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An exciting frontier in quantum information science is the realization and control of complex quantum
many-body systems. The hybrid nanophotonic system with cold atoms has emerged as a paradigmatic platform
for realizing long-range spin models from the bottom up, exploiting their modal geometry and group dispersion
for tailored interactions. An important challenge is the physical limitation imposed by the photonic bath, con-
straining the types of local Hamiltonians that decompose the available physical models and restricting the spatial
dimensions to that of the dielectric media. However, at the nanoscopic scale, atom-field interaction inherently
accompanies significant driven-dissipative quantum forces that may be tamed as a new form of a mediator for
controlling the atomic internal states. Here we formulate a quantum optics toolbox for constructing universal
quantum matter with individual atoms in the vicinity of one-dimensional photonic crystal waveguides. The
enabling platform synthesizes analog quantum materials of universal 2-local Hamiltonian graphs mediated by
phononic superfluids of the trapped atoms. We generalize our microscopic theory of an analog universal quantum
simulator to the development of dynamical gauge fields. In the spirit of gauge theories, we investigate emergent
lattice models of arbitrary graphs, for which strongly coupled SU(n) excitations are driven by an underlying
multibody interaction. As a minimal model in the infrared, we explore the realization of an archetypical
strong-coupling quantum field theory, the SU(n) Wess-Zumino-Witten model, and discuss a diagnostic tool to
map the conformal data of the field theory to the static and dynamical correlators of the fluctuating photons in
the guided mode.
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I. INTRODUCTION

One of the central problems in quantum information sci-
ence and condensed matter physics is to create and control
strongly interacting quantum systems and to measure the
equilibrium and nonequilibrium properties of the many-body
system [1–3]. Recent experiments with ultracold atoms have
extended the ranges of unconventional phenomena that may
be accessed. A common thread in these efforts is the quest
to design the Hamiltonian by harnessing the natural interac-
tions available between cold atoms [4]. Much of the focus
has largely been on analog and Floquet quantum systems.
However, these approaches are limited in their applicability
to complex target Hamiltonians whose description departs
significantly from the microscopic model of the simulator.

A parallel development has been the exploration of compu-
tational complexity of local Hamiltonians, whose ground-state
properties cannot be efficiently obtained even by a digital
quantum computer. An example of such a quantum-Merlin-
Arthur (QMA) problem is to find the ground state of 2-local
Hamiltonians ĤQMA = ∑

i j ĥi j , where the local decomposi-

tion ĥi j consists of at most two-body SU(2) operators. More
generally, arbitrarily complex quantum matter Ĥtarget can be
emulated with a seemingly simpler but QMA-complete lattice
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model ĤQMA [5], in that all physical properties and local struc-
tures of Ĥtarget can be efficiently mapped onto the universal
model ĤQMA. Likewise, a quantum simulator that realizes ana-
log Hamiltonians ĤQMA can be adapted for universal quantum
computation in the spirits of cellular automata and Hamilto-
nian computation [6–8].

With recent developments in atom-photon interfaces with
photonic crystals [9–19], there has been significant inter-
est in assembling quantum many-body systems by garnering
the control over individual quantum systems [1–4]. With
the atomic transition frequency residing within the photonic
band gap (PBG), the underlying lattice of atoms cannot dis-
sipate propagating waves into the guided modes (GMs) of
the photonic structure. However, the mere presence of the
atoms at sites i, j in a waveguide seeds dynamic defect
modes that support stable atom-field bound states in the form
of evanescent waves [9,10,20–22], mediating exchange in-
teraction J|i− j| �̂σ (i) · �̂σ ( j) between the trapped atoms [23,24].
With auxiliary Raman sidebands and digital time steps [1],
the phase-amplitude function J|i− j| can be engineered for
atoms coupled to one-dimensional (1D) and 2D photonic
crystal waveguides (PCWs) and realize translationally in-
variant pairwise models for quantum magnetism, constrained
by the dimension of the dielectric [25]. Conversely, photons
propagating through the guided mode exhibit novel quantum
transport and many-body phenomena [26–30].
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At the nanoscale, the atom-field interaction is modified
by the electromagnetic vacuum of the dielectric, consist-
ing of both the passive photonic structure and the active
emitters. Such a quantum dielectric is inherently renormal-
ized by the strong coherent and dissipative radiative forces
between the atoms. Indeed, complex spin-mechanical tex-
tures arise through localized spin-dependent photon-mediated
forces [31]. More generally, nanoscopic quantum forces mod-
ify the mechanical vacuum of the atomic motion, where
Bogoliubov phonons are distributed across the atomic sample
as a collective bath that in turn couples to the spin system. The
dissipative nature of these forces in PCWs may be exploited to
stabilize and self-organize new forms of mechanical phases of
quantum matter, and complex observables may be constructed
for the detection of highly entangled quantum systems.

Here we harness the coherent coupling between atomic
motion and internal states in 1D PCWs for the realization of
analog universal quantum matter. We develop a low-energy
theory for the quantum motion of the trapped atoms in the
band-gap regime of waveguide QED. By coupling Bogoliubov
phonons to the spin matter, we realize a fully programmable
lattice spin system ρ̂s for neutral atoms. In our approach, an
arbitrary binary interaction ĥi j � ∑

α,β J (i, j)
αβ σ̂ (i)

α σ̂
( j)
β is real-

ized for any combination of SU(2)-spin operators σ̂ (i)
α , σ̂

( j)
β

with α, β ∈ {0, x, y, z} between sites i and j. Our spin net-
work ρ̂s is described by Hamiltonian graphs with connectivity
i, j that can no longer be represented by spatial lattices and
dimensions and realizes the universal 2-local quantum matter
ĤQMA = ∑

i, j ĥi j in a fully analog manner. Our waveguide
QED simulator, stabilizing ĤQMA, is universal, in that any
k-local Hamiltonian Ĥtarget of arbitrary connectivity can be
embedded into the low-energy sector of ĤQMA [5]. This notion
of universality is strong in that any physical phenomena of
Ĥtarget must correspond to an emergent behavior of the analog
simulator ĤQMA in the long-distance limit.

Moreover, we formulate a hardware-efficient protocol to
design dynamical gauge structures of many-body system and
realize a plethora of SU(n) models with our waveguide QED
simulator. Motivated by gauge fixing in quantum spin glasses
and color codes, we describe a general construction for which
the low-energy physics of ρ̂s encompasses the full scope of
binary lattice models for SU(n)-spin excitations with local
constraints that protect the many-body wave function ρ̂s from
errors. Here atomic arrays constrained by their local symme-
tries are encoded into logical SU(n) blocks, and dynamical
U(1)-gauge fields mediate programmable long-range interac-
tions between the logical blocks.

Utilizing these capabilities, we demonstrate the versatility
of our universal analog simulator by constructing chiral-
spin liquids [32] and holographic strange metals [33,34]. As
a primordial example to the tower of phases, we explore
the physics of SU(3) Wess-Zumino-Witten conformal field
theory (CFT), a holographic dual to Chern-Simons gravity
[35], by encoding the target CFT onto the low-energy sec-
tor of our waveguide QED simulator. We investigate the
critical scaling of CFT entanglement and the dynamics of
semionic quasiparticle excitations, as reflected by the fluctu-
ating photons of the PCW. Our networked approach provides
powerful tools for controlling analog quantum systems with

TABLE I. Final design variables for the SPCW with slab index
n = 2. The uncertainty ±1 nm is added for the normal distributions
of the disordered SPCW structure in Fig. 7.

Structural parameter Value

Lattice constant a0 366 ± 1 nm
Slot width w 226 ± 1 nm
Slab thickness t 200 ± 1 nm
Squircle radius rs 99 ± 1 nm
Secondary radius r′ 105 ± 1 nm
Hole radius r 109 ± 1 nm
First line shift l 413 ± 1 nm
Secondary line shift m 729 ± 1 nm
Squircle height a 79 ± 1 nm
Squircle width b 124 ± 1 nm

complexities far beyond the regular spin lattices heretofore
explored.

The structure of this paper is organized as follows. In
Sec. II we investigate the interplay among waveguide pho-
tons, atomic external motion, and internal energy levels and
establish the low-energy theory for an analog quantum simu-
lator of universal Hamiltonians [5]. In Sec. III we discuss the
realization of a chiral-spin liquid on kagome lattice and the
detailed design of Raman sidebands. In Sec. IV we introduce
the realization of SU(n)-spin models by gauging N two-level
atoms to a constrained subspace. With this logical encoding,
we construct a general SU(n) Hamiltonian for the waveguide
QED platform. In Sec. V we analyze the emergence of a min-
imal SU(3) Wess-Zumino-Witten model with matrix-product
states and discuss operational metrics for its diagnosis. In
Sec. VI we discuss the experimental feasibility and summarize
the advances made in this work.

II. PLATFORM

A. Lamb shifts in PCWs: Phononic Hubbard model

Our approach is based upon the unique capability of PCWs
to induce strong photon-mediated forces between proximal
neutral atoms and to create many-body states of internal spin
and external motion. By engineering the QED vacuum of the
PCW, we synthesize coherent mechanical coupling between
the trapped atoms and renormalize the atomic array into a
mechanical quantum network. Long-range interaction of the
universal Hamiltonian ĤQMA = ∑

i, j ĥi, j is mediated through
the phononic quantum channels with full control over the
decompositions ĥi, j and their connectivity i, j.

As shown in Fig. 1, our basic building block is a 1D lattice
of neutral atoms at positions xi strongly coupled to a disper-
sive PCW with mode function uk0 (x) represented by the red
line of Fig. 1(b). The band edge at frequency wb is red detuned
by �b = ω − ωb > 0, so the atomic transition frequency ω

lies within the band gap. Each atom is tightly localized at
the antinodes of uk0 (x) with trap frequency ωt and lattice
constant a0 by a nanoscopic optical potential VT = V0 sin2 k0x
with a trapping field at a higher-order GM (blue line). In
Appendix B we analyze a versatile candidate structure (silicon
nitride squircle PCW) with highly tunable GMs in terms of
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FIG. 1. Complex quantum many-body physics with waveguide QED systems. (a) Exemplary waveguide QED spin network. The slotted
squircle photonic crystal waveguide (SPCW) enables a versatile platform for highly tunable defect guided modes, with the supermodes shown
in the inset. As a candidate PCW, the structural parameters are provided in Table I and discussed in Appendix B. Green spheres represent
the trapped atoms. The inset shows a contour map of the intensity profile for TE supermodes for exciting (trapping) Cs atoms at wavelengths
λp = 852 nm (λt = 794 nm). (b) Normalized band diagram for the supermodes of the SPCW. The inset shows two lasers 	dg, 	d̄s with
detunings δdg, δd̄s that create strong photonic Lamb shifts ∼e−|i− j|a0/Lc between two atoms localized within a photonic band gap [20]. The
band gap is detuned by �b with respect to the transition frequency. (c) Raman couplings synthesize programmable interactions between two
atoms at sites i, j ∈ {1, . . . , N} for any combination of SU(2) spin operators. Site-resolved addressing with spatially global fields 	

(i)
α,l (in the

frequency domain) is achieved through inhomogeneous Zeeman shifts �(i)
gs through intermediated excited states |ẽ〉, |e〉, |ē〉 with α ∈ {r, b, z}.

(d) Raman engineering. Programmable Raman fields 	
(i)
α,l selectively couple internal states |g〉, |s〉 of atom i to the Bogoliubov phononic mode

l ∈ {1, . . . , N} with two-photon detuning ν
(i)
l . Each single sideband mode with frequency ν

(i)
l (red dashed line) is nearly resonant to �(i)

gs − εl

(black solid line), where εl is the phonon spectrum. Only the red sideband couplings are depicted for simplicity.

the TE photonic band gap, effective photon mass me, and
mode area Aeff near the band edge kx = k0 [see Fig. 1(b) for
the band diagram]. Here |g〉 and |s〉 are the two hyperfine
ground states that define the computational basis C of the
waveguide QED simulator, and the ground states respectively
couple to excited states |d〉 and |d̄〉, which will be elim-
inated to induce a pure mechanical coupling between the
atoms.

The atom-PCW Hamiltonian reads ĤPCW =∫
dx

∫ ∞
0 dω f̂

†
(x, ω) f̂ (x, ω) + ∑

i(ωdσ
(i)
dd + ωd̄σ

(i)
d̄ d̄

+ �gs

σ (i)
ss ) + ∑Na

i=1

∑
μ=dg,d̄s[

∫ ∞
0 dωE(xi, ω) · dμσ̂ (i)

μ + 	μσ (i)
μ

e−iνμt ], where ddg(d̄s) is the transition dipole momentum from
|g(s)〉 to |d (d̄ )〉 and 	dg(d̄s) is the Rabi frequency of the pump-
ing fields with frequency νdg(d̄s) that couples |g(s)〉 and |d (d̄ )〉.
We assume ddg = d d̄s = d. The electric field in the PCW can
be represented by classical Green’s function G(x, x′, ω) as

Ê(x, ω) = iμ0ω
2
√

ε0
π

∫
dx′√Im{ε(x′, ω)}G(x, x′, ω) f̂ (x, ω),

where f̂ (x, ω) represents the quantized excitation of the
dielectric with permittivity ε(x′, ω) [36,37].

In the limit fdg(d̄s) = 	dg(d̄s)/δdg(d̄s) = f 
 1 where
δdg(d̄s) = νdg(d̄s) − ωd (d̄ ), we adiabatically eliminate the
excited states |d〉 and |d̄〉 from the system and integrate out the
photonic modes [38–41]. We thereby obtain the low-energy
Liouvillian dynamics ˙̂ρ = −i[Ĥ int

M , ρ̂] + L0[ρ̂] + LM[ρ̂] with

a purely mechanical Hamiltonian

Ĥ int
M = f 2�Lamb(x̂i, x̂ j )σ̂

(i)
0 σ̂

( j)
0 (1)

and the respective Lindblad superoperators L0[ρ̂] =∑
i, j

�i j f 2

2 (2σ̂
(i)
0 ρ̂σ̂

( j)
0 − σ̂

(i)
0 σ̂

( j)
0 ρ̂ − ρ̂σ̂

(i)
0 σ̂

( j)
0 ) and LM[ρ̂] =∑

i, j
�i j f 2

2 (2eikx̂i ρ̂e−ikx̂ j − eik(x̂i−x̂ j )ρ̂ − ρ̂eik(x̂ j−x̂i ) ) acting
on the internal and external degrees of freedom (DOF),
where σ̂0 = |g〉〈g| + |s〉〈s| is the identity spin operator in C.
The photonic Lamb shift and correlated dissipation, modified
by the PCW, are given by

�Lamb(x̂i, x̂ j ) = 2μ0ω
2
bd∗ · Re[Gs(x̂i, x̂ j, ωb)] · d, (2)

�i j (x̂i, x̂ j ) = μ0ω
2
bd∗ · Im[G(x̂i, x̂ j, ωb)] · d, (3)

respectively, where Gs = G − G0 is the scattering Green’s
function relative to the vacuum term G0 (see Appendix B).
Importantly, the coherent dynamics of Eq. (1) is decoupled
from the internal states within the computational space C and
only induces a nonlocal mechanical interaction between the
trapped atoms. The state independence of Eq. (1) is crucial, as
the photon-mediated spin-exchange coupling cannot break the
translational invariance intrinsic to the photonic crystal struc-
ture [20]. Instead, our quantum simulator emerges from the
programmable interactions between the internal states and the
Bogoliubov modes of Eq. (1). Indeed, seen from the atoms,
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the correlated radiative decay �i j does not directly contribute
to the dynamics of computational subspace C but induces
mechanical damping to the atomic quantum motion.

In our case, the GM near the band edge kx = k0 (cor-
responding frequency ωb) exhibits an extremely flat band
wk − wb � − 1

2me
(kx − k0)2 and the GM photons acquire large

mass 1/me = −(∂2wk/∂k2
x ) [see Fig. 1(b) for the first Bril-

louin zone]. In the reactive regime of the PBG, the atoms
predominantly couple to this band edge and the Green’s func-
tion is approximated by

G1D(x̂i, x̂ j ) = J1Duk0 (xi )uk0 (x j )e
−|x̂i−x̂ j |/Lc , (4)

where the localization length Lc = √
1/2me�e ∼ a0 is con-

trolled by the detuning �e � 2�b of the pumping field from
band edge. Here J1D = − c2

2ωbLcAeff

1
�e+iκ/2 is the coupling rate to

the PCW with effective mode area Aeff � λ2, mode function
uk0 (xi ) at the band edge, and decay rate κ (κ0) in the band
gap (at the band edge). The correlated Lamb shift thereby
provides the tunneling interaction ĤM = f 2�1De−|x̂i−x̂ j |/Lc be-
tween local phonons pinned on the lattice sites xi and x j ,

with �1D = ωbd2�e
ε0LcAeff (�2

e+κ2/4) . Importantly, the collective damp-

ing �1D ∼ �̃1D exp(−Ld/Lc) is exponentially inhibited for a
finite device length Ld , with �̃1D = ωbd2κ0

2ε0LcAeff (�2
e+κ2

0 /4)
, and the

figure of merit F = �1D/�1D ∼ exp(Ld/Lc)  1 is favorable
for massive photons with flat bands and long device length
Ld  Lc.

To make progress analytically, we consider the case of
Lc ∼ a0 with massive photons (flat bands in the PCW), where
the atom-atom interaction reduces to nearest-neighboring
terms. We thereby expand the mechanical Hamiltonian ĤM

around the equilibrium positions to the second order of the
zero-point motion x0 = √

h̄/2mωt and obtain the quadratic
form

HM =
∑

i

p̂2
i

2m
+ mω2

t

2
x̂2

i − h̄gm

L2
c

x̂ix̂i+1 + O
(
x̂4

i

)
(5)

for the mechanical coupling constant gm = f 2�Lamb and the
trap frequency ωt . With a first-type sine transform Bjk =

1√
N

sin(i π
N+1 jk), we diagonalize HM = ∑N

l=1 εl β̂
†
l β̂l , whose

quasiparticles are the Bogoliubov phonons {β̂l} with spectrum

εl =
√

ω2
t + 2h̄gmx2

0
L2

c
cos( π

N+1 l ) with momentum-space mode
indices l . For nanoscopic optical potentials with kxx0 �
 1,
Eq. (5) describes a 1D Bose-Hubbard model for atomic
motion with on-site (long-range) interaction ∼x̂4

i /x4
0 (|x̂i −

x̂ j |4/L4
c ), where the Bogoliubov phonons are excited out of

the superfluid vacuum. The radiative damping �1D gives
rise to motional decoherence LM[ρ̂MA] = ∑

l
γm

2 (2 ˆ̃xl ρ̂MA ˆ̃xl −
{ ˆ̃x2

l , ρ̂MA}) with damping γm = gmx2
0

�eL2
c
κe−Ld /Lc and quadrature

ˆ̃xl = β̂l + β̂
†
l . We note that the requirement for Lc ∼ a0

is not intrinsic to the protocol, as the long-range interac-
tion Lc > a0 only modifies the frequencies of the phononic
bands. The momentum-space Bogoliubov modes constitute
the frequency-selective channels of an all-to-all connected
mechanical quantum network and coherently mediate the in-
teractions between the atomic nodes, transforming the atomic
array into a universal quantum matter.

B. Networked universal quantum matter

To mediate the universal lattice model via the phononic
channels, we gain independent control over the interaction
coefficients between any atom pair i, j by way of Raman
engineering in the sideband-resolved limit. This is ensured
in the reactive regime of PCWs, because the mechanical
damping constant γm is exponentially suppressed by F ∼
exp(Ld/Lc)  1 relative to the phonon spread. As shown
in Fig. 1(c), we distinguish the coupling of an individual
atom i to a particular Bogoliubov mode l with the site-
dependent ground-state energy shift ĤA = ∑

i �
(i)
gs σ̂

(i)
z , with

�(i)
gs = �gs + gF mF B(xi ) in the form of a linear Zeeman

gradient B(xi ) [25]. The ground-state shift δ�gs between
neighboring sites is larger than the width of the phonon
spectrum |εN − ε1|, so the frequency difference �(i)

gs − εl is
different for all pairs of (i, l ) [see Fig. 1(d)].

Then we introduce the spatially global Raman interaction

Ĥ = ĤM + ĤA + ∑
i, j

∑
α,l

	
( j)
α,l

2 σ̂ (i)
α sin(k( j)

α,l x̂i )e−iν ( j)
α,l t + H.c.

[42–45] with N2 frequency sidebands to the atom chain
through the GM, where k(i)

α,l � k and ν
(i)
α,l denote the

wave number and frequency for the Raman fields that
couple the spin operator σ̂ (i)

α of atom i with α ∈ {±, z}
to the Bogoliubov mode l with α ∈ {±, z}. By expanding
sin(kx̂i ) � ∑

l η0Bil (β̂
†
l + β̂l ) in the Lamb-Dicke limit with

η0 = x0/a0 and switching to the interaction picture, we find

ĤMA = ∑
α,i, j,l 	

( j)
α,l σ̂

(i)
α e−i(ν ( j)

α,l −ζα�(i)
gs )tη0Bil β̂

†
l eiεl t + H.c., with

ζα = ±1, 0 for α = ±, z. As �
(i)
α,l = ν

(i)
α,l − ζα�(i)

gs + εl 

|εl − εl−1| 
 δ�gs, we integrate over the rapidly
oscillating terms and leave only the slowly varying terms
∼ exp[i(ν (i)

α,l − ζαω
(i)
A + ωl )t] and obtain the spin-mechanical

Hamiltonian ĤMA = ∑
i,l

∑
α∈{x,y,z}

η0	
(i)
α,l

2 Bil σ̂
(i)
α β̂l e−i�l t +

H.c., thereby coupling the spin operator σ̂ (i)
α at site xi

to a particular Bogoliubov mode l . Here the detuning
�

(i)
α,l = �M is chosen to be identical for all phononic

modes l , atoms i, and spin operator types α and the Rabi
frequencies are transformed as 	

(i)
x,l = (	(i)

+,l + 	
(i)
−,l )/2 and

	
(i)
y,l = i(	(i)

+,l − 	
(i)
−,l )/2.

By projecting the master equation to the computational
subspace C [46], we obtain the open-system dynamics ˙̂ρA =
−i[ĤQMA, ρ̂A] + ∑

α L[ρ̂A] for the spin system, governed by
the universal Hamiltonian

ĤQMA �
∑

i, j,α,β

J (i, j)
α,β σ̂ (i)

α σ̂
( j)
β +

∑
i,γ

h(i)
γ σ̂ (i)

γ (6)

and the correlated dissipation

L[ρ̂A] =
∑

i, j,α,β

γ
(i, j)
α,β

2

(
2σ̂

(i)
β ρ̂Aσ̂ ( j)

α − {
σ̂ (i)

α σ̂
( j)
β , ρ̂A

})
(7)

for any combination of α, β, γ ∈ {x, y, z} and be-
tween any two spins at sites i, j. Importantly, the
exchange interaction J (i, j)

α,β and the bias field h(i)
γ can

be arbitrarily designed by solving a set of nonlinear
equations J (i, j)

α,β = 2 Re[
∑

l 	̃
(i)
α,l	̃

( j)∗
β,l /�M] and h(i)

γ =
−2εαβγ Im[

∑
l 	̃

(i)
α,l	̃

(i)∗
β,l /�M], where 	̃

(i)
α,l = η0	

(i)
α,l Bil

and Levi-Cività symbol εαβγ . Namely, we have 6N2 DOFs
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for the sidebands {	(i)
α,l} from the nonlinear equations, while

only 3(3N2 − N )/2 independent parameters {J (i, j)
α,β , h(i)

γ } are

required to represent the universal model ĤQMA. Hence, for
any set {J (i, j)

α,β , h(i)
γ }, at least one solution {	(i)

α,l ,�M} can
be obtained for the target model within certain physical
constraints (e.g., laser power). We envisage that the
Raman sideband matrices {	(i)

α,l} are real-time tunable.
The Hamiltonian ĤQMA(t ) can be evolved to map out
complex phase diagrams of many-body models and be
globally quenched to study out-of-equilibrium dynamics.
The frequency sidebands {	(i)

α,l} can be streamed by the
time-domain response function 	(t ) using a single-mode
phase-amplitude modulator. The dissipation rate is
evaluated as γ

(i, j)
α,β = γm

�M
J (i, j)
α,β + γAδi, j , where δi j denotes

the Kronecker symbol. The coherence-to-dissipation ratio
C = Jαβ/γαβ = F/N ∼ exp(Ld/Lc)/N  1 of our simulator
improves exponentially in the reactive regime. In practice,
C is constrained by γA due to the finite 	α,l and �M of the
Raman fields.

III. CHIRAL-SPIN LIQUIDS IN A KAGOME LATTICE

Frustration in lattice spin systems, in which local energy
constraints cannot all be satisfied, can lead to deconfined
phases of quantum spin liquids (QSLs). In a QSL, quantum
fluctuations drive the collective state of the spins into highly
entangled quantum matter, such as the resonating valence
bond state in Z2-spin liquids, whose emergent topological
properties can only be described in terms of long-range en-
tanglement [32]. Unlike gapped Z2-spin liquids, chiral-spin
liquids (CSLs) spontaneously break the time-reversal and
parity symmetry, while preserving other symmetries, and
host fractional quasiparticle excitations with topological order
[47]. Such a CSL is thought to be a parent state of the illusive
anyonic superconductor.

As an example of Eq. (6), we discuss a method of creating
the topological CSL discovered by Kalmeyer and Laugh-
lin, a bosonic analog of the celebrated fractional quantum
Hall effect [48–50], with our waveguide QED toolboxes.
We consider an anisotropic antiferromagnetic XXZ Hamilto-
nian

ĤCSL =
∑
〈i j〉

(
J⊥σ̂

(i)
⊥ σ̂

( j)
⊥ + JZZ σ̂ (i)

z σ̂ ( j)
z

) + λχ̂ (8)

on a kagome lattice with tunable spin chirality χ̂ . De-
spite the physical dimension of the atomic lattice in 1D
PCWs, our toolboxes allow the spins to sit on a synthetic
geometry provided by the connectivity of the translation-
ally variant spin-exchange couplings, as depicted by the
2D kagome lattice in Fig. 2. With λ = 0, ĤCSL reduces
to the kagome XXZ antiferromagnet, which has been
widely studied for its time-reversal symmetric Z2-spin liquid
[51,52].

In the presence of strong chiral interactions on the trian-
gles � of the sublattice, e.g., scalar spin chirality χ̂scalar =∑

i, j,k∈�
�̂σi · ( �̂σ j × �̂σk ), the ground state supports a topologi-

cally protected chiral edge mode circulating the macroscopic
outer boundary with closed loops within the inner hexagons
of the kagome lattice [48]. As a convention, the sum

∑
i, j,k∈�

FIG. 2. Chiral-spin liquid phase in a kagome lattice with vector-
spin coupling. (a) Antiferromagnetic Heisenberg model ĤAF with
Dzyaloshinskii-Moriya interaction χ̂vector illustrated for spins in an
artificial kagome lattice. The gray arrows indicate the sign of the
vector coupling in χ̂vector. (b)–(d) Raman sidebands realize ĤCSL in
Eq. (8) with tunable chirality χ̂vector for J⊥ = JZZ = 0.5 kHz and
λ = 0.1 kHz. Adiabatic evolution through a paramagnetic phase with
time-dependent sidebands prepares the chiral-spin liquid for cold
atoms in PCWs.

runs clockwise over the nearest-neighbor sites around the
triangles. To see how the extended chiral edge modes emerge
in a kagome lattice, we first identify that the ground state
of a single closed loop χ̂scalar around a single triangle is the
Kalmeyer-Laughlin wave function. By mapping the elemen-
tary triangular puddles into a Kondo-type network for edge
states [48], individual puddles encircled with the chiral states
merge together to develop a macroscopic puddle with a single
chiral topological edge state around the outer boundary of the
lattice, reminiscent of the two-channel Kondo problem. This
allows for unidirectional spin transport along the boundary,
and the bulk excitations are described by semionic exchange
statistics (φ = π ).

The difficulty in realizing Eq. (8) as the low-energy
theory of physical Hamiltonians with cold atoms is the
spin-chiral coupling �̂σ j × �̂σk that breaks the parity symmetry.
The capability to realize universal pairwise interaction, in-
cluding off-diagonal spin operators σ̂ασ̂β , makes our approach
highly suitable for analog quantum simulation of quantum
liquids with chiral-spin coupling. As an example, we real-
ize here the minimal instance of CSL with two-body vector
chirality χ̂vector = ∑

i, j∈� ẑ · ( �̂σ (i) × �̂σ ( j) ) in the form of a
Dzyaloshinskii-Moriya (DM) interaction. The Raman side-
band matrices shown in Figs. 2(b)–(d) realize Eq. (8) on a
unit cell of a kagome lattice in Fig. 2(a). The DM interaction
breaks the underlying SU(2) symmetry, while preserving the
lattice and U(1) spin symmetry. Hence, unlike the case of
χ̂scalar, the CSL does not persist for χ̂vector in the limit of strong
coupling λ  J⊥ = JZZ . However, it is numerically predicted
that the gapped CSL phase does exist for XXZ antiferromag-
nets with a finite vector spin chirality λ < J⊥ = JZZ at zero
magnetic field [49,50]. The capability to tune vector chirality
as well as other spin-orbit couplings also opens the route to
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synthetic multiferroics and emergent interfacial spin textures,
including skyrmions and topological surface states.

IV. GAUGING THE WAVEGUIDE QED SIMULATOR TO
INTERACTING SU(n) LATTICE MODELS

The native Hamiltonian of our waveguide QED simula-
tor spans the universal binary analog models of SU(2)-spin
operators. In analogy to lattice gauge theories that give rise
to constrained Hilbert space [53,54], we can also design dy-
namical gauge structures that mediate a wide range of binary
models consisting of SU(n) operators in a completely analog
fashion, such as the Heisenberg quantum magnet for inter-
acting SU(n) spins. While the digital quantum simulator can
emulate the dynamics of arbitrary unitary dynamics, we con-
fine our discussion here to binary SU(n)-spin models that arise
within the projected gauge-invariant subspace of the parent’s
SU(2) waveguide QED simulator. Such a condensed matter
approach [53] can create a deconfined quantum phase by di-
rect cooling to its ground state, and the errors can be mitigated
within the gauge sector of interest. Indeed, instead of merely
replicating the target quantum state as with digital quantum
simulators, the actual physical phenomenon is encoded onto
the low-energy sector of the waveguide QED simulator. In
this section we discuss a general Heisenberg SU(n) quantum
magnet as an exemplary implementation, but more complex
models involving vector and anisotropy can be realized in an
analogous fashion.

Our goal is to create a programmable Heisenberg mag-
net ĤH = ∑

j>i Ji j
∑

α �̂(i)
α �̂

( j)
α , where �̂α is the generalized

Gell-Mann matrix (Appendix C 1). The challenge of simu-
lating SU(n) spin with cold atoms and ions is that the spin
operators cannot be efficiently mapped to a rotation within an
internal DOF due to limited transition pathways, e.g., selec-
tion rules. In addition, there is a difficulty in implementing
spin models with certain symmetries that cannot be imposed
to the fundamental symmetries of the atomic interactions, e.g.,
SU(n)-symmetric collisions in alkaline-earth atoms limited by
the nuclear spin DOF [55]. Apart from the programmability
of Ji j , the n2 − 1 generators of SU(n) algebra and their in-
teractions would need to be mapped to the physical system.
Our method eliminates both bottlenecks, by locally encoding
an ensemble of SU(2) spins to the SU(n) subspace and by
building the interaction symmetry directly into the Hamilto-
nian in an emergent manner.

The general strategy is to impose an effective local gauge
symmetry onto the spin system through the separation of
timescale. We can then introduce a perturbative spin-exchange
term that only virtually breaks the local symmetries. By
construction, we aim to obtain a microscopic many-body
dynamics within the gauge sector, which can be effectively
interpreted as the macroscopic binary interactions between
the SU(n) spins. From the viewpoint of lattice gauge theories,
the constrained quantum dynamics can be qualitatively under-
stood as quantum fluctuations within the background gauge
field of a frustrated vacuum of the logical spin system, which
give rise to a physical four-body plaquette interaction.

As shown in Fig. 3, we partition the physical atomic lattice
i, j into logical spins ī, j̄ ∈ L, each containing n physical
atoms, that encode the local SU(n) spin. This is achieved

FIG. 3. SU(n)-spin networks under spin ice gauge constraints.
(a) Parent spin ice Hamiltonian. Trapped atoms in PCWs are sub-
jected to local ice rules (Gauss laws) with an energetic cost ĤG =
λG

∑
ī Ĝ2

ī within logical blocks ī, j̄. The quantum dynamics among
the ice states is induced by a perturbative spin exchange Ôī, j̄ between
atoms belonging to different blocks. (b) Effective reduction of the
Hilbert space into gauge sectors. The low-energy dynamics is con-
strained within the SU(n) single-excitation sector, represented by a
gauge charge Q = n − 2, with errors protected by a many-body gap
λG. (c) The global spin network is transformed into a network of
logical SU(n) spins ī, j̄ by encoding the SU(n) spin with a collection
of n SU(2) spins. U(1)-gauge constraints Ĝī block the excitation
manifold within the logical spin so that the energy sectors of the
parent Hamiltonian are separated by the total excitation number.
Spin-exchange coupling between atoms belonging to different log-
ical blocks ī, j̄ induces an effective two-body interaction between
SU(n) spins.

by local U(1)-gauge constraints Ĝī that blockade the total
excitation number within the logical spin ī to reside in the
single-excitation subspace {|α〉 ≡ |sα〉∏

β �=α |gβ〉} with α ∈
{1, . . . , n}. Such a gauge generator Ĝī = ∑

i∈ī σ̂
(i)
z − Q effec-

tively imposes the Gauss law (ice rules) with electric charge
Q = n − 2, analogous to quantum spin ice models [32,53]
that mediate long-range ring-exchange interactions. The
ground-state (most-excited-state) sector of ĤG = λG

∑
ī Ĝ2

ī
for λG > 0 (λG < 0) is spanned by n-dimensional states {|α〉}
of the SU(n) representation. Without a loss of generality, we
rewrite the Heisenberg model within this definition,

ĤH =
∑
ī �= j̄

Jī, j̄

∑
α,β

T̂ (ī)
αβ T̂

( j̄)
βα , (9)

where T̂αβ = |α〉〈β|.
In order to introduce spin-spin interaction between

the logical blocks, we treat the primitive Hamiltonian
ĤI = ∑

ī, j̄ D̂ī, j̄ + Ôī, j̄ as a perturbation to ĤG with D̂ī, j̄ =
Dī, j̄

∑
α σ̂ (īα )

ss σ̂
( j̄α )
ss and Ôī, j̄ = Oī, j̄

∑
α σ̂

(īα )
+ σ̂

( j̄α )
− , where σ̂ (iα )

denotes the spin operator acting on the αth atom in the ith
logical block. With the local gauge constraints, we obtain the

053703-6



WAVEGUIDE-QED PLATFORM FOR SYNTHETIC QUANTUM … PHYSICAL REVIEW A 104, 053703 (2021)

effective Hamiltonian within the gauge-invariant sector Q as

Ĥeff =
∑
ī �= j̄

Dī, j̄

∑
α

T̂ (ī)
αα T̂ ( j̄)

αα + Jī, j̄

∑
α �=β

T̂ (ī)
αβ T̂

( j̄)
βα , (10)

with the gauge-variant errors (spinon excitations) suppressed
by the many-body gap λG (spinon energy). In the physical
space, the spin-exchange coefficients Dī, j̄,Jī, j̄ = −O2

ī, j̄/2λG

are the gauge-mediated ring-exchange interactions among the
four spins selected by the primitive two-body model ĤI . With
Dī, j̄ = Jī, j̄ , the effective Hamiltonian is mapped to the uni-
versal SU(n) Heisenberg magnet ĤH . The gauge-projected
Hamiltonian is derived in Appendix C 2.

One feature of our synthetic approach is that the symme-
tries of the interaction can be directly built into the underlying
Hamiltonian, without resorting to the fundamental symme-
tries of the atomic collisions. For instance, with a minor
modification, we can easily create SU(n)-symmetric Hamilto-
nians for arbitrary n, e.g., unlimited by the nuclear-spin DOF,
for the study of transition metal oxides [56] and heavy fermion
systems. Furthermore, because we can design Jī, j̄ arbitrarily
through the Raman fields, our system can be tailored to study
novel frustrated magnetic ordering in long-range SU(n)-spin
models with the Haldane gap [57–60]. As discussed in the
next section, our waveguide QED simulator can be applied to
the realization of quantum field theories [35,61].

In Appendix C 3 we discuss an efficient method to con-
struct the real-time evolution of the Sachdev-Ye (SY) model
[62] with dynamical Raman fields, an all-to-all limn→∞ SU(n)
Heisenberg model ĤSY [Eq. (9) with Gaussian-random Jī, j̄].
The SY model describes a non-Fermi liquid state of matter,
known as a “strange metal,” characterized by the absence
of long-range quasiparticle excitations analogous to high-Tc

cuprate superconductors. In connection to quantum chaos
[33], a quenched system under ĤSY rapidly loses the phase
coherences and reaches a quantum many-body chaos within
timescales that remarkably saturate the quantum bound of
the Lyapunov time τL = h̄

2πkBT . With a gauge-mediated many-
body string Hamiltonian between a set of SU(n) spins and
an ancilla qubit, we can even directly assemble and measure
arbitrarily complex out-of-time-order correlators (OTOCs)
[63–65] 〈Ŵ †(τ )V̂ †(0)Ŵ (τ )V̂ (0)〉 ∼ eτ/τL for SU(n) variables
Ŵ , V̂ in our platform for the detection of the quantum chaos
and the scrambling of entanglement in many-body quantum
systems. The SY model also serves as a model of hologra-
phy that doubles quantum gravity in 2D anti–de Sitter CFT
[33,62].

V. STRONGLY COUPLED WZW FIELD THEORY

Quantum field theories, defined on continuous space-times
with each site supporting infinite-dimensional Hilbert spaces,
become increasingly intractable to simulate in the regime of
strong coupling even on quantum devices. Near the strong
coupling, the physics of the UV fixed point is often described
by conformal field theories with a scale-invariant and univer-
sal description. Moreover, extracting the conformal data of the
emergent CFT is a notoriously difficult task for real quan-
tum hardware. In an exemplary fashion, we demonstrate the
emergence of (1+1)D SU(n)k Wess-Zumino-Witten (WZW)

FIG. 4. Emergence of WZW CFT. (a) Local Hamiltonian encod-
ing of SU(3)k=1 field theories on a ring onto an SU(2) waveguide
QED simulator. The target WZW CFT is isometrically transformed
to the local Hilbert space of the simulator with electric charge
Q = 1. (b) Phase diagram of the bilinear biquadratic spin-1 model
with Neff = 42 logical blocks (N = 124 atoms). Pinch points of the
static structure factor Sk

zz = 〈Sk
z S−k

z 〉 at momentum k = 2π/3, 4π/3
signify the existence of divergent correlations at the ULS QCP.
The static structure factor is obtained from the correlation functions
in Appendix C 4 with uniform MPSs in the thermodynamic limit.
(c) Critical scaling for entanglement entropy for vacuum state of
the (1+1)D SU(3)k WZW field theory of level k = 1. The vac-
uum entanglement entropy follows the Calabrese-Cardy formula for
(1+1)D CFTs. The central charge c = 2.05 ± 0.03 is extracted from
the finite-size scaling. (d) Production of c = 2 primary fields (quasi-
particles) upon local quenching. Topological solitons carry fractional
quantum statistics of the Abelian anyonic phase φ = 2π/3. (e) Dy-
namical probes for quasiparticles of the WZW CFT. Ground states
are obtained with a hybrid DMRG-TEBD algorithm for finite MPSs
in a complex-time coordinate (Appendix C 4). The dynamical struc-
ture factor is obtained by real-time evolving the ground-state MPS
with a TEBD algorithm.

CFT [35,61,66] in the waveguide-coupled SU(n) Hamilto-
nian [Fig. 4(a)], which describes the boundary physics of a
bulk (2+1)D Chern-Simons topological gravity in the scal-
ing limit [67]. In condensed matter systems, WZW theory
serves as the parent that hosts a family of symmetry-protected
gapless edge states in fractional quantum Hall systems. The
primary fields � of the CFT are produced and monitored by
way of real optical fields of the guided modes. The long-
wavelength conformal data, including the central charge c,
the quantum dimensions D, and operator product expansion
of �, are reconstructed from the correlation between physical
observables of the microscopic simulator, as reflected by the
fluctuation of the optical fields in the guided mode.

053703-7



DONG, TAYLOR, LEE, KONG, AND CHOI PHYSICAL REVIEW A 104, 053703 (2021)

As discussed in Fig. 4(a), we consider a critical SU(3)
Heisenberg Hamiltonian for nearest-neighbor interacting Neff

logical SU(3) spins existing on a ring with Jī,ī+1 = Jc for
Eq. (9) [see the phase diagram of Fig. 4(b) with quantum
critical point θULS = π/4]. The target system is mapped
to the waveguide QED simulator (i) by creating nearest-
neighbor bonds between physical atoms with ĤI [blue arrows
of Fig. 4(a)] and (ii) by gauging the simulator to Q [red shaded
area of Fig. 4(a)]. The gauged spectrum of the simulator (with
λG) is thereby that of the target with an error (D/λG)2 
 1. To
access the ground state |g̃〉 of the target model (most excited
state of the gauged simulator), we perform a hybrid matrix-
product state (MPS) algorithm for the waveguide quantum
simulator moving along a complex time, combining both
density-matrix renormalization group (DMRG) and time-
evolving block decimation (TEBD) methods. By evolving a
random MPS under the action limt→∞ exp[−i(ĤI + iĤG)t],
we obtain the most excited state within the low-energy sector
Q = 1 of the simulator, which is isometric to the DMRG
ground state of the logical antiferromagnetic SU(3) model
(Appendix C 4).

To see how the SU(3)1 WZW CFT for level k = 1
natively emerges from the Hamiltonian constraints of the
simulator, let us consider the parton picture of the target
Hamiltonian [see Eq. (9)]. We map the logical operators with
three-color fermions (quarks) T̂ (ī)

αβ = ψ̂ (ī)†
α ψ̂

(ī)
β under the con-

straint ψ̂ (ī)†
α ψ̂ (ī)

α = 1 for colors α, β = {r, g, b}. The parton
Hamiltonian

Ĥparton = J
∑

ī

ψ̂ (ī)†
α ψ̂

(ī)
β ψ̂

(ī+1)†
β ψ̂ (ī+1)

α (11)

is equivalent to an SU(3) Hubbard model HHubbard =
−∑

ī t[ψ̂ (ī)†
α ψ̂ (ī+1)

α + H.c.] + U [ψ̂ (ī)†
α ψ̂ (ī)

α − 1]2 for fermions
in the interaction limit U/t  1. In the infrared, low-energy
excitations are only populated at the Fermi points kF =
π/3, thereby coarse graining the fermionic fields ψ̂ (ī)†

α =
eikF xī ψ̂L,α (xī ) + e−ikF xī ψ̂R,α (xī ) to the continuum. As the Hub-
bard model for U/t 
 1 gives rise to three-color free
Dirac fermions [charge boson and SU(3)1 WZW gauge
fields g], the Hubbard interaction asymptotically decouples
the charge with a gap. Thus, the Hubbard interaction leaves
the WZW fixed point in the low-energy sector with an
action S = 1

16π

∫
G2 d2ξ Tr[∂αg−1∂αg] + �(g) and topological

term �(g) = 1
24π

∫
G3 d3ξ εαβγ Tr[(g−1∂αg)(g−1∂βg)(g−1∂γ g)].

This is reminiscent of chiral Luttinger liquids on frac-
tional quantum Hall edges [68]. Unlike the Haldane phase
of the spin-1 counterpart, the emergent field theory of the
SU(3) model is described by universal properties, where
the (chiral) fermionic fields ψ̂L,σ , ψ̂R,σ become the Vi-
rasoro primary fields gαβ (z, z̄) = ψ̂

†
L,σ (z)eiφ̂(z,z̄)ψ̂R,σ (z̄) of

the WZW CFT with colors σ = {r, g, b} and space-time
z = −i(x − t ), z̄ = i(x + t ). These fields are generated by
the spin currents Ja

L (x) = 1
2 ψ̂

†
L,σ (x)τ a

σ,σ ′ψ̂L,σ ′ (x) and Ja
R (x) =

1
2 ψ̂

†
R,σ (x)τ a

σ,σ ′ψ̂R,σ ′ (x) following the SU(3)1 Kac-Moody al-
gebra, where τ a

σ,σ ′ = (�a)σ,σ ′/2 are the elements of the
generalized Gell-Mann matrices in Appendix C 1. Impor-
tantly, from the operator product expansion, the conformal
data of SU(3)1 WZW CFT can be obtained for the central

charge c = 2, scaling dimensions D = 2
3 , and critical expo-

nents ν = 2 for the WZW field gαβ .
In order to physically extract the conformal data from

the simulator, we need to measure the static and dynamic
response functions. To this end, we dissipate an observ-
able Ô( j) of the physical atom at site j to the waveguide∑

j̄ g j̄

∑
j∈ j̄ Ô( j)âk0 eik j̄ with a well-defined momentum k.

The first-order correlation 〈:â†(τ )â(0):〉k of the optical field
leaving the guided mode regresses towards the dynamical
response function Sk

O(τ ) = 〈0CFT|Ô−k (τ )Ôk (0)|0CFT〉 of the
logical spin system, where |0CFT〉 is the vacuum state of the
WZW CFT and Ôk = ∑

j̄
g j̄

κ0

∑
j∈ j̄ Ô( j)eik j̄ . This method al-

lows us to construct a broad class of static and dynamical
structure factors of the many-body system, giving access to
the low-energy excitations as well as the universal properties
ν and D of the CFT. In Appendix C 4 we analyze our result for
the spin correlators 〈Ŝ(ī)

z Ŝ( j̄)
z 〉 ∼ |ī − j̄|−2D and extrapolate the

scaling dimensions D = 0.67 ± 0.02 with the DMRG ground
state up to Neff = 200 logical blocks. We also characterize the
correlation length ξ ∼ |θ − θc|−ν with the critical exponents
ν = 2.10 ± 0.05 for the bilinear biquadratic (BBQ) spin-1
Hamiltonian with the Uimin-Lai-Sutherland (ULS) quantum
critical point (QCP) θc = π/4 with an enlarged SU(3) sym-
metry, corresponding to our SU(3) Heisenberg model.

In Fig. 4(b) we present the phase diagram of the BBQ
model detected with the static spin structure factor Sk

zz =
〈Ŝ−k

z Ŝk
z 〉. Near the ULS QCP, power-law singularities appear in

the form of pinch points at the momenta k = 2π/3 and 4π/3,
indicative of the absence of long-range order (disordered
state) for the SU(3)-spin model and the gapless soliton exci-
tations on top of the CFT vacuum (algebraic spin liquid state).
These topological solitons appear to carry anyonic statistics
with Abelian phase φ = π . Upon locally quenching the many-
body system with Ŝ(i)

z , these solitons can be produced in
pairs moving at the Fermi velocity vF = π/3 [Fig. 4(d)]. To
assess the spectral properties of WZW fields, we probe the
dynamical structure factor Szz(w, k) = ∫

exp(iwτ )Sk
zz(τ ) in

Fig. 4(e). Two soliton modes are visible in the contour map
Szz(w, k) (see the two solid guiding lines), reflected by their
length scales 3/2π and 3/4π . In addition, the solitonic contin-
uum appears smooth as the quasiparticle populations between
the two solid lines due the coherence between the soliton
pairs, and higher-order 4-local soliton excitations begin to
appear between the black dashed line and the red solid line
for k > 2π/3.

We characterize the central charge c of the CFT by
scaling the entanglement entropy S = −Tr[ρA ln ρA] be-
tween the subsystems A and B of the logical system with
ρA = TrB|0CFT〉〈0CFT|. In the framework of entanglement
Hamiltonian H̃A = ∑

l ε̃l |ε̃l〉〈ε̃l |, we consider the problem of
extracting the thermodynamic property of the state ρA =
exp(−H̃A) = ∑

l e−ε̃l |ε̃l〉〈ε̃l |, where {ε̃l} is the entanglement
spectrum for the CFT vacuum state |0CFT〉 [69]. The entan-
glement entropy S = ∑

l ε̃l ln(ε̃l ) is then obtained from the
entanglement Hamiltonian H̃A at an effective temperature T =
1, whose eigenspectrum {εl} is determined by many-body
spectroscopy [70–72]. Importantly, due to the Bisognano-
Wichmann theorem, the entanglement Hamiltonian H̃A can
be cast in terms of the original model ĤH [see Eq. (9)] with
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inhomogeneous coupling Jī,ī+1 = Jc�(ī) and prefactor
�(x) = Neff

π
sin( πx

Neff
) defined over a subsystem ī ∈ A [69],

which can be simulated by the SU(n) toolbox of Eq. (10).
In Fig. 4(c) we present our result of the entanglement

entropy for the SU(3) Heisenberg model. At quantum critical
points in (1+1) dimensions, the vacuum-state entanglement
entropy S(x, Neff ) logarithmically scales with the system
size Neff, following the Calabrese-Cardy formula S(x, Neff ) =
c
3 log[ Neff

π
sin( πx

Neff
)] for the bipartite cut x up to a nonuniversal

offset [73]. By fitting to the Calabrese-Cardy formula, we
thereby obtain the central charge c = 2.05 ± 0.03, consistent
with the CFT prediction c = 2. In the parton theory, the c = 2
WZW CFT is manifested by the two-component non-Abelian
bosons of the Luttinger liquid. The tensor product of compact-
ified bosons, each carrying c = 1 in the dual space, effectively
gives rise to the c = 2 field theory for the SU(3)-symmetric
spin model.

As a final remark, while this section has focused on the
minimal instance (1+1)D SU(3)1 WZW CFT, our waveguide
QED simulator and measurement protocols are directly appli-
cable to a wider class of WZW CFTs. Namely, the symmetry
group SU(n)k and level k can be engineered with the local
encoding n = N/Neff and the sector Q, and long-range inter-
actions can be introduced for arbitrary spatial dimensions.
Unlike the Abelian-like spin liquids described by SU(3)1

WZW CFTs, SU(3)k WZW CFTs are genuinely interacting
CFTs and host a far richer family of non-Abelian anyons.

VI. DISCUSSION

Realization of universal quantum matter with a waveguide
QED simulator presents technological challenges which can
be addressed by state-of-the-art nanophotonic experiments
[14–17]. Defect-free atomic arrays can be generated in free
space with acousto-optical deflectors [74,75] and spatial light
modulators [76]. With evanescent cooling and advanced side-
illumination loading techniques for PCW structures [12,77],
it is conceivable to prepare a defect-free atom array on flat-
band PCWs, such as the SPCW. In Appendix B we provide
an example of a SPCW tailored to achieve the desired pho-
tonic bands for renormalizing individual Cs atoms to universal
quantum matter. Programmable control of the exchange coef-
ficients requires the capability to tune ∼N2 phase amplitudes
of the Raman sideband matrices in tandem. Such a capability
has been adapted for 100-spin coherent Ising machine [78,79],
and ultrafast multimode modulation techniques have been de-
veloped in the telecommunication industry. With the present
state-of-the-art technologies, it is thus perceivable that the
universal quantum matter consisting of several tens of atoms
could be realized with the proposed waveguide QED platform.
We remark that there is also active research integrating 2D
PCWs with cold atoms [80].

In the waveguide QED simulator, the correlated Lamb
shift in the PCW generates a mechanical interaction between
the external motional states of the trapped atoms. In turn,
the Bogoliubov phonons are exploited as a quantum bus
for mediating the universal Hamiltonian. Compared to other
networked quantum architectures, the PCW allows versatile
control over both the dissipative loss and coherent disper-
sion (single-particle band structure) of such a bus. The figure

of merit F provides a natural scaling parameter for the
coherence-to-dissipation ratio of the simulator. In the reac-
tive regime, F ∼ me exp(Ld/Lc)  1 exponentially improves
with a longer device length Ld for a given photon mass me.
As an example, in Appendix B we numerically simulate the
Green’s function G1D(x̂i, x̂ j ) and find F ∼ 104 for the silicon
nitride SPCW structure.

In conclusion, we have proposed the realization of uni-
versal quantum matter with the waveguide QED platform.
Compared to previous analog simulation proposals, our plat-
form stabilizes universal Hamiltonians that can be adapted to
the emulation of arbitrary quantum matter [5]. Physically, our
networked approach allows the direct control of the 2-local
Hamiltonian ĤQMA at the operator level. Moreover, the static
and dynamical structures of arbitrary k-local Hamiltonian
Ĥtarget with k > 2 of arbitrary dimension can be prescribed to
the low-energy theory of the waveguide QED simulator. In
particular, we discussed the emergence of programmable bi-
nary SU(n) models by gauging the waveguide QED simulator.
Indeed, the SU(n) models should be considered as the appli-
cation of the universality of the simulator, by which the target
SU(n) physics is encoded onto the low-energy theory of the
waveguide QED simulator. For instance, we have analyzed the
paradigmatic quantum field theory, the Wess-Zumino-Witten
model by accessing phase diagrams, static and dynamical
response functions, and CFT entanglement of the many-body
system with matrix-product states.

With respect to digital approaches, the crucial difference
is that Ĥtarget is in fact manifested entirely by the waveguide
QED simulator. That is, not only the quantum state, but also
the entire spectrum of Ĥtarget in tandem is emulated by another
physical system. Cooling, thermalization, and the dynamics
of the target quantum model can be mapped to the same
equilibrium and nonequilibrium physics of the parent analog
quantum system. Thus, our approach promises a universal
analog quantum simulator, where all physical properties can
in principle be replicated as an emergent phenomenon.

Waveguide QED offers a unique playground for neutral
atoms, in which light, motion, and spin are all intertwined by
the electromagnetic vacuum of the dielectric. By engineering
the coupling between the phononic superfluid and the atomic
spins, we have provided an analog framework for simulating
universal quantum matter with cold atoms. Such a simula-
tor can be applied for universal quantum computation with
continuous-time quantum cellular automata and Hamiltonian
quantum computation [6–8,81]. Our waveguide QED simu-
lator utilizes largely noninteracting phonons with Lc  x0.
In the limit Lc � x0, the kinetic term of the extended Bose-
Hubbard model ĤM is constrained by the density-density
interaction. Under such local gauge symmetries, complex lat-
tice gauge theories beyond truncated quantum link models can
emerge from the coherent coupling between the spin matter
and fluctuating gauge phonons, renormalizing ordinary nonin-
teracting matter to quantum field theories with the waveguide
dielectric.
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APPENDIX A: PERFECT TRANSFER IN A SPIN CHAIN

To benchmark and verify the various approximations made
for Eq. (6), we simulate a 1D quantum wire that enables
perfect quantum-state transfer (QST) between remote spin
registers [82–88]. In particular, we compare the effective dy-
namics of ĤQST to that of the parent Hamiltonian Ĥ = ĤM +
ĤA + ∑

i, j

∑
α,l

	
( j)
α,l

2 σ̂ (i)
α sin(k( j)

α,l x̂i )e−iν ( j)
α,l t + H.c. in Sec. II A.

We prepare a 1D spin medium with the translationally variant
XX Hamiltonian

ĤQST =
N−1∑
i=1

J (i,i+1)

2

(
σ̂ (i)

x σ̂ (i+1)
x + σ̂ (i)

y σ̂ (i+1)
y

)
, (A1)

where J (i,i+1) = α
√

i(N − i) and α is a global interaction con-
stant. We solve the system parameters {	(i)

x,k,	
(i)
y,k} from the

set of nonlinear equations for J (i,i+1) under the constraint of
minimum total intensity

∑
i,l (|	(i)

x,l |2 + |	(i)
y,l |2).

As discussed in Ref. [82], ĤQST achieves the perfect state
transfer of arbitrary input states |ψin〉 between the edge sites
i = 1, N over arbitrarily long N with unit fidelity by virtue of
the mirror symmetry in the spin-exchange coefficients J (i,i+1).
Unlike sequential direct state transfer, no external manipu-
lation or feedback on the spin chain is required, and the
complete transfer is achieved within transfer time t f = π/α

without state preparation of the global spin chain. In Fig. 5(a)
we simulate the full Hamiltonian dynamics of quantum-
state transfer for two input states |ψ (1)

in 〉 = (|g〉 − |s〉)/
√

2
(red solid line) and |ψ (2)

in 〉 = |s〉 (blue dashed line) through a
1D atomic chain with N = 6 atoms without eliminating the

phonon fields. We keep the coupling terms between those
mismatched sidebands and Bogoliubov phonon modes. By
sampling various input states coupled to an initially polarized
spin medium, the minimal QST fidelity for pure states is
numerically determined as F = Tr[|ψ (1)

in 〉〈ψ (1)
in |ρs] = 0.994 at

t f � π/α, yielding only 0.5% error in the final state, testifying
to the accuracy of the effective Hamiltonian ĤQMA in Eq. (6).

As shown in the inset of Fig. 5(a), the phonons across
the entire spin chain are hardly populated throughout the
state transfer, justifying the adiabatic elimination procedure.
In Fig. 5(b) we also compare the full atom-phonon dynamics
(solid lines) of the individual spin polarizations 〈σ̂ (i)

z 〉 for an
initially polarized spin medium |g · · · g〉 with that of the re-
duced two-body Hamiltonian ĤQST in Eq. (A1) (dashed lines).
When |ψ (2)

in 〉 is injected to the first spin (black line), the spin
excitation delocalizes across the entire spin chain and coher-
ently builds up its amplitude at the final spin with 〈σ̂ (6)

z 〉 � 1
at t � π/α (red line). The minute difference between the solid
and dashed lines affirms the various approximations for ĤQMA.
In Appendix B we simulate the full open-system dynamics
of QST for Eq. (A1), by starting from the Green’s tensor
G(x, x′,w) of the candidate PCW structure in Fig. 1, and
incorporate all known dissipative mechanisms intrinsic to our
protocol. Such an effective dynamics is shown to be immune
to the structural disorders of the PCW at the tolerance levels
of state-of-the-art nanofabrication [89–91].

APPENDIX B: SQUIRCLE PHOTONIC CRYSTAL
WAVEGUIDE

The full realization of our waveguide QED toolboxes re-
quires the capability to maintain a favorable figure of merit
F = �Lamb/�tot with short-range mechanical interactions be-
tween the trapped atoms, where the localization length Lc =√

1/2me�e is comparable to the lattice constant a0. Here
�e � 2�b denotes the detuning of the atomic transition to
the effective cavity mode [20] and �b is the detuning of
the atomic transition frequency to the band edge. While it
is not necessary to have nearest-neighbor interactions with
sparse loading, the atomic collective motion can experience a

FIG. 5. Quantum-state transfer over a spin chain. (a) Fidelity between the real-time state on the last spin and the initial state on the first spin
for two input states |ψ (1)

in 〉 = (|g〉 − |s〉)/
√

2 (red solid line) and |ψ (2)
in 〉 = |s〉 (blue dashed line). The inset shows the mean number of phonons

with a maximum value about 0.06, which shows that the phonon is rarely populated in the whole process and validates the adiabatic elimination
of phonons. The dynamics is numerically simulated for the full Hamiltonian, which includes the interactions of the atomic internal states,
phonons, and electromagnetic vacuum. Close-to-unit fidelity F = 0.994 is achieved over the timescale t f � π/α. (b) Real-time dynamics of
spin polarization 〈σ̂z〉 for all sites on the chain. The dashed (solid) line is obtained from the full (effective) Hamiltonian [in Eq. (A1)].
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FIG. 6. Slotted squircle photonic crystal waveguide. (a) SPCW band diagram. The guided modes are depicted by solid lines for both
the excitationνD2 (red) and trapping modes νt (blue). Through our optimization iterations, the GMs νD2 , νt are flattened around the cesium
D2-transition and magic-wavelength trapping frequencies. The GM νt is defined to operate at the blue-detuned magic-wavelength condition
for the D2 transition at λt = 793.5 nm. The gray shaded region indicates the presence of slab modes. (b) SPCW geometry. The parameters that
define the SPCW structure are provided in Table I. (c) Effective mode area Aeff. We depict the x-cut contour map of Aeff for the GM νD2 . At the
trapping region, we anticipate subwavelength localization Aeff/λ

2
D2

� 0.18 and effective coupling rate gc � 11.5 GHz. The resulting photonic
Lamb shift and localization length are �1D � 620 MHz and Lc � 0.77 μm at �e = 0.4 THz. (d) Contour intensity map of the guided modes
νD2 , νt .

band-flattening effect due to the long-range phonon tunneling,
which reduces the local addressability of the spin-motion cou-
plings. For laser cooling and trapping nearby the nanoscopic
structures, the PCW requires a wide angular field of view for
the optical access and restricts the dimensions of PCW slabs
to 1 and 2. Because of the lack of full 3D PBGs, the total decay
rate �tot = �1D + �′ consists of both the waveguide decay
�1D and the homogeneous decay �′. While �1D is significantly
suppressed for large �e, the majority of slow-light PCWs do
not have an adequate band structure with large me to induce
strong coherent motional coupling with F  1 at small Lc.

1. System parameters

In this section we discuss a variation of a slotted PCW that
utilizes the PBG of the 2D slab as the guiding mechanism

[92–94]. As shown in Fig. 6, the dispersion is tailored by a
line defect introduced to a triangular TE PBG slab, where a
significant portion of the energy of the GM is localized within
the air slot. We introduce anomalous squircles in the vicinity
of the air slots to alter their band curvatures. The rationale of
our dispersion engineering is that the combination of the lat-
tice constant a0, the hole radius r, and the air slot width ws can
tune the locations of the band-edge frequencies with respect to
the band gap of the slab, while the additional squircle geome-
tries defined by the asymmetry a, b cause differential energy
shifts between the z-even bands of opposite x symmetry. By
placing the bands deep into the PBG of the surrounding slab,
we suppress the k-space interval [kc, kl ] where the in-plane
field profile of the GM is localized by index guiding near
the light cone. The proximal squircle geometry then flattens
the GM across the band-gap guided k-space fraction [kl , k0].
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In addition, the out-of-plane emission �h is affected by the
distance of the squircles to the slot.

We apply a gradient descent algorithm for the SPCW
geometry n(�r ) (design variables) to minimize the objective
function Ftotal(n(�r )) = Fc + FD2 + Ft with intermittent ther-
mal excitations to avoid local extrema, as with simulated
annealing. The objective function consists of the contributions
from band curvature Fc ∝ |me|−2 and frequency deviations
FD2 (Ft ) = |ωb − νD2 + �b|2(|ωb − νt |2) of |F = 4〉 → |F ′ =
5〉 transition frequency νD2 (blue-detuned magic wavelength
frequency νt ) for atomic cesium from the band edges wb of
the respective modes. During the optimization sequence, the
complex band diagram is computed to estimate the effec-
tive mass me and the localization length Lc with plane-wave
expansions [95]. After convergence, we switch over to a
finite structure with device length Ld and apply a com-
bination of filter-diagonalized finite-difference time-domain
and finite-difference frequency-domain methods [96,97] on a
high-bandwidth interconnected computational cluster with the
Yee lattice modified to directly optimize the dyadic Green’s
function G(x, x′, ω) [98,99] and arrive at the final design
variable n(�r ) in Table I. To include imperfections of realistic
devices, we introduce the uncertainty ±1 nm to the system
variables consistent with the state-of-the-art PCW nanofabri-
cation techniques [91].

The result of dispersion engineering is shown in Fig. 6(a)
for our flat-band silicon nitride SPCW slab, with an effective
mass me = 2.1 Hz−1 m−2. In the single-band approximation,
the localization length is expected to be Lc � 2a0 at �e =
0.4 THz. We assume that the atom is confined by the blue-
detuned magic-wavelength GM trap νt at λt = 793.5 nm [blue
line in Fig. 6(a)] with the intensity represented by the blue-
colored contour map in Fig. 6(d). The excited states of the
trapped atom is modified by the vacuum of the νD2 mode
[red line in Fig. 6(a)] as indicated by the red contour map in
Fig. 6(d). At the band edge k0 = 0.5, the νD2 mode is highly
localized with the effective mode area Aeff � 0.18λ2

D2
. The

resulting photonic lamb shift is �1D � 620 MHz at �e = 0.4
THz.

We now turn to the numerical Green’s function G(x, x′, ω)
of a finite SPCW with device length Ld = 80a0 in Fig. 7. We
evaluate the collective decay and the coherent interaction

�
(i, j)
total = μ0ω

2

h̄
Im[d∗ · G(xi, x j, ω) · d], (B1)

�
(i, j)
Lamb = 2μ0ω

2

h̄
Re[d∗ · Gs(xi, x j, ω) · d], (B2)

where the scattering Green’s function is Gs = G − G0 with
respect to the vacuum G0. More generally, we also define the
waveguide Green’s function Gwg = G − Gh absent the homo-
geneous (nonguided) contributions Gh (coupling to the lossy
modes beyond the light cone and to the free-space modes),
where the waveguide portion Gwg can be estimated from a
multimode cavity model [39] under a single-band approxima-
tion, with the resulting decay rate

�1D = μ0ω
2

h̄
Im[d∗ · Gwg(xi, x j, ω) · d] (B3)

into the waveguide GM.

As shown in Fig. 7, in the dispersive regime [16], the
flat band νD2 exhibits extreme slow-light enhancement of
the decay rate with group index ng � 1000 near the band
edge. As the atom enters the band gap in the reactive regime
�e > 0 [17], the waveguide decay rate �1D from Gwg is ex-
ponentially suppressed [red dashed line in Fig. 7(b)], while
the highly asymmetric Fano-like resonance of Gwg around
the band edge gives rise to a photonic Lamb shift �1D �
620 MHz [Fig. 7(a)] that greatly exceeds �total � 60 MHz
(�1D � 4 kHz) in the band gap with a figure of merit F > 104

at �e = 0.4 THz [Fig. 7(c)], indicating a significant coherence
fraction in the collective motion relative to the correlated
phononic dissipation. With the close agreement between the
numerical Green’s function G (black lines) and the waveguide
model Gwg (red dashed lines) in Fig. 7, we can reliably predict
�1D from Gwg and the mechanical loss factor γm from both
Gwg and G. Due to the large value of band flatness, we can
operate as close as �b = 5 THz (�e � 10 THz) and attain
short-range motional coupling over Lc ∼ 2a0 
 Ld , while
maintaining an inherent figure of merit F ∼ 1010. We remark
that F is defined as the ultimate coherence-to-dissipation ratio
for the collective phonon modes in Sec. II A, where we only
consider the inherent dissipation of the atomic motions in the
photonic band gap. In practice, our method will be realistically
limited by the phase noises of Raman sideband lasers and the
inhomogeneous hyperfine broadening of the trapped atoms, as
well as various uncontrollable surface forces.

For disordered photonic structures, we compute the dyadic
Green’s functions with the Gaussian random geometric dis-
order ∼1 nm (positions and sizes of the holes and thickness
of the waveguide) distributed across the entire nanophotonic
waveguide. In a single realization, the radiative enhancement
factor at the band edge may be hindered by Anderson and
weak localization. However, in the reactive regime �e > 0,
we observe that the decay rate and the photonic Lamb shift in
Fig. 7, as well as the nonlocal Green’s function G(xi, x j, ω),
are not significantly modified by the structural disorders
∼1 nm (gray dashed lines in Fig. 7). Such nanofabrication
tolerances have been demonstrated in Refs. [15,17]. Because
of the nature of the photonic band gap, the nonradiative atom-
field localized modes are resistant to the degree of structural
disorder.

2. Ground-state potentials and phononic modes

We now turn our attention to the trapping mechanism for
the atoms in the SPCW. To form an atomic chain, we confine
the atoms in the y-z plane by two incoherent side-illumination
(SI) beams [13,16] and localize the x motion by a weak GM
trap at 794 nm, as shown in Fig. 8. With the SI beams near
the blue-detuned magic wavelength λ = 687 nm in an optical
accordion, we anticipate efficient loading into the GM trap.
Because the SI beam provides additional confinement along
z [100–102], we can operate the GM trap away from the
band edge at kx = 0.48, thereby reducing the intensity contrast
along x. With this protocol we can gain a 3D far-off-resonance
trap (FORT) with trapping potential shown in Figs. 8(d)–8(f).

From the numerical nonlocal Green’s function G(ri, r j,w),
we observe that the localization length scales with Lc =√

1/2me�e and the effective mass me = 2.1 Hz−1 m−2 up
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FIG. 7. Collective atomic decay and photonic Lamb shift of a finite SPCW. (a) Photonic Lamb shift �1D
Lamb for electronically excited states.

The energy shift �1D of the excited state |6P3/2, F = 4〉 of Cs is computed by numerically evaluating the local scattering Green’s function
Gs(x, x′, ω). We only consider the level shift caused by the SPCW structure, but not the absolute renormalization by the electromagnetic
vacuum. As a benchmark, we normalized the Lamb shift by the free-space decay rate �vac. We also display the photonic Lamb shift �1D under
the single-band approximation as a red dashed line. The close agreement between the two models testifies to the accuracy of the extrapolated
�1D. (b) Enhancement and inhibition of spontaneous emission in dispersive and reactive regimes. The total decay rate �total is strongly enhanced
at the band edge and is exponentially inhibited in the band gap with �total � �1D exp(−Ld/Lc ), where �1D is the enhanced decay rate at the
resonance closest to the band edge, Ld = 80a0 is the device length for lattice constant a0, and Lc is the localization length. Deep into the band
gap �e  0, the reduction of �total is limited by the weakly inhibited homogeneous decay rate �′ � 0.7�vac that predominantly emits photons
out of plane of the slab. (c) Lamb shift to decay rate ratio �1D/�total across a wide detuning range up to �e � 10 THz. The inset shows the
figure of merit F  1 (red dashed line). The gray shaded region indicates the presence of slab modes.

to �e � 5 THz. We attribute the deviation of the local-
ization scaling beyond �e > 5 THz to the residual Lamb
shift by the off-resonance couplings to the other bands and
to the slab modes. Figure 9 depicts the local nature of
external atom-atom interaction ti j = η2

l f 2�Lamb(xi, x j ) with
ηl = x0/Lc relative to the mechanical decoherence γm =
η2

l f 2(�1D + |�Lamb/�e|2�′), where the homogeneous decay
rate �′ � 0.7�vac is weakly inhibited. At �e = 0.4 THz,
we find the tunneling rate t � 2π × 230 kHz, localiza-
tion length Lc = 0.77 μm, and phonon loss rate γm � 2π ×
5 Hz. Another possible error source could be recoil heat-
ing from the trapping beam. Since we work with FORT in
blue detuning, the heating rate can be estimated as γheat �
Er (	t/δt )2�′/h̄wt [103], where 	t and δt are the trapping
Rabi frequency and laser-atom detuning, respectively, and
Er = 4π2h̄2/2mλ2

t is the recoil energy. For the cesium atom
and our trapping setup, the heating rate is estimated as γheat ∼
0.2 Hz 
 γm and therefore can be neglected safely. (See
Table II).

Beyond the scope of the present work, we have also inves-
tigated SPCWs with strong phononic on-site U0 interactions,
which map the phononic model to the XXZ spin magnet and
Luttinger liquids for finite filling factor. Further design varia-
tion that provides strong phononic density-density interaction
Ui j n̂in̂ j will be discussed elsewhere. Such a constraint on
the local phonon field provides a mechanism to impose local
symmetry similar to the context of lattice gauge theories in
condensed matter systems.

3. Phonon-mediated spin-exchange coefficient

For universal spin control with N � 50 atoms, we esti-
mate the spin-exchange coupling rate Ji j � 50 kHz with the
intrinsic decoherence rate γ

(i, j)
α,β 
 1 Hz at �e = 0.4 THz.

As an example, we depict the open-system dynamics of the
quantum-state transfer protocol in Fig. 10 by solving the
master equation [Eqs. (6) and (7)]. As discussed above, be-
cause of γm/�M ∼ 10−4, the intrinsic phonon-induced spin
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FIG. 8. Adiabatic ground-state potentials for the cesium atom assisted by side-illumination beams. Cesium trapping potentials of |6S1/2〉
are plotted in (b) the x-y plane and (c) the y-z plane with the (d) x, (e) y, and (f) z slices. We assume that the refractive index n is frequency
independent. The coordination system (x, y, z) of the SPCW is defined in Fig. 6(b).

decoherence γ
(i, j)
α,β is highly negligible. We thereby include the

spin-relaxation rate γ
(i,i)

FORT < 1 Hz of the FORT beams [104]
by adding the following local dissipative terms to the original
master Eq. (7):

Lss[ρ̂S ] = −
∑

i

γ
(i,i)

FORT

2
({σ̂ss, ρ̂S} − 2σ̂gsρ̂S σ̂sg),

Lgg[ρ̂S ] = −
∑

i

γ
(i,i)

FORT

2
({σ̂gg, ρ̂S} − 2σ̂sgρ̂S σ̂gs).

We note that, due to the highly differential decay rates for
theD1 and D2 lines of Cs by the SPCW, we do not observe any
suppression of Raman spontaneous emission rates relative to
the Rayleigh scattering by the FORT. The state fidelities for
N = 1 and N = 6 atoms are displayed as black and red solid
lines in Fig. 10, respectively. We assume an initially injected
spin state of |s〉 with the parameters of Fig. 5. For the clarity
of presentation, the remaining spin medium is prepared in
the ground state |g · · · g〉. As the spin excitation is transferred
within the dissipative spin chain, the overall spin medium is
thermally depolarized by the actions of the local dissipation
and the state fidelity F is progressively reduced to F → 0.5
with ρ̂S → ∏

i
1
2 (|gi〉〈gi| + |si〉〈si|).

APPENDIX C: SU(n)-GAUGE WAVEGUIDE QED
SIMULATOR

1. Generalized Gell-Mann matrices

The n-dimensional Hermitian generalized Gell-Mann ma-
trices (GGMs) are the higher-dimensional extensions of the
Pauli matrices (for qubits) and the Gell-Mann matrices (for
qutrits). Similar to the roles the Pauli (Gell-Mann) matrices
play in SU(2) [SU(3)] algebra, they are the standard SU(n)
generators. There are three different types of GGMs, n(n−1)

2

symmetric ones, n(n−1)
2 antisymmetric ones, and n − 1 diago-

nal ones, which are defined respectively as follows: symmetric
GGMs (1 � α < β � n)

�̂
(s)
αβ = |α〉〈β| + |β〉〈α|, (C1)

antisymmetric GGMs (1 � α < β � n)

�̂
(a)
αβ = −i|α〉〈β| + i|β〉〈α|, (C2)

and diagonal GGMs (1 � α � n − 1)

�̂(d )
αα =

√
2

α(α + 1)

α∑
β=1

|β〉〈β| − α|α + 1〉〈α + 1|. (C3)

Hence, in total, we have n2 − 1 GGMs. From the definitions,
one can verify that, similar to the Pauli matrices, all GGMs
are Hermitian and traceless. They are orthogonal and form a
basis together with identity În.

053703-14



WAVEGUIDE-QED PLATFORM FOR SYNTHETIC QUANTUM … PHYSICAL REVIEW A 104, 053703 (2021)

FIG. 9. Short-range atom-atom interaction in a photonic band gap. We numerically evaluate the nonlocal Green’s function G(xi, x j, w)
for the SPCW and obtain the figure of merit for effective detunings �e = 0.01, 0.05, 0.14, 0.24, 0.4, 1.6, 10 THz. Due to the large photon
mass me, the atoms experience exponentially localized tunneling interactions ti j/γm  1 over lengths Lc. The gray shaded regions depict the
dissipative regime with ti j < γm, where collective phononic loss dominates over the coherent tunneling rate. For large �e, the ratio ti j/γm  104

is exponentially enhanced at the expense of reduced values ti j � 2π × 20 kHz and localized length Lc � 2.5a0 at �e � 10 THz.

2. Gauge-projected SU(n) Heisenberg model

To gauge the primitive Hamiltonian ĤI to the local sym-
metry sector, we define a projection operator P̂G which
brings quantum states to the ground-state sector Q = n − 2 of
the gauge Hamiltonian ĤG, namely, ĤGP̂G = P̂GĤG = EGĤG,
where EG is the ground-state energy of ĤG. We perturbatively

expand ĤI within the sector Q with the Kato series

Ĥ (1)
eff = P̂GĤI P̂G,

Ĥ (2)
eff = P̂GĤI Ŝk1ĤI P̂G,

Ĥ (3)
eff = P̂GĤI Ŝk1ĤI Ŝk2ĤI P̂G,

...

TABLE II. Summary of energy scale hierarchy and corresponding effective error rates.

Energy Typical Effective Typical
hierarchy Expression Requirements value error source Expression value

Atom-PCW ww interaction gc �
√

ωbd2

2ε0AeffLc
∼10 GHz Photon loss κ � κ0 exp

( − Ld
Lc

) + g2
c

�2
e
�′ ∼10 MHz

Mechanical tunneling ti j � η2
l gm f 
 1 ∼1 MHz Phonon loss γm � η2

l gm
�e

κ ∼10 Hz

Spin-spin interaction J (i, j)
α,β

= 2 Re
[ 	̃

(i)
α,l 	̃

( j)∗
β,l

�M

] ∣∣	̃(i)
α,l

∣∣ 
 �M 
 |εl±1 − εl | ∼50 kHz Spin decoherence γ
(i, j)
α,β

� γm
�M

J (i, j)
α,β

∼0.1 Hz
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where Ŝ0 = −P̂G and Ŝn = [(1 − P̂G)(EG − ĤG)−1]n. Because
ĤI breaks the local gauge symmetry, the first-order term van-

ishes Ĥ (1)
eff = 0. The low-energy dynamics is thereby described

at the second order with

Ĥ (2)
eff =

∑
ī, j̄

Jī, j̄

(∑
α �=β

σ̂
(α,ī)
+ σ̂

(β,ī)
− σ̂

(β, j̄)
+ σ̂

(α, j̄)
−

∏
k �=β

σ̂ (k,ī)
gg

∏
l �=α

σ̂ (l, j̄)
gg + σ̂ (α,ī)

ee σ̂ (β, j̄)
ee

∏
k �=α

σ̂ (k,ī)
gg

∏
l �=β

σ̂ (l, j̄)
gg + H.c.

)
, (C4)

where the ring-exchange coefficient Ji, j = −O2
i, j

/2�G

is mediated by a pair of virtual spinon excitations
Q′ = Q ± 2. By the addition of a gauge-invariant two-
body Hamiltonian Ĥanc = −∑

ī, j̄ (Jī, j̄

∑
α �=β σ̂ (α,ī)

ee σ̂
(β, j̄)
ee +

Dī, j̄

∑
α σ̂ (α,ī)

ee σ̂
(α, j̄)
ee ) to the perturbative Hamiltonian Ĥtotal =

Ĥanc + Ĥ (2)
eff + ĤG, we obtain the effective Hamiltonian in

Eq. (10) within the single-excitation gauge sector Q.

3. Sachdev-Ye quantum magnet

In Sec. IV we discussed the all-to-all connected SU(n)
Heisenberg model. However, as an effective model in terms
of second-order perturbation, all connections Ji j must be all
negative (ferromagnetic) or positive (antiferromagnetic), de-
termined by the eigenenergy sector that we choose, while fully
Gaussian randomly distributed couplings are the crucial ingre-
dients for the generation of quantum chaos of the Sachdev-Ye
(SY) model [33,62]. The SY Hamiltonian reads

ĤSY = 1√
n

∑
j>i

Ji j

∑
α

�̂(i)
α �̂( j)

α , (C5)

where the after-quench connections {Ji j} are drawn from the
probability distribution P(Ji j ) ∼ exp(−J 2

i j/2J 2).
We describe a stroboscopic strategy to simulate the dy-

namics driven by such a Hamiltonian. For an arbitrary SY
Hamiltonian, we can separate it into two parts ĤSY = Ĥ (+)

SY +
Ĥ (−)

SY , where Ĥ (+)
SY (Ĥ (−)

SY ) contains only all terms with positive
(negative) connections and thus can be realized efficiently in
our platform. To realize a coarse-grained unitary evolution in
a single time step �t , we first turn on the positive Hamiltonian
Ĥ (+)

SY for a time period of �t/2. Then we switch on the Ĥ (−)
SY

for the same period and keep the Hamiltonian for another �t .
Finally, we evolve the system again under Ĥ (+)

SY for �t/2. The
entire dynamics is then given by exp(−iĤSY�t ) + O(�t3)
with an error of the order �t3 due to the noncommuting Ĥ (+)

SY

and Ĥ (−)
SY .

We can also measure the out-of-time-operator correla-
tions for the SY model in our platform, which is essential
for describing the entanglement scrambling in this system.
The crucial step is creating a controlled GMM operation
ÛC-�α

= |g〉〈g| ⊗ Î + |s〉〈s| ⊗ �̂α , which can be used to de-
compose an arbitrary SU(n) operator. Let us take a controlled
symmetric GGM C-�̂(s)

αβ as an example. To realize this kind
of controlled operations, we can couple an ancilla qubit to
the αth and the βth qubits in a single logical block with the
two-body term Ĥαβ = χασ̂ (A)

ss σ̂
(α)
+ + χβσ̂ (A)

ss σ̂
(β )
+ + H.c. This

leads to an effective interaction χ̃αβ σ̂ (A)
ss T̂αβ + H.c. within the

gauge-invariant sector Q, where χ̃αβ = χ∗
αχβ/λG, with λG

is the coupling constant in gauge Hamiltonian ĤG defined

in Sec. IV. According to the definition of GGMs, if χ̃αβ is
real, the evolution under this Hamiltonian for an interaction
time t = π/2|χ̃αβ | yields ÛC−�

(s)
αβ

. Furthermore, if we set χ̃αβ

as pure imaginary, a controlled antisymmetric GGM C-�̂(a)
αβ

would be realized.
We next describe a general method to construct and ef-

ficiently measure OTOCs for arbitrary SU(n) observables
in this system driven by arbitrary Hamiltonian ĤSY with-
out tomographic reconstruction. Unlike other protocols, our
strategy is to encode the OTOC onto the single ancilla qubit
A through controlled string operation and interferometrically
read out the internal state of a single ancilla qubit. We consider
two operators V̂ (i) = ∑

α v(i)
α �̂(i)

α and Ŵ ( j) = ∑
β w

( j)
β �̂

( j)
β

acting on the system logical magnons and decomposed by the
GGM operators {�̂(i)

α } and {�̂(i)
β }. The goal is then to measure

all Cα,β,α′,β ′ ≡ 〈�̂( j)
β ′ (τ )�̂(i)

α′ (0)�̂( j)
β (τ )�̂(i)

α (0)〉 and construct
the overall OTOC with weighted distribution w∗

β ′v
∗
α′wβvα .

The circuit in Fig. 11 facilitates the transformation that
maps the dynamical correlators Cα,β,α′,β ′ to the ancilla qubit
with the initial system-ancilla state |ψ (0)〉S ⊗ |g〉A. The
ancilla atom can be physically represented by the atoms
in close proximity to the impedance-matching tethers of
PCWs, so that the internal spins of the ancilla atom can
readily dissipate evanescently to the input and output cou-
plers. The sequence of gate sets maps the initial state
to V̂ (i)

α′ (0)Ŵ ( j)
β ′ (τ )|ψ (0)〉S |s〉A + Ŵ ( j)

β (τ )V̂ (i)
α (0)|ψ (0)〉S |g〉A

with Ô(τ ) = eiĤτ Ôe−iĤτ . Here the time-inverse evolution can
be realized in a positive time flow but inverse the sign of
all Ji j . As with Ramsey interferometer, we measure the ex-
pectation values of the local spin vectors for qubit A, where
the dynamic correlators of the system atoms are Cα,β,α′,β ′ =
1
2 [〈σ̂x〉A + i〈σ̂y〉A]. This method can be extended to high-
order dynamic correlations in a straightforward fashion.

4. Wess-Zumino-Witten quantum field theory

As a minimal SU(n) model, we discuss the realization
of a strongly conformal field theory with an integrable 1D
SU(3) Heisenberg model. Here we investigate the universal
features of the SU(3)1 Wess-Zumino-Witten (WZW) quan-
tum field theory of level k = 1. In particular, we extract the
conformal data by accessing the entanglement entropy for
a 1D SU(3) Heisenberg model at the Ulmin-Lai-Sutherland
(ULS) critical point, the parent Hamiltonian for generating a
collection of strongly correlated ground states, such as those
found in fractional quantum Hall systems. Because of the ver-
satile programmability, the gauged waveguide QED simulator
can be readily extended to the low-energy states of the 2D
antiferromagnetic SU(n) model (10), which are described by
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FIG. 10. Quantum-state transfer over a dissipative spin chain. The open-system dynamics is numerically computed for the quantum-state
transfer across N = 6 atoms with the figure of merit F � 104 by the quantum trajectory method. In addition to the intrinsic mechanical
dissipation, we include spin-relaxation processes in the far-off-resonance optical trap. The state fidelity of the first (last) atom in the spin chain
is displayed as a black (red) line.

the (2+1)D WZW conformal field theory and holographically
connected to a 3D Chern-Simons quantum gravity in the scal-
ing limit.

Specifically, we consider the realization of a (1+1)D
SU(3)1 WZW CFT for the antiferromagnetic SU(3)
Heisenberg model

ĤWZW = Jc

∑
ī

∑
α

�̂(ī)
α �̂(ī+1)

α (C6)

for the logical SU(3) spins on a ring within the sector of
Q = n − 2 of the waveguide QED simulator. Since Ji, j =
−O2

i, j
/2�G < 0, the vacuum state of the WZW CFT is en-

coded onto the most excited state of Eq. (C6) within the sector
Q. This model has been extensively studied in the context of
Haldane phase of the bilinear biquadratic (BBQ) spin-1 model

ĤBBQ = Jc

∑
ī

cos θ ŜīŜī+1 + sin θ (ŜīŜī+1)2. (C7)

The enlarged SU(3) symmetry of Eq. (C6) [Eq. (C7) at θULS =
π/4] can be thought of as the consequence of the critical point
of Berezinskii-Kosterlitz-Thouless (BKT) transition between
the massive Haldane phase and an extended critical phase,
described by the WZW field theory.

FIG. 11. Construction of SU(n) OTOCs Cα,β,α′,β ′ and measure-
ment prescription of highly complex OTOCs. The circuit constructs
the OTOC variables Cα,β,α′,β ′ ≡ 〈�̂( j)

β ′ (t )�̂(i)
α′ (0)�̂( j)

β (t )�̂(i)
α (0)〉 of

system atoms S and maps the values to the internal state of a single
ancilla qubit A. The time-inverse evolution for the global dynamics
Û (−τ ) = e−i(−ĤSY )τ can be realized still in a positive time flow but
with a negative Hamiltonian −ĤSY, i.e., inverting the sign of all Ji j .

a. Enlarged SU(3) symmetry of bilinear biquadratic
spin-1 models

To understand the relationship between the familiar Hal-
dane gap for spin-1 Heisenberg magnets at the exactly
solvable point θAKLT = arctan( 1

3 ) (AKLT valence bond state)
and the massless WZW field theory at θULS = π/4 [see also
Fig. 4(b)], we describe how the SU(3)-breaking marginal
operator in the vicinity to the SU(3)-symmetric critical point
θULS deforms the WZW CFT and dynamically generate a mass
term in the Haldane phase by way of a BKT transition [68].
By moving into the fermionic parton picture defined in Sec. V,
the BBQ Hamiltonian can be mapped to

ĤBBQ
parton = Ĥparton + ε2Ĥmarginal, (C8)

under the constraint
∑

α ψ̂ (ī)†
α ψ̂ (ī)

α = 1. The SU(3)-symmetric
parton Hamiltonian Ĥparton, defined in Eq. (11), is the
dominant term near the ULS point and kinetically ex-
changes excitations between the sites. The marginal operator
Ĥmarginal = J

∑
ī ψ̂

(ī)†
α ψ̂

(ī)
β ψ̂ (ī+1)†

α ψ̂
(ī+1)
β , proportional to ε2 =

tan θ − 1, projects the neighboring sites to the singlet space,
similar to the singlet projectors of the AKLT Hamiltonian.

By applying the Hubbard-Stratonovich transformation
to Eq. (C8) at the ULS point θULS, we obtain the
mean-field Hamiltonian Ĥmf = |χī,ī+1|2 + μī(ψ̂

(ī)
α ψ̂ (ī)

α − 1) −
χī,ī+1ψ̂

(ī)†
α ψ̂ (ī+1)

α + H.c. with the auxiliary fields χī,ī+1 =
〈ψ̂ (ī)†

β ψ̂
(ī+1)
β 〉 and the constraints expressed in terms of

the chemical potential μī, with a Fermi sea filled up
to the momentum kF = π/3. Around this saddle point,
the low-energy physics of Eq. (C8) at θULS is described
by ψ̂ (ī)†

α = eikF xī ψ̂L,α (xī ) + e−ikF xī ψ̂R,α (xī ) with the chiral
fermions ψ̂L,α (x), ψ̂R,α (x) only populated at the Fermi points
and we write Eq. (C8) as

Ĥ(x) � πvF

∫
dx

∑
α,β

(
ĵα,β
R ĵβ,α

R + ĵα,β
L ĵβ,α

L

)

+ε2
(

ĵα,β
R ĵα,β

R + ĵα,β
L ĵα,β

L

)
(C9)

in terms of U(3) currents ĵα,β
L ( ĵα,β

R ) = ψ̂
†
L,αψ̂L,β (ψ̂†

R,αψ̂R,β )
and Fermi velocity vF .
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FIG. 12. Bilinear biquadratic spin-1 model. (a) CFT scaling of
entanglement entropy at the ULS point θULS = π/4. (b) Quantum
phase transition between the gapped Haldane phase and gapless
nematic phase at the ULS quantum critical point. (c) Spin-spin
correlation function 〈Ŝ(ī)

z Ŝ( j̄)
z 〉 at the Affleck-Lieb-Kennedy-Tasaki

(AKLT) point θAKLT = arctan( 1
3 ) with a valence-bond ground state.

(d) Spin-spin correlation function 〈Ŝ(ī)
z Ŝ( j̄)

z 〉 at the ULS point θULS =
π/4. The correlation functions and the phase diagram are computed
from the uniform MPSs, optimized by the infinite DMRG algorithm
with truncated bond dimension up to χ = 500. Finite χ generates an
artificial cutoff in the correlation length ξc to the otherwise algebraic
correlation function. The fitting thereby only takes |ī − j̄| < ξc � 40
as the input. The entanglement entropy is simulated from a finite
MPS for the logical SU(3) spins (three physical spins per logical
spin) on a ring with bond dimension up to χ = 8000.

FIG. 13. Complex-time matrix-product state evolution. The ran-
dom MPS is initially prepared for 54 physical spins (NL = 18 logical
spins) and the MPS is evolved under complex-time coordinates
[Eq. (C11)] by way of the TEBD algorithm with an open boundary
condition. At each time step, the SU(2) MPS of the physical spins
is transformed to the SU(3) MPS for the logical spins by locally
contracting the SU(2) MPS with an isometric matrix-product op-
erator that projects the physical spins to the low-energy sector Q.
The overall dynamics is described by a cooling (heating) to (within)
the ground-state sector Q, corresponding to the preparation of the
vacuum state of the WZW CFT. The dashed line indicates the DMRG
ground-state energy obtained for the target WZW Hamiltonian. The
maximum bond dimension is χ = 200.

For the first term [with a global U(3) = U(1) ⊕ SU(3)
symmetry], a U(1) charge gap opens and leaves the SU(3)-
symmetric WZW model ĤWZW at the low-energy sec-
tor. Following the Abelian bosonization procedure ψ̂L,α =
:1/2π exp(−i

√
4πφ̂α ): of Ref. [68], the SU(3)-symmetric

continuum Hamiltonian reads

ĤWZW ∼
∫

dx(∂φ1∂φ1 + ∂φ2∂φ2 + A), (C10)

where A denotes the antiholomorphic part, with two compact
SU(3) boson fields φ1,2 (each with central charge c = 1).
Figure 12(a) depicts the CFT scaling behavior of entan-
glement entropy following the Calabrese-Cardy formula for
different system size NL (c = 2.05 ± 0.03). The entangle-
ment entropy is computed by system-size expansion of finite
matrix-product states for logical spins on a ring with a
maximum bond dimension χ = 8000. The finite MPS was
optimized using a hybrid complex-time evolution algorithm
(Sec. VI). Following the operator product expansion, it can
be shown that 〈Ŝ(ī)

z Ŝ( j̄)
z 〉ULS ∼ cos(2kF |ī− j̄|)

|ī− j̄|2D with a scaling di-
mension D = 2/3 [105]. Figure 12(d) displays the correlation
function obtained by optimizing uniform MPSs with an
infinite DMRG algorithm truncated to χ = 500 and the scal-
ing dimension is fitted to D = 0.68 ± 0.03. The marginal
perturbation of Eq. (C9), on the other hand, breaks the
global SU(3) symmetry of the ULS point, and a mass gap
mθ = exp[−γ (θULS − θ )−0.6] is dynamically generated for in-
creasing coupling constant ε > 0 (θ < θULS) with spin-spin
correlation 〈Ŝ(ī)

z Ŝ( j̄)
z 〉θ ∼ cos(2kF |ī − j̄|)e−mθ |ī− j̄| and nonuni-

versal constant γ . The asymptotic freedom of the marginal
interaction at ε > 0 can be thought of as a BKT phase tran-
sition in terms of the renormalization group flow [105]. The
yellow line of Fig. 12(b) illustrates the scaling behavior of the
correlation length ηc ∼ 1/mθ in comparison to those obtained
from uniform MPSs, where the nonuniversal constant γ is
fitted to the data points. The maximum correlation length
ξc � 40 at the ULS point is artificially cut off due to the finite
χ = 500 truncation to the uniform MPS.

b. Hybrid complex-time algorithm

Because the vacuum state of WZW CFT corresponds to the
most excited state within the low-energy sector Q, standard
DMRG algorithms cannot be adequately adapted to access the
ground state of the target Hamiltonians [see also the inset of
Fig. 4(a)]. We instead apply a hybrid complex-time evolution
to a random MPS in order to relax the system to the most ex-
cited state (target ground state) within the ground-state sector
of the simulator by way of a time-evolving block decimation
algorithm on the modified Hamiltonian

Ĥ =
∑
ī, j̄

(Ôī, j̄ + D̂ī, j̄ ) + iĤG, (C11)

with the definitions of Ôī, j̄, D̂ī, j̄, ĤG in Sec. IV. The imaginary
constraint ĤG allows the cooling of the random MPS to the
sector Q, while the first term mediates the gauge-invariant
ring-exchange Hamiltonian (C4) with an imaginary Ji, j =
iO2

i, j
/2�G, which heats the system to the most excited state

of the low-energy sector Q.
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Following the complex-time evolution, an isometric
matrix-product projector (MPO) is locally contracted with
the time-evolved MPS to map the physical SU(2) spins to
the logical SU(3) spins. While the isometric tensor is not
necessary to the protocol, we have found that such a practice
allows a more intuitive interpretation on the operations taking

place in the logical degrees of freedom. In particular, the
converted MPS obtained through this method coincides with
that obtained by performing a finite DMRG on the logical
WZW Hamiltonian in Eq. (C6). Figure 13 displays the energy
relaxation for the hybrid algorithm (solid line), which prepares
the vacuum state of the WZW CFT (dashed line).
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