for our mode-uncorrelated noise model.

B. Frequency-independent noise

Initially, increasing frequency-independent noise seems to
affect the MZ protocols analogously to frequency-dependent
noise, while the HOM protocol is the exception, being entirely
unaffected. However, there is an interesting high-noise limit,
which we depict in Fig. 4(a). Rather than information tending
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FIG. 3. Comparison of the two-photon protocols, in the
frequency-entangled mode-correlated noise configuration with σ =
ωp

100 and α = 0.9. As frequency noise increases, all protocols see
a marked reduction in the Fisher information. The MZ2d protocol
performs best at low noise, but is most sensitive to noise. The HOM
protocol initially performs by far the worst, but is significantly more
resilient to noise. The MZ2s protocol lies in between in regard to
both initial performance and resilience to noise.

towards zero everywhere, increased ηθ merely washes out
the fringes while on either side of δ = 0 two peaks remain,
much like the familiar HOM information curve. Indeed, for
the MZ2s protocol this limit exactly matches a HOM curve
with 50% visibility. The MZ2d protocol remains visibility de-
pendent even in this limit. Curiously, this result suggests that
for a low-visibility (α < 0.5) photon pair the MZ2s protocol
is always preferable to the HOM protocol for maximizing
information.

In low-noise scenarios (ηθ � 1.5), the MZ2d protocol has
an intuitive dependence on visibility: Information is highest at
α = 1 and lowest (though nonzero) at α = 0. However, when
noise is larger (ηθ � 2.3) and particularly in the high-ηθ limit,
information is inversely proportional to visibility, as seen in
Fig. 4(b). At α = 1, information vanishes, whereas at α = 0
the curve again matches the HOM curve for 50% visibility. In
the transition region 1.5 � ηθ � 2.3 the visibility dependence

is more complicated, with some information peaks still pro-
portional to visibility while others are inversely proportional.
The visibility-proportional peaks gradually decay with larger
ηθ until they become negligible at ηθ ≈ 2.3.

Considering our mode-uncorrelated noise model, this limit
remains for the MZ2s protocol, though it now has a direct
visibility dependence (no information at α = 0, matches 50%
visibility HOM at α = 1). However, the MZ2d information
now tends to zero everywhere at high ηθ .

If we instead take our initial photons to be frequency
independent we see the same general behavior (though the
precise value of the Fisher information varies) for both mode-
correlated noise and mode-uncorrelated noise. This initially
perplexing behavior, which, given the α → 0 limit, may at
first glance appear to suggest interference between wholly dis-
tinguishable photons, arises in fact from classical correlations
between the paths of the two photons: At large ηθ uncer-
tainty in the value of the frequency-independent phase shift
increases, and in the limit ηθ → ∞ the shift becomes wholly
random. However, though this θ shift is random, the same
size shift is experienced by both photons. This allows some
δ dependence to remain even with distinguishable photons.
In the ηθ → ∞ limit δ-dependent interference at the second
beam splitter only occurs when one photon is in each mode
(when the photons are bunched they each exit the second beam
splitter stochastically). In the MZ2d protocol this component
is suppressed, according to visibility, by HOM interference
at the first beam splitter giving rise to the increasing Fisher
information in spite of decreasing visibility. A deeper analysis
of these classical correlations, as well as a discussion of the
extra subtleties in the mode-uncorrelated noise model, is given
in Appendix C.

C. Oscillatory information

For the MZ protocols, information peaks at δ = 0, which
decays as the frequency components lose a common phase.
However, when our input photons are frequency entangled F
does not decay to zero, but rather we see a constant regular
oscillatory information. This is not the case when the input
photons are independent: There is still a central peak and
some oscillation in the decay, but information ultimately drops
to zero at large delays. Both cases are shown in Fig. 5, in
the scenario with zero noise.4 When noise is introduced (not
shown), these fringes decay faster than the central peaks and
no fringes remain in the high frequency-independent noise
limit.

Such oscillations arise because the frequencies of down-
converted photons, though themselves unknown, will always
sum to the constant pump frequency ωp. A quick inspection

4The central peaks (at δ → 0) coincide at 1
2 (4σ 2 + ω2

p ) for the
MZ2s protocol regardless of whether the photons are frequency-
entangled or independent (full expressions are given in Sup-
plemental Material [40]). For the MZ2d protocol, however, the
frequency-entangled peak is 2σ 2 + 1

2 (1 + α)ω2
p − 2ασ 2, whereas

the frequency-independent peak drops the final term and is simply
2σ 2 + 1

2 (1 + α)ω2
p. This makes separable photons marginally favor-

able around δ ∼ 0.
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(b)(a)

FIG. 4. We examine the behavior at and approaching the high frequency-independent noise limit. (a) Comparison of the two-photon
protocols, in the frequency-entangled mode-correlated noise configuration, at high frequency-independent noise with σ = ωp

100 and α = 0.5.
Frequency-independent noise does not affect the HOM protocol. Due to classical correlations (see Appendix C) between the two photons, for
our MZ protocols information is not entirely washed out. Instead, as ηθ increases, both protocols tend towards a HOM-like information curve.
For the MZ2d protocol, this curve is visibility dependent. For the MZ2s protocol, which is always visibility independent, it tends towards a
curve that exactly matches the HOM curve at 50% visibility. The inset shows the three curves for the far face (ηθ = 3). (b) Visibility dependence
of the MZ2d protocol, in the high frequency-independent noise limit (ηθ = 4) with σ = ωp

100 . The information has an inverse dependence on
the visibility, and at α = 0 the curve matches that of our HOM protocol with α = 0.5. See Appendix C for further discussion.

of the frequency-entangled coincidence probabilities for the
MZ2s [Eq. (33)] and MZ2d protocols [Eq. (36)] reveal these
are indeed oscillations at the pump frequency. These oscil-
lations concur with results from previous two-photon MZ
experiments where down-converted photons enter via the
same port [17] and via different ports [18], and similar os-
cillatory behavior is observed in the two-photon Franson
interferometer [41].

By contrast, when the photons are independent, their fre-
quencies no longer sum to some constant ωp. As a result, all
probabilities tend to constants at high delays and information
decays entirely. Appendix F shows the relation between the
detected signal (probabilities) and the resulting Fisher infor-
mation in the oscillating region.

D. Zero visibility and comparison
with the MZ1 protocol

We now want to compare our two-photon MZ protocols
to the MZ1 protocol. The MZ1 protocol has no fringes,
so it is natural to compare it more directly to the MZ2s
and MZ2d protocols with independent photons. We also
choose α = 0 for the MZ2d protocol so as to prevent inter-
ference at the initial beam splitter, which yields additional
information.

We might suppose that both the MZ2s and MZ2d protocols
are now equivalent to the MZ1 protocol run twice (2×MZ1).

However, Fig. 6(b) shows this is only true for the MZ2s
protocol, which does indeed have double the information of
the MZ1 protocol. Though the MZ2d protocol shares the same
central peak, its overall shape is different from the MZ2s
protocol (and thus different from the 2×MZ1 protocol). This
is a limitation of the measurements which do not distinguish
between the two photonic modes. In the MZ1s and MZ2s pro-
tocols we can recognize whether the photon(s) are detected in
the same spatial mode they started or the opposite, as the pho-
ton(s) always start in a common mode. In the MZ2d protocol
the same coincidence event is observed when each photon is
detected in the original spatial mode as when they are detected
in the opposite spatial mode due to this nondistinguishing
measurement. This gives rise to an apparent loss in precision,
albeit one which could be alleviated with a distinguishing
measurement.

Returning to frequency-entangled photons, Fig. 6(a) shows
that we see similarly different Fisher information for both pro-
tocols despite α = 0, though at large delays the information
coincides at the fringes.

E. Maximal information

As a final comparison, Fig. 7 explores the resilience of
the MZ1 protocol to noise in comparison to its frequency-
entangled two-photon counterparts. Plotting only the maxi-
mum information, as both types of noise increase, we again
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FIG. 5. Fisher information for (a) frequency-entangled vs (b) in-
dependent photons with σ = ωp

100 , α = 0.5, and ηε = ηθ = 0. When
the photons are frequency entangled, information plateaus to some
regular oscillatory information at high |δ|, either side of the central
peak [a closeup is shown in the inset in (a)]. These enduring fringes
are not present when the input photons are frequency independent,
with information gradually decaying to zero at high |δ|.

see the superior performance of the MZ2d protocol at low
noise (provided a sufficiently high visibility). We also see,
however, that the MZ1 protocol proves slightly more resilient
to noise than the MZ2s protocol. Thus, in scenarios where
noise is sufficiently high so that the MZ2d protocol is no
longer preferable, but before reaching such high values that
the HOM protocol is preferable to all the MZ protocols, the
best choice is not the MZ2s protocol but rather two individual
runs of the MZ1 protocol.

−150 −75 0 75 150
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0.25
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δ ωp
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Independent photons

MZ2s MZ2d MZ1
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FIG. 6. Fisher information for (a) frequency-entangled vs (b) in-
dependent photons, with additional comparison to the single-photon
MZ1 protocol in (b). We choose zero visibility to minimize any
two-photon interference effects and plot σ = ωp

100 and ηε = ηθ = 0.
Though the central peaks of the MZ2d and MZ2s protocols coincide,
the MZ2d protocol generally performs worse at zero visibility. This
is true everywhere when the input photons are independent, but for
the frequency-entangled case the two curves converge at the fringes
[shown in the inset in (a)]. When the photons are independent, the
MZ2s protocol has exactly double the information compared to the
MZ1 protocol.

We also see that we require higher values of ηεωp to
obtain a similar information decrease compared to lower ηθ

values. The disruptive effects of frequency-dependent noise
naturally scale with the frequency. Specifically, recalling that
the central frequency is ωp

2 , we would expect the performance
with frequency-dependent noise ηε to be roughly equiva-
lent to the performance with frequency-independent noise
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FIG. 7. Maximum Fisher information for the frequency-
entangled two-photon Mach-Zehnder protocols against noise with
σ = ωp

100 and α = 0.9. For comparison, we also plot twice the MZ1
protocol maximum. The HOM protocol performance is shown
in the inset. The solid lines show the information decrease as
frequency-dependent noise (scaled with ωp) grows and the dashed
lines show the decrease with increasing frequency-independent
noise. We saw previously that in the absence of noise two runs of
the MZ1 protocol performs comparably to the MZ2s protocol, and
the MZ2d protocol beats both provided α > 0. We now note that the
MZ1 protocol is in fact slightly more resilient to noise: While the
MZ2s protocol emerges as superior to the MZ2d protocol as noise
grows, it now dips below the performance of two MZ1 protocol
runs, except in the high-ηθ limit where the MZ2s protocol retains
some residual information [see Fig. 4(a)] while the MZ1 protocol
information decays fully to zero.

ηθ = ηε
ωp

2 .5 Thus, normalizing as we do with respect to the
pump frequency ωp, we see both sets of maximal Fisher infor-
mation curves in Fig. 7 separated by a factor of 2.

In perfect conditions (no noise, α = 1) the MZ2d protocol
performs twice as well as the MZ2s protocol and four times
as well as the MZ1 protocol. This can be associated with the
monochromatic limits where the MZ2d probe state equates
to a Heisenberg-scaling two-photon NOON state, while the
MZ1 and MZ2s probes are shot-noise-limited Fock states [3].
Additionally, Table II gives the requisite noise values that
reduce the peak information by 50% compared to the peak
information in the absence of noise.

VI. CONCLUSION

Our results confirm that under ideal, i.e., noiseless, con-
ditions Mach-Zehnder interferometry offers superior perfor-
mance over Hong-Ou-Mandel interferometry for the purposes
of delay estimation on a per photon basis. Once noise is intro-
duced, we show that, in keeping with expectations, the HOM

5For an immediate justification for why they cannot be exactly
equal, recall that the Fisher information tends to different high noise
limits for each type of noise.

TABLE II. Noise values where peak information is halved com-
pared to the zero-noise peak. The HOM protocol is impervious to
frequency-independent noise.

Noise MZ2d MZ2s MZ1 HOM

ηεωp 0.8 1.32 1.66 27.36
ηθ 0.4 0.66 0.83

protocol proves remarkably resilient to frequency-dependent
noise (equivalent to some unknown jitter in the actual delay)
and is in fact wholly unaffected by frequency-independent
noise (representing some random phase shift in one or both
of the arms). In the following,we discuss the performance of
MZ interferometry as the level of noise increases, with a focus
on the difference between our three two-photon MZ protocols.

Generally, we have found that two independent runs of
a conventional single-photon MZ protocol is preferable to a
simultaneous two-photon run where both enter via the same
input port of the MZI, as in our MZ2s protocol, for any finite
amount of noise. While both are matched at vanishing noise,
the superiority of two independent input photons increases
with noise severity. The ranking between the (different input
port) MZ2d protocol and the 2×MZ1 protocol depends on
the level of noise. The best protocol choice for a given noise
regime is summarized in Table III.

Specifically, in low-noise scenarios, the MZ2d protocol of-
fers optimal performance provided the visibility of the initial
photon pair is sufficiently high. However, beyond a certain
noise threshold (the exact point varies depending on other pa-
rameters, but for α = 0.9 and σ = ωp

100 the threshold is ηεωp ≈
0.9 or ηθ ≈ 0.45) the performance of the MZ2d protocol dips
below both the 2×MZ1 protocol and the MZ2s protocol,
with the 2×MZ1 protocol marginally preferable. The exper-
imental setup of Ref. [11] falls within this moderate noise
regime: The 2-fs average delay drift and a spectral width σ ≈
4.6 ps−1 correspond to frequency-dependent noise of roughly
ηεωp ≈ 1.15.

In high-noise scenarios (ηεωp > 5.6 or ηθ > 2.8 for α =
0.9 and σ = ωp

100 ) the performance of all MZ protocols drops
substantially and the best choice is generally to drop the
initial beam splitter and perform the delay estimation based
on the HOM approach. The exception to this is if visibility

TABLE III. Optimal protocol choice for varying noise regimes.
Threshold values are calculated for α = 0.9. At higher visibility
both the MZ2d and HOM protocols perform better, tightening the
range of noise values where the 2×MZ1 protocol (which is unaf-
fected by visibility) is optimal. At lower visibility the inverse is true:
The 2×MZ1 protocol becomes optimal over a wider range of noise
values.

Noise regime

Low Moderate High

ηεωp < 0.9 0.9 < ηεωp < 5.6 ηεωp > 5.6
ηθ < 0.45 0.45 < ηθ < 2.8 ηθ > 2.8

MZ2d 2×MZ1 HOM

053704-11



HANNAH SCOTT et al. PHYSICAL REVIEW A 104, 053704 (2021)

is low (α < 0.5) and noise is largely frequency independent;
in this case the MZ2s protocol may remain the superior
protocol owing to the classical correlations discussed in
Appendix C. Throughout, we see broadly the same qualitative
results whether our photons are frequency entangled (as in an
SPDC pair) or frequency independent. The only remarkable
difference is that the former produces regular oscillatory in-
formation at delays larger than the single-photon coherence
time, whereas information decays rapidly at large delays if
the photons are independent. The results for mode-correlated
vs mode-uncorrelated noise are qualitatively similar, though
notable differences arise in the interesting limit of high
frequency-independent noise, where classical correlation be-
tween photon paths results in some residual information
remaining when all other interference has been washed out.

In this paper we have not accounted for the possibility
of photon loss, instead treating our detectors as 100% effi-
cient. In practical scenarios, photon loss can result in some
ambiguity as to the location of the second photon when only
a single detector clicks. With conventional bucket detectors,
which lack photon-number-resolving capabilities, it is un-
clear whether this single click represents a true bunching
event or is simply a consequence of one photon being lost.
This ambiguity can be overcome with the introduction of
number-resolving detectors [15]. In accounting for loss, the
practical detection probabilities will differ slightly depending
on the number-resolving capabilities of the detectors. For
either detector type, the Supplemental Material [40] contains
the ability to generate loss-dependent expressions for any of
the two-photon protocol configurations we have considered.

In summary, our results provide a rigorous investigation of
the effects of noise in MZ and HOM interferometers traversed
by photon pairs. We have confirmed that HOM interferometry
is indeed largely impervious to phase noise and thus remains
the favored choice for noisy scenarios. By exploring three
different two-photon MZ protocols, we have quantitatively
established their considerable resilience to phase noise and
uncovered interesting subtleties and differences in perfor-
mance depending on how the photons are fed in. Notably, the
existence of the HOM-like feature in the Fisher information
arising from classical correlations and the fact that the MZ2d
protocol performs up to twice as well in low-noise scenarios
compared to the MZ2s protocol and the 2×MZ1 protocol
might be interesting for further exploration and may become
increasingly relevant as more phase-stable Mach-Zehnder se-
tups, e.g., on integrated photonic chips, become more readily
available.
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APPENDIX A: GENERAL DETECTION PROBABILITIES

1. Frequency-entangled photons

Our initial two-photon protocols involve a frequency-
entangled photon pair (such as that generated by SPDC).

Looking at the output states for our HOM [Eq. (7)], MZ2s
[Eq. (11)], and MZ2d [Eq. (17)] protocols, these can be writ-
ten in the general form

|ψout〉 =
∫

dω

2∑
i=1

2∑
j=1

[
Cei,e j (ω)ê†

i (ωp − ω)ê†
j (ω)

+Cei, f j (ω)ê†
i (ωp − ω) f̂ †

j (ω)
]
, (A1)

where the C coefficient functions are now all that differ be-
tween protocols.

We can now define the positive-operator-valued measure
(POVM) elements associated with our detection events. For
the case where both photons arrive at a single detector we have

� j =
∫

dω1dω2

[
1

2
ê†

j (ω1)ê†
j (ω2) |0〉 〈0| ê j (ω2)ê j (ω1)

+ ê†
j (ω1) f̂ †

j (ω2) |0〉 〈0| f̂ j (ω2)ê j (ω1)

]
,

(A2)

where j ∈ {1, 2} indicates which detector we are considering.
The factor of 1

2 in the first term is included to account for dou-
ble counting. For the case of a coincidence at both detectors
we have

�c =
∫

dω1dω2[ê†
1(ω1)ê†

2(ω2) |0〉 〈0| ê2(ω2)ê1(ω1)

+ ê†
1(ω1) f̂ †

2 (ω2) |0〉 〈0| f̂2(ω2)ê1(ω1)

+ f̂ †
1 (ω1)ê†

2(ω2) |0〉 〈0| ê2(ω2) f̂1(ω1)]. (A3)

These elements are straightforward sums of projectors onto
orthogonal states; therefore their positivity is apparent. We
require one further element 1 − (�1 + �2 + �c) to strictly
complete the POVM; however, as we are only considering
states of the form of Eq. (A1), the events associated with
that element all occur with probability zero and our sets of
probabilities for each protocol sum to one.

We can now calculate the detection probabilities for our
general output state. We have

Pj = 〈ψout| � j |ψout〉

=
∫

dω

[∣∣Cej , f j (ω)
∣∣2 + 1

2

∣∣Cej ,e j (ω) + Cej ,e j (ωp − ω)
∣∣2]
(A4)

for the probability of detection at detector j and

Pc = 〈ψout| �c |ψout〉

=
∫

dω
[∣∣Ce1, f2 (ω)

∣∣2 + ∣∣Ce2, f1 (ω)
∣∣2

+ ∣∣Ce1,e2 (ω) + Ce2,e1 (ωp − ω)
∣∣2] (A5)

for the probability of coincidence at both detectors. We can
now insert the relevant coefficient functions for each output
state to obtain the fixed shift probabilities presented in Sec. II.

2. Independent photons

For the alternative model discussed in Sec. IV, we now
assume both input photons to have independent frequencies.
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The general output state is now of the form

|ψout〉 =
∫

dω1dω2

2∑
i=1

2∑
j=1

[
Cei,e j (ω1, ω2)ê†

i (ω2)ê†
j (ω1)

+ Cei, f j (ω1, ω2)ê†
i (ω2) f̂ †

j (ω1)
]
. (A6)

Our POVM elements are the same as before [Eqs. (A2)
and (A3)] and we can calculate the detection probabilities as

Pj = 〈ψout| � j |ψout〉

=
∫

dω1dω2
[∣∣Cej , f j (ω1, ω2)

∣∣2
+ 1

2

∣∣Cej ,e j (ω1, ω2) + Cej ,e j (ω2, ω1)
∣∣2] (A7)

for the probability of detection at detector j and

Pc = 〈ψout| �c |ψout〉

=
∫

dω1dω2
[∣∣Ce1, f2 (ω2, ω1)

∣∣2 + ∣∣Ce2, f1 (ω1, ω2)
∣∣2

+ ∣∣Ce1,e2 (ω2, ω1) + Ce2,e1 (ω1, ω2)
∣∣2] (A8)

for the probability of coincidence at both detectors.

Once again, inserting the relevant coefficients for the out-
put state of a specific protocol yields the (fixed δ and phase
shift) detection probabilities for that protocol.

APPENDIX B: NOISE IN TWO ARMS

Throughout this paper we have opted to localize noise
entirely within one arm of the interferometer. To motivate this
choice and show that this neat simplification is sufficient (even
if physically noise occurs in both arms), we will explicitly
model noise split between two arms for our MZ2s protocol in
the following. This requires us to first introduce an additional
pair of fixed phase shifts for the lower arm; we therefore
modify the propagation transformations given in Eq. (3) to
now read

ĉ†
1(ω) → e−iω(δ1+ε1 )e−iθ1 ĉ†

1(ω),

ĉ†
2(ω) → e−iω(δ2+ε2 )e−iθ2 ĉ†

2(ω),

d̂†
1 (ω) → e−iω(δ1+ε1 )e−iθ1 d̂†

1 (ω),

d̂†
2 (ω) → e−iω(δ2+ε2 )e−iθ2 d̂†

2 (ω). (B1)

The exact same method to derive the noisy probabilities
now follows: Obtain the output state, calculate the fixed shift
probabilities, and then average over the fixed shifts. The only
additional requirement is the introduction of a second pair of
integrals over ε2 and θ2. The resulting noisy probabilities are

Pη

1,MZ2s = 1

8

⎛
⎝2 + e−2δ2σ 2/(4ηε̃σ

2+1)√
4ηε̃σ 2 + 1

+ cos(δωp)e−2ηθ̃ −ηε̃ω
2
p/2 −

4 cos
( δωp

2ηε̃σ 2+2

)
exp

(− 4δ2σ 2+4ηθ̃ (ηε̃σ
2+1)+ηε̃ω

2
p

8ηε̃σ 2+8

)
√

ηε̃σ 2 + 1

⎞
⎠, (B2)

Pη

2,MZ2s = 1

8

⎛
⎝2 + e−2δ2σ 2/(4ηε̃σ

2+1)√
4ηε̃σ 2 + 1

+ cos(δωp)e−2ηθ̃ −ηε̃ω
2
p/2 +

4 cos
( δωp

2ηε̃σ 2+2

)
exp

(− 4δ2σ 2+4ηθ̃ (ηε̃σ
2+1)+ηε̃ω

2
p

8ηε̃σ 2+8

)
√

ηε̃σ 2 + 1

⎞
⎠, (B3)

Pη

c,MZ2s = 1

4

(
2 − e−2δ2σ 2/(4ηε̃σ

2+1)√
4ηε̃σ 2 + 1

− cos(δωp)e−2ηθ̃ −ηε̃ω
2
p/2

)
. (B4)

From the above we see that the frequency-dependent (frequency-independent) noise terms only enter through an effective total
frequency-dependent (frequency-independent) noise term ηε̃ =

√
η2

ε1
+ η2

ε2
(ηθ̃ = √

η2
θ1

+ η2
θ2

). The form matches Eqs. (31)–
(33), which can be recovered by taking ηε̃ = ηε and ηθ̃ = ηθ . The same equivalence holds for the HOM, MZ1, and MZ2d
protocols and also in the case of independent photons for each protocol.

APPENDIX C: CLASSICAL CORRELATIONS AND THE
HIGH FREQUENCY-INDEPENDENT NOISE LIMIT

In Sec. V we noted that at high frequency-independent
noise some residual information remains unscathed for most
of our model variants. To justify our claim that this is a result
of classical correlations, let us return to our single-photon
MZ probabilities with fixed ε and θ shifts. These are P1,MZ1,
the probability that the photon is detected at detector 1, and
P2,MZ1, the probability that the photon is detected at detector
2, and are given in Eqs. (22) and (23), respectively.

We want to now consider what happens if we run MZ1
twice, but with the same fixed ε and θ shifts in both runs. This
leads to three possible outcomes

P1,CC = (P1,MZ1)2, (C1)

P2,CC = (P2,MZ1)2, (C2)

Pc,CC = 2 × P1,MZ1 × P2,MZ1, (C3)

the probabilities that both photons arrive at detector 1, both at
detector 2, and a coincidence at both detectors.

We can now perform the same procedure in Sec. III, aver-
aging over ε and θ with appropriate weighting to obtain noisy
probabilities. The full expressions for these are given in the
Supplemental Material [40].

If we now take the limit ηε → ∞, our new probabilities
tend to constants, just as in a single MZ1 run. However, while
the same holds for a single MZ1 run in the limit ηθ → ∞,
what we instead see is that for two MZ1 runs, correlated with
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the same (albeit unknown) θ , the probabilities do still vary
with delay. Specifically, we see

lim
ηθ→∞ Pη

1,CC = 1

8

(
2 + e−δ2σ 2/(2η2

ε σ
2+1)√

2η2
εσ

2 + 1

)
, (C4)

lim
ηθ→∞ Pη

2,CC = 1

8

(
2 + e−δ2σ 2/(2η2

ε σ
2+1)√

2η2
εσ

2 + 1

)
, (C5)

lim
ηθ→∞ Pη

c,CC = 1

4

(
2 − e−δ2σ 2/(2η2

ε σ
2+1)√

2η2
εσ

2 + 1

)
. (C6)

Because these probabilities were derived from two inde-
pendent runs of the MZ1 protocol, which could be taken
some arbitrary time apart, with only the requirement that
ε and θ remain constant (but unknown) between each
run, these probabilities must be the result of classical
correlations.

We can then note these are the same probabilities we
get for the HOM protocol with independent photons and
α = 0.5, which is the same ηθ → ∞ limit we see for the
independent photon MZ2s protocol. While the equivalent
frequency-entangled probabilities differ slightly, this never-
theless suggests that the residual Fisher information seen in
this limit is exactly the information that remains from these
classical correlations.

This is sufficient to explain the MZ2s case with mode-
correlated noise. However, the MZ2d protocol with mode-
correlated noise sees a peculiar inverse visibility dependence.
At α = 0, the photon pair will not interfere at the initial beam
splitter. The same logic now holds in terms of classical corre-
lations: The two photons behave independently but experience
the same θ shift. As visibility increases, however, so does the
degree of interference at the first beam splitter. When the two
photons bunch the analogy to two correlated MZ1 protocol
runs breaks down. Rather than each photon independently
interfering with itself, the photon pair now acts as one. At
α = 1 it becomes wholly impossible to exploit the classical
correlations as the two photons will be completely entangled
after the first beam splitter; hence the Fisher information drops
to zero.

It is perhaps even more straightforward to understand the
behavior with mode-uncorrelated noise. The MZ2s protocol
retains the same residual information in the high-ηθ limit,
but it now decays at low visibility. This naturally follows
as low visibility means the second photon has a larger con-
tribution from the orthogonal d̂ mode, which experiences
a different θ shift. Because the shifts now differ between
modes, classical correlations only exist between the paths of
the ĉ modes. Letting α drop all the way to zero puts both
photons in wholly distinguishable modes and thus the Fisher
information vanishes as there are no correlations between the
two.

The MZ2d protocol with mode-uncorrelated noise has no
residual information at all in this limit. This odd one out
can be explained with a combination of the two previous
cases. At high visibility the photons are more likely to bunch,
which provides no classical correlations to exploit. At low
visibility the photons will behave independently, but both
modes experience different θ shifts so no correlations exist.
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ω2
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0
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×10−4

F
ω2
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ηεωp = 5

−100 −50 0 50 100
0
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2 ×10−4

δ ωp

F
ω2
p

ηεωp = 10

MZ2d MZ2s HOM

FIG. 8. Comparison of the two-photon protocols, in the
frequency-independent mode-correlated noise configuration with
σ = ωp

100 and α = 0.9. We see behavior qualitatively similar to the
frequency-entangled case depicted in Fig. 3. As also seen in Fig. 6(b),
information decays at large δ even in the absence of noise, and
we now note that once noise is introduced the Fisher information
is generally slightly lower than the frequency-entangled equivalent.
We also see the wider HOM dip of an independent photon input;
specifically, the Fisher information is equivalent to that of frequency-
entangled HOM case with the reduced spectral width σ/

√
2.

Combining these two effects, we will now always see zero
information.

APPENDIX D: NOISE RESILIENCE
OF INDEPENDENT PHOTONS

For comparison to Fig. 3, we plot in Fig. 8 the Fisher
information at different frequency-dependent noise values
when our input photons are now independent. The behavior
is qualitatively similar but the value of the resulting Fisher
information is slightly reduced.

APPENDIX E: NOISE DISTRIBUTIONS

In Eq. (25) we derive our noisy probabilities by integrating
our fixed shift probabilities with Gaussian weightings. While
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FIG. 9. Comparison of the maximal information against
frequency-independent noise modeled with a (wrapped) Gaussian
noise distribution (solid) and a von Mises noise distribution (dotted).
We choose frequency-entangled photons and mode-correlated noise
with σ = ωp

100 and α = 0.9. At low noise, values are similar. As
noise increases the curves diverge, the von Mises curves dropping
faster. At higher noise the curves converge again. In the inset, we
see that for large noise values (ηθ > 2.5) the Gaussian curves, which
initially sat above, have now dropped below the von Mises curves.
Information plateaus to the same values for both distributions [the
residual HOM-like information from Fig. 4(a) can be seen for the
MZ2s protocol], but with the von Mises distribution this happens
over a notably larger range of noise values.

the choice of a Gaussian noise distribution is the most natural
for frequency-dependent (ε) noise, being equivalent to some
jitter in the delay, for frequency-independent noise (where the
θ shifts will always lie within an interval of width 2π ) a more
conventional choice would be some circular distribution for θ

shifts.
One such common circular distribution can be obtained by

wrapping the standard Gaussian distribution around the circle.
If we define an arbitrary Gaussian distribution

G(x) = 1√
2πσ

e−(x−μ)2/2σ 2
, (E1)

then the wrapped Gaussian distribution is given by [42]

W (x) =
∞∑

k=−∞
G(x + 2πk). (E2)

Then, suppose some periodic function f (x) such that
f (x + 2πk) = f (x) for all integers k. We can then demon-
strate that integrating this function with a Gaussian distri-
bution over (−∞,∞) is equivalent to integrating with the
wrapped Gaussian over a 2π window:

∫ ∞

−∞
dx f (x)G(x) =

∞∑
k=−∞

∫ 2πk+π

2πk−π

dx f (x)G(x)
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0.25

0.5
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δ ωp

F
ω2
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Frequency-entangled photons

FIG. 10. Comparison of the detected signal to the resulting
Fisher information for the MZ2s protocol in the absence of noise.
Solid lines are the three probabilities (detection at detector 1, at
detector 2, or a coincidence at both detectors) and the dashed line
is the Fisher information. We choose σ = ωp

100 and examine behavior
at high |δ|. In (a) (frequency-entangled input photons) we see regular
oscillations in the detected signal produce Fisher information that
likewise oscillates but does not decay. In (b) (frequency-independent
input photons) we see the detected probabilities, still slightly oscil-
lating, are tending towards constants. Thus the Fisher information is
decaying to zero.

=
∫ π

−π

dx
∞∑

k=−∞
f (x + 2πk)G(x + 2πk)

=
∫ π

−π

dx f (x)
∞∑

k=−∞
G(x + 2πk)

=
∫ π

−π

dx f (x)W (x). (E3)

We now note that all of our fixed shift probabilities given
in Sec. II have an appropriate periodic dependence on θ , i.e.,
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P(θ + 2πk) = P(θ ) for all integers k. Therefore, the integral
in Eq. (25) will produce the same results as if we had used a
wrapped Gaussian distribution.

An alternative circular distribution, the von Mises distribu-
tion, is given by [42]

eκ cos(x−μ)

2π I0(κ )
, (E4)

with I0(κ ) the modified Bessel function of the first kind. Here
κ is analogous to the Gaussian distribution’s 1/σ 2, so for our
purposes we write the von Mises weighting in the form

Jθ (ϑ ) = ecos(ϑ )/η2
θ

2π I0
(

1
η2

θ

) . (E5)

This can then replace the second expression in Eq. (24), and
the ϑ integral from Eq. (25) is now performed over the region
[−π, π ].

Employing the von Mises distribution produces the same
qualitative results but with a slightly different dependence
on the noise parameter ηθ . Considering only frequency-
independent noise, we plot in Fig. 9 the maximal information
for our protocols with both noise distributions. Values are
most similar for high and low ηθ , attaining the same limits at
ηθ = 0 and ηθ → ∞, while the curves are furthest separated
at moderate noise values. Also notable, from the inset, is that
the von Mises model takes notably longer to decay to its
high-ηθ limits.

For the protocols in Fig. 9, the Supplemental Material [40]
contains the full probability and Fisher information expres-
sions where a von Mises noise distribution was chosen for
frequency-independent noise. Also included are all initial
fixed shift probabilities from Sec. II, plus those for the Sec. IV
model variations, so that all results can be easily reproduced
for an alternative choice of noise distributions.

APPENDIX F: OSCILLATIONS IN
THE DETECTED SIGNAL

In Sec. V we discussed how, at high |δ|, the Fisher in-
formation oscillates without decay when the input photons
are frequency entangled. If the photons are independent, the
Fisher information instead decays to zero. To further demon-
strate this, Fig. 10 plots the detection probabilities together
with the Fisher information in a high-|δ| region, for the MZ2s
protocol.

Generally, we expect a high Fisher information when prob-
abilities change most quickly with respect to the parameter of
interest, while it vanishes at the extrema of the probabilities
as there is no local information at these points; Eq. (26)
shows that the Fisher information must vanish whenever the
derivative of all probabilities is zero. In practice, a degree of
prior information (such as that obtained through some initial
coarse calibration) enables one to tune the setup and operate
in a region in which the Fisher information is high [11].

The relation between detected signal and resulting Fisher
information is similar for the MZ2d protocol.
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