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Relativistic flying laser focus by a laser-produced parabolic plasma mirror
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The question of electromagnetic field intensification towards the values typical for strong field quantum
electrodynamics is of fundamental importance. One of the most promising intensification schemes is based on
the relativistic-flying mirror concept, which shows that the electromagnetic radiation reflected by the mirror will
be frequency upshifted by a factor of 4γ 2 (γ is the Lorentz factor of the mirror). In laser-plasma interactions, such
a mirror travels with relativistic velocities through plasma and typically has a parabolic form, which is advanta-
geous for light intensification. Thus, a relativistic-flying parabolic mirror reflects the counterpropagating radia-
tion in the form of a focused and flying electromagnetic wave with a high frequency. The relativistic-flying mo-
tion of the laser focus makes the electric and magnetic field distributions of the focus complicated, and the math-
ematical expressions describing the field distributions of the focus become of fundamental interest. We present
analytical expressions describing the field distribution formed by an ideal flying mirror which has a perfect
reflectance over the entire surface and wavelength range. The peak field strength of an incident laser pulse with a
center wavelength of λ0 and an effective beam radius of we is enhanced by a factor proportional to γ 3(we/λ0) in
the relativistic limit. Electron-positron pair production is investigated in the context of invariant fields based on
the enhanced electromagnetic field. The pair production rate under the relativistic-flying laser focus is modified
by the Lorentz γ -factor and the beam radius-wavelength ratio (we/λ0). We show that the electron-positron pairs
can be created by colliding two counterpropagating relativistic-flying laser focuses in vacuum, each of which is
formed when a 180 TW laser pulse is reflected by a relativistic-flying parabolic mirror with γ = 12.2.

DOI: 10.1103/PhysRevA.104.053533

I. INTRODUCTION

As femtosecond high-power laser technology advances
[1–3], the acceleration of charged particles and the gener-
ation of high-energy photons using high-power laser pulses
have been extensively investigated [4–6]. Much attention has
been recently paid to the quantum electrodynamic (QED)
phenomena under an ultrastrong laser field (known as the
strong field QED (SF QED) [7–9]), including vacuum bire-
fringence [10–13], photon-photon scattering [14–21], and
electron-positron pair production via the Schwinger me-
chanics [22–25]. An ultrahigh laser intensity close to the
Schwinger intensity (1029 W/cm2) is desirable for the QED
study. Therefore, international efforts constructing a high-
power laser facility having a 100 PW, or even higher power
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to EW, power level have recently been initiated [26–29].
However, due to the very low probability for the QED event
with the currently available laser power, various sophisti-
cated focusing schemes, such as multiple beam focusing [23],
tight focusing (including λ3 focusing idea) [30,31], and 4π -
spherical focusing [32,33] schemes, are proposed to maximize
the laser field strength in the focal plane at a given laser
power.

Since the QED event probability depends on the quantum
nonlinearity parameter χe, defined as

√
|(Fμν pν )2|/mcESch

[34], an approach to observe the QED phenomena with a
relatively lower laser power is to use ultrarelativistic particles
interacting with the laser field [16,35–39]. Here, Fμν is the
electromagnetic field tensor, pν the momentum of the ultra-
relativistic particle, and ESch the Schwinger field, m2c3/eh̄.
Using the expression for the parameter χe for describing the
QED processes, one can say that when χe > 1 in the electron
rest frame, the electric field exceeds the Schwinger limit.
Another interesting approach, instead of using ultrarelativistic
particles, is to use the laser field reflected from a relativis-
tic flying mirror (RFM) [40,41]. In this case, the laser field
reflected by the RFM experiences the double Doppler effect
[42], and its angular frequency and field strength are enhanced
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by a factor of 4γ 2 in the relativistic limit of β → 1. In [43],
it is demonstrated through particle-in-cell simulations that the
focused intensity of the reflected laser pulse can exceed the
conventionally focused laser intensity when a counterpropa-
gating laser pulse is focused by a relativistic-flying parabolic
mirror (RFPM).

Due to the relativistic motion of the RFPM, the laser pulse
focused by the RFPM travels with a relativistic speed as well,
providing the relativistic-flying laser focus (RLF) and open-
ing new regimes for SF QED studies [44]. However, despite
many interesting features introduced in [45–49], it is not yet
clear exactly how the electromagnetic (EM) field of the RLF
is distributed and propagates in time and space. Thus, it is
of fundamental interest to obtain mathematical expressions
describing the EM field distribution of the RLF and to apply
the ultrastrong field for the study of the SF-QED occurring in
a very small spacetime region. We should note that another
concept of flying focus generated by a chromatic focusing
of chirped laser pulses was recently introduced and received
considerable interest [50].

In this paper, we present mathematical formulas describing
three-dimensional field distributions of the RLF focused by
a RFPM. When deriving the mathematical formulas for the
field of RLF, two frames of reference are employed: one is
the laboratory frame of reference (hereafter, laboratory frame)
and the other is the boosted frame of reference (hereafter,
boost frame) which moves with the RLF. An incoming laser
pulse in the laboratory frame is reexpressed in the boost frame
through the Lorentz transformation. Then, a focused field is
calculated in the boost frame through the diffraction integral.
The 4π -spherical focusing scheme [33] is applied to calculate
the focused field since the f-number defined as the focal length
divided by the beam size becomes �1 in the boost frame. A
radially or azimuthally polarized [transverse magnetic (TM)
or transverse electric (TE) mode] EM wave [51] with a proper
apodization function is assumed for an analytical mathemati-
cal expression under the 4π -spherically focusing scheme. The
focused field distribution in the boost frame is again Lorentz
transformed to reveal the flying characteristics of the field
distribution of the RLF in the laboratory frame.

The paper is organized as follows: The change in optical
characteristics, such as wavelength, pulse duration, and field
strength, of a laser pulse reflected by a relativistic-flying flat
mirror (RFFM) are briefly reviewed in Sec. II. In Sec. III, the
mathematical formulas expressing the field distribution of the
RLF reflected and focused by an RFPM are derived and dis-
cussed. The invariant fields based on Poincaré invariants (F
and G) are calculated and used to find the pair production rate
via the Schwinger mechanism [22,52]. The electron-positron
pair production as an example of QED phenomena is investi-
gated with field expressions of RLF in Sec. IV.

II. LASER PULSE REFLECTED BY THE
RELATIVISTIC-FLYING FLAT MIRROR

Let us first consider that a linearly polarized (x-polarized)
incident laser pulse is reflected by a RFFM traveling along
the +z axis with a speed of v (or β = v/c), where c is the
speed of light (see Fig. 1). In a laboratory frame [L1, xμ =
(ct,−x,−y,−z)], before the reflection, the laser pulse prop-

FIG. 1. Laser pulse reflected by a relativistic-flying flat mirror
(RFFM). Due to the double Doppler effect, the wave vector k and
the E-field strength Ep in time are enhanced by a total factor of (1 +
β )/(1 − β ) and the pulse duration τF is shortened by a total factor of
(1 − β )/(1 + β ).

agating along the −z axis (�k = −kẑ = −ω/cẑ) is expressed
as

E (x, y, z; t ) =
∫ ∞

−∞
E0(x, y; ω)eiω(t+z/c)dω

= E0(x, y)
∫ ∞

−∞
G(ω)eiω(t+z/c)dω

= Ep(x, y)e−(t+z/c)2/2τ 2
G eiω0(t+z/c). (1)

Here, E0(x, y; ω) = E0(x, y)G(ω). A Gaussian spectrum,
G(ω) = exp[−(ω − ω0)2/2
ω2], is assumed for the laser
pulse with a center frequency of ω0 and a Gaussian width
(
ω) of the spectrum. E0(x, y; ω) and Ep(x, y) are peak
field strengths in spectral and time domains, respectively.
The peak field strength Ep(x, y) in time is represented by√

2π
ωE0(x, y) and the Gaussian width in time, τG, by
1/
ω. So, the peak intensity Ip in time can be calcu-
lated as 
ω2I (ω), with I (ω) = cε0E0(x, y)/2. It should be
noted that the spectral bandwidth 
ωF and pulse duration
τF at full width at half maximum (FWHM) are given by
2
√

ln 2
ω and 2
√

ln 2τG, respectively. For the flat-top spatial
beam profile [E0(x, y) = E0] with a radius of r0, the energy
density ED(t ) and the total laser pulse energy ET are given
by (1/2)ε0E2

p exp[−(t + z/c)2/τ 2
G] and (

√
π/2)ε0AcτGE2

p , re-
spectively. Here, A is the beam area given by πr2

0 . For
the Gaussian [exp(−r2/2w2

0 )] and lowest-order Laguerre-
Gaussian [(r/w0) exp(−r2/2w2

0 )] beam profiles, the area A
should be replaced by the effective area, Ae = πw2

e , where
we is w0 for the Gaussian beam and w0

√
2p + m + 1 for the

pth radial, mth azimuthal Laguerre-Gaussian beam. Now, the
intensity I of the laser pulse defined as ET /AeffτG becomes
(
√

π/2)ε0cE2
p .

The same laser pulse can be expressed in the boost frame
[M, x′μ = (ct ′,−x′,−y′, z′)] by using the Lorentz transfor-
mation. Through the Lorentz transformation, the four-vector
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x′μ and the E-field components in the boost frame are ex-
pressed as

ct ′ = γ (ct − βz), x′ = x,

y′ = y, z′ = γ (z − βct ), (2a)

�E ′
⊥(x′, y′; ω) = γ [ �E⊥(x, y; ω) + c�β × �B(x, y; ω)], (2b)

and

�E ′
‖(x′, y′; ω) = �E‖(x, y; ω). (2c)

Here, the Lorentz γ -factor is defined as 1/
√

1 − β2.
The subscripts ⊥ and ‖ refer to the polarization com-
ponents perpendicular and parallel to the mirror traveling
direction (+z), respectively. Since the incident laser pulse
is x-polarized, �E (x, y; ω) = x̂E0(x, y; ω) and �B(x, y; ω) =
−ŷB0(x, y; ω). The E-field E ′(x′, y′, z′; t ′) in time in the boost
frame can be obtained by the Fourier transformation of
E (x′, y′; ω) in the ω domain as

E ′(x′, y′, z′; t ′)

= γ

∫ ∞

−∞
[E0(x, y; ω) + cβB0(x, y; ω)]eiω(t+z/c)dω

=
√

1 + β

1 − β
E0(x, y)

∫ ∞

−∞
G(ω)eiω(t+z/c)dω, (3)

with E0 = cB0. Then, using the Lorentz transformation given
by Eq. (2a), we obtain

E ′(x′, y′, z′; t ′)

=
√

1 + β

1 − β
E0(x′, y′)

∫ ∞

−∞
G(ω)ei

√
1+β

1−β
ω(t ′+z′/c)

dω

= E0(x′, y′)
∫ ∞

−∞
G(ω′)eiω′(t ′+z′/c)dω′

= E ′
p(x,′ y′)e−(t ′+z′/c)2/2τ ′

G
2

eiω′
0(t ′+z′/c). (4)

In Eq. (4), a new angular frequency ω′, defined as√
(1 + β )/(1 − β )ω, is introduced in the boost frame.

Then, the Gaussian spectrum G(ω) is modified as G(ω′) =
exp[−(ω′ − ω′

0)2/2(
ω′)2] with a new center frequency
ω′

0 [=√
(1 + β )/(1 − β )ω0] and spectral bandwidth 
ω′

[=
ω′ = √
(1 + β )/(1 − β )
ω]. The peak field strength

E ′
p(x′, y′) [=√

2π
ω′E0(x′, y′)] in the boost frame is en-
hanced by a factor of

√
(1 + β )/(1 − β ) since E0(x′, y′) =

E0(x, y). The Gaussian width in time, τ ′
G(= 1/
ω′), is re-

duced by a factor of
√

(1 + β )/(1 − β ). After straightforward
calculations, the following relationships for the total energy
E ′

T and the intensity I ′ of the laser pulse can be obtained:

E ′
T =

√
1 + β

1 − β
ET and I ′ = 1 + β

1 − β
I. (5)

Next, the incident laser pulse experiences the reflection
by the RFFM in the boost frame. The origin of the boost
frame is located at (0, 0, z0) in the laboratory frame. After the
reflection in the boost frame, the propagation direction of the
wave vector of the incident laser pulse is reversed (�k′ = k′ẑ =
ω′/cẑ). In this case, the incident laser pulse has the E-field

�E ′
0(x′, y′; ω′) = x̂E ′

0(x′, y′; ω′) and the B-field �B′
0(x′, y′; ω′) =

ŷB′
0(x′, y′; ω′). Then, from Eq. (4), the E-field of the reflected

pulse is given by

E ′
r (x′, y′, z′; t ′) = E0(x′, y′)

∫ ∞

−∞
G(ω′)eiω′(t ′−z′/c)dω′

=
∫ ∞

−∞
E ′(x′, y′; ω′)eiω′(t ′−z′/c)dω′. (6)

The Lorentz transformations between the boost frame and
another laboratory frame [L2, x′′μ = (ct ′′,−x′′,−y′′,−z′′)],
of which the origin coincides with the boost frame, relate the
four-vector and the field components as

ct ′′ = γ (ct ′ + βz′), x′′ = x′,

y′′ = y′, z′′ = γ (z′ + βct ′), (7a)

�E ′′
⊥(x′′, y′′; ω′) = γ [ �E ′

⊥(x′, y′; ω′) − c�β × �B′(x′, y′; ω′)], (7b)

and

�E ′′
‖ (x′′, y′′; ω′) = �E ′

‖(x′, y′; ω′). (7c)

Again, by performing the Fourier transformation into
Eq. (7b) in the ω′ domain, we obtain

E ′′
r (x′′, y′′, z′′; t ′′)

=
√

1 + β

1 − β
E0(x′′, y′′)

∫ ∞

−∞
G(ω′)ei

√
1+β

1−β
ω′(t ′′−z′′/c)

dω′

= E0(x′′, y′′)
∫ ∞

−∞
G(ω′′)eiω′′(t ′′−z′′/c)dω′′

= E ′′
p (x′′, y′′)e−(t ′′−z′′/c)2/2τ ′′

G
2

eiω′′
0 (t ′′−z′′/c). (8)

Here, new angular frequency ω′′, defined as√
(1 + β )/(1 − β )ω′ = [(1 + β )/(1 − β )]ω in the laboratory

frame (L2), is introduced. So, the new center frequency ω′′
0

and spectral bandwidth 
ω′′ of G(ω′′) in the laboratory frame
(L2) are given by

ω′′
0 = 1 + β

1 − β
ω0 and 
ω′′ = 1 + β

1 − β

ω, (9)

respectively. From Eq. (8), the peak field strength E ′′
p (x′′, y′′)

in time is again given by
√

2π
ω′′E0(x, y) with E0(x′′, y′′) =
E0(x, y), yielding

E ′′
p (x′′, y′′) = 1 + β

1 − β
Ep(x, y). (10)

The Gaussian width in time, τ ′′
G, is reduced to 1/
ω′′ = [(1 −

β )/(1 + β )]τG. Since t ′′ = t , x′′ = x, y′′ = y, and z′′ = z − z0,
Eq. (8) can be explicitly rewritten in the original laboratory
frame (L1) as

E ′′
r (t ) = 1 + β

1 − β
Ep(x, y) exp

[
i
1 + β

1 − β
ω0

(
t − z − z0

c

)]

× exp

[
−

(
1 + β

1 − β

)2 1

τ 2
G

(
t − z − z0

c

)2
]
. (11)

Equation (11) presents several interesting features of the laser
pulse reflected from the RFFM. First, the angular frequency of
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the reflected pulse is enhanced by a factor of (1 + β )/(1 − β ).
For instance, the center wavelength (λ0 = 0.8 μm or 1.55 eV)
of the typical PW-class Ti:sapphire laser can be shortened to
1.24 nm (1 keV) when the Lorentz γ -factor of 12.7 [(1 +
β )/(1 − β ) ≈ 645] is considered. Second, the pulse duration
τ ′′

F of the reflected pulse is shortened as [(1 − β )/(1 + β )]τF .
Considering a γ -factor of 12.7 again, the pulse duration of
30 fs, which is the typical pulse duration of the PW-class
Ti:sapphire laser pulse, can be reduced to 47 as. Thus, the
relativistic-flying mirror with a high γ -factor can be a promis-
ing plasma optic to produce an attosecond x-ray source [53].

The total energy E ′′
T of the reflected pulse becomes [(1 +

β )/(1 − β )]ET and its intensity I ′′ is calculated to be [(1 +
β )/(1 − β )]2I. Thus, the total energy and the intensity of a
laser pulse reflected by a RFFM are proportional to (2γ )2 and
(2γ )4 in the relativistic limit. These basic characteristics of a
laser pulse reflected by a RFFM seem very striking since the
intensity monotonically increases with the Lorentz γ -factor of
the RFM and a high E-field strength above the Schwinger field
is expected with a high γ -factor. However, considering that
the RFM is formed by a driver laser pulse and acquires energy
from the driver pulse, the total energy of the reflected pulse
can be limited by the total energy EDL of the driver pulse. This
consideration restricts the total energy of the reflected pulse
as

E ′′
T = 1 + β

1 − β
ET � EDL, (12)

and the highest laser intensity obtained from the RFFM is
limited by [(1 + β )(1 − β )]EDL/AτG when the energy of the
driver laser pulse is less than E ′′

T . In this case, the benefit in the
intensity enhancement by the RFFM comes from the contrac-
tion in the pulse duration. Although the intensity of the laser
pulse reflected by the flying flat mirror is already enhanced
by a factor of γ 4 under EDL � E ′′

T , the laser focus formed
by an ideal RFPM provides an additional enhancement factor
(compared to the flat mirror case) related to the effect of a
frequency upshift by the double Doppler effect, so it is still
of fundamental interest to derive the field expressions for the
laser focus reflected by an ideal RFPM.

III. LASER PULSE REFLECTED BY THE
RELATIVISTIC-FLYING PARABOLIC MIRROR

Even though the RFFM helps one understand the basic
properties of the reflected field, the RFPM is a more realistic
plasma mirror encountered when a fs high-power laser propa-
gates through the underdense plasma medium. A strong laser
pulse (of which the normalized vector potential a0 is above
unity) propagating in the plasma pushes electrons through the
ponderomotive force to form a plasma cavity, and electrons
return back by the recoiling force and form a high-density
electron layer on the backside of the cavity. The shape of
the electron layer is close to a paraboloid [48,54,55] and,
due to the high-electron density, the electron layer behaves
like a parabolic mirror. Since the plasma cavity moves with
a relativistic speed, the high-density electron layer forms the
RFPM. A counterpropagating laser pulse is reflected and
focused by the RFPM. The reflected pulse experiences the
frequency upshift and the shortening of pulse duration due to

the double Doppler effect as discussed in the previous section,
and its focus also moves with a relativistic speed. And, when
the incident laser pulse is reflected by the RFPM, due to the
relativistic effect it also experiences a different curvature for
the RFPM from the nominal curvature in the laboratory. Fi-
nally, all these effects related to the relativistic motion should
be properly considered in calculating the field distribution of
the RLF. In this work, we consider only a constantly moving
mirror in the optimal regime.

A. Focal length of the RFPM

Now, in order to describe how the curvature and the fo-
cal length of the mirror change by the relativistic effect,
let us first consider the equation for the surface of the
RFPM. The unprimed and primed four-vectors, such as xμ =
(ct,−x,−y,−z) and x′μ = (ct ′,−x′,−y′,−z′), are used for
describing coordinates in the laboratory frame (L1) and the
boost frame (M), respectively (see Fig. 2). Assuming that the
focus and the vertex of the RFPM are located at the origin and
− f ′ on the z′ axis, the equation of the surface for the parabolic
mirror is expressed in the boost frame as

z′ = x′2 + y′2

4 f ′ − f ′, (13)

where f ′ is known as the focal length of the RFPM. For the
nonrelativistic case, Eq. (13) can be obtained by equating two
lengths of d ′

1 and d ′
2 in Fig. 2(b). Here, the lengths of d ′

1 and
d ′

2 are given by z′ + 2 f ′ and
√

x′2 + y′2 + z′2, respectively.
For the relativistic case, Eq. (13) is generalized by the

Lorentz invariant property of the interval, x′
μx′μ, between two

spacetime events given by the four-vector, x′μ. When an EM
wave propagates to an event P from two different events (O
and A), as shown in Fig. 2(b), a four-vector between two
events [P = (0,−x′,−y′,−z′) and A = (ct ′,−x′,−y′, 2 f ′)]
is expressed by d ′μ

1 = (ct ′, 0, 0, 2 f ′ + z′) and its Lorentz-
invariant interval d ′

1μd ′μ
1 is given by c2t ′2 − (2 f ′ + z′)2.

The other four-vector between two events [P and O =
(ct ′, 0, 0, 0)] is expressed by d ′μ

2 = (ct ′, x′, y′, z′) and its
Lorentz-invariant interval d ′

2μd ′μ
2 is c2t ′2 − x′2 − y′2 − z′2.

Since the RFPM moves along the +z axis, the Lorentz trans-
formations between the laboratory and the boost frames are
given as

ct ′ = γ (ct − βz), x′ = x, y′ = y, (14a)

and

z′ = γ (z − βct ). (14b)

Now, by equating the two intervals d ′
1μd ′μ

1 and d ′
2μd ′μ

2 ,
we obtain the equation for the surface of the RFPM in the
laboratory frame as

z = x2 + y2

4γ f ′ − γ f ′ + γ 2 − 1

γ
f ′ + βct . (15)

In the nonrelativistic limit (γ → 1 and β → 0), Eq. (15)
reduces to Eq. (13). Equation (15) provides useful informa-
tion on how the RFPM behaves with an incident laser pulse.
First, the surface of the RFPM is described by the equation
z = (x2 + y2)/4γ f ′ in the laboratory frame. This means that
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FIG. 2. Relativistic-flying parabolic mirror (RFPM) in the labo-
ratory and the boost frames. (a) The shape of the parabolic mirror
is elongated in the boost frame (M) and the focal length becomes
short by a factor of γ in the boost frame. (b) The surface equation of
the paraboloid in the boost frame can be obtained from the invariant
property of event intervals, d ′

1μd ′μ
1 and d ′

2μd ′μ
2 .

the nominal focal length (γ f ′) of the RFPM in the laboratory
frame is γ times longer than that ( f ′) in the boost frame [19].
An intense (a0 = 3) fs laser pulse propagating in a plasma
medium produces a RFPM and its focal length (γ f ′) observed
in the laboratory frame is about 2 μm. This means that in
the boost frame, the focal length ( f ′) of the RFPM becomes
as short as 0.1 μm with a Lorentz factor of γ = 20. This
is contrary to the length contraction which is well known
in the special theory of relativity. The change in the focal
length in the boost frame alters the focusing condition to
the 4π -spherical focusing scheme. For instance, the f-number
(defined as the focal length divided by the beam size) changes
from 0.2 to 0.01, assuming an incident beam size of ∼10 μm.
Thus, the field distribution of the laser focus in the boost
frame should be calculated under the 4π -spherical focusing
condition. Second, the vertex of the RFPM is located on

γ f ′ + (γ 2 − 1) f ′/γ + βct at a certain time t, and its position
moves with a relativistic speed of βc in the laboratory frame.
As a result, the laser focus moves with a relativistic speed of
βc in the laboratory frame as well.

For simplicity, instead of directly calculating the field dis-
tribution of the RLF in the laboratory frame, we calculate
the focused field distribution first in the boost frame, and
then convert it in the laboratory frame through the Lorentz
transformation.

B. Focused field in the boost frame

Since the incident E-field in the boost frame is expressed
by the Fourier transformation as in Eq. (4), a monochromatic
laser field E ′(x′, y′; ω′) in the boost frame is given by

E ′(x′, y′; ω′) = E0(x, y)G(ω′)eiω′(z′/c). (16)

This laser field is focused by the RFPM to form a field dis-
tribution under the 4π -spherical focusing scheme in the boost
frame. In this study, we assume that the incident laser pulse
is radially polarized (TM mode) or azimuthally polarized (TE
mode), since analytic solutions for those fields exist under the
4π -spherically focusing condition with a specific apodization
function. According to [33], in the boost frame (M), the
electric and magnetic fields of the 4π -spherically focused
monochromatic TM mode EM wave are expressed as

�E ′
f (ρ ′, θ ′; ω′) = θ̂ ′iE ′

p(ω′)a(ρ ′, θ ′; ω′)eiω′t ′

= �E ′
f ,⊥ + �E ′

f ,‖ (17a)

and

�B′
f (ρ ′, θ ′; ω′) = −φ̂′B′

p(ω′)b(ρ ′, θ ′; ω′)eiω′t ′

= �B′
f ,‖. (17b)

Here, ρ ′ (=
√

x′2 + y′2 + z′2) is the magnitude of the ra-
dial displacement vector, �ρ ′ = ρ̂ ′ρ ′ = x̂x′ + ŷy′ + ẑz′, from
the origin to an observation point (x′, y′, z′) near the origin,
and θ ′ is the polar angle defined as cos−1(z′/ρ ′). Again,
the angular frequency ω′ in the boost frame is given by√

(1 + β )/(1 − β )ω and the Gaussian spectrum in Eq. (4)
is assumed. The peak field strength E ′

p(ω′) at the focus at a
certain frequency ω′ is given by (π/2)k′ρ ′

SE ′
S (ω′). The E-field

E ′
S (ω′) on a virtual sphere with a radius of ρ ′

S is related to the
incident laser power [P′

L(ω′) = (1/2)cε0E ′2(x′, y′; ω′)Ae] as√
3P′

L(ω′)/4πcε0(ρ ′
S )2 (see Eq. (35) in [33]). Thus, the peak

field strength E ′
p(ω′) is calculated to be

E ′
p(ω′) = k′

4

√
3πAe

2
E0(x, y)G(ω′)

= k′

4

√
3πAeI

cε0
G(ω′)

= Cf I1/2 k′

4
G(ω′), (18)

where Cf is a constant
√

3πAe/cε0 = √
3/cε0πwe) related to

the effective radius we, and k′ (= ω′/c) is the magnitude of
the wave vector, �k′ = ρ̂ ′k′, originating from the origin in the
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boost frame. The laser intensity I in the laboratory frame is
given by (1/2)cε0E2

0 (x, y).
The spatial distribution functions a(ρ ′, θ ′; ω′) and

b(ρ ′, θ ′; ω′) in Eq. (17) are expressed with the nth-order
spherical Bessel function of the first kind, jn(·), and the
Legendre and associated Legendre functions, Pn(·) and Pm

n (·),
as

a(ρ ′, θ ′; ω′) = j0

(
ω′

c
ρ ′

)
+ 5

23
j2

(
ω′

c
ρ ′

)
P2(cos θ ′) + · · ·

(19a)

and

b(ρ ′, θ ′; ω′) = 4

π
j1

(
ω′

c
ρ ′

)
P1

1 (cos θ ′). (19b)

In Eq. (19), the argument k′ρ ′ (= �k′ · �ρ ′) in spherical co-
ordinates is replaced by (ω′/c)ρ ′. So, k′ρ ′ [or (ω′/c)ρ ′] can
be expressed as k′

xx′ + k′
yy′ + k′

zz
′ in Cartesian coordinates.

Since the above field distributions propagate along the z axis
in L1, it is convenient to express Eq. (17) in Cartesian co-
ordinates before performing the Lorentz transformation. The
unit vectors θ̂ ′ and φ̂′ in spherical coordinates of the boost
frame are expressed as θ̂ ′ = cos θ ′ cos φ′x̂′ + cos θ ′ sin φ′ŷ′ −
sin θ ′ẑ′ and φ̂′ = sin φ′x̂′ − cos φ′ŷ′ in Cartesian coordinates;
then we rewrite Eq. (17) as⎡

⎣E ′
f ,x′

E ′
f ,y′

E ′
f ,z′

⎤
⎦ = iE ′

p(ω′)a(ρ ′, θ ′; ω′)eiω′t ′

⎡
⎣cos θ ′ cos φ′

cos θ ′ sin φ′
− sin θ ′

⎤
⎦ (20a)

and⎡
⎣B′

f ,x′

B′
f ,y′

B′
f ,z′

⎤
⎦ = −B′

p(ω′)b(ρ ′, θ ′; ω′)eiω′t ′

⎡
⎣ sin φ′

− cos φ′
0

⎤
⎦. (20b)

The electric and magnetic fields in Eq. (20) consist of incom-
ing (t ′ + ρ ′/c) and outgoing (t ′ − ρ ′/c) field components. The
spatial distribution function a(ρ ′, θ ′; ω′) in the electric field
can be approximated as j0(ω′ρ ′/c); then, a(ρ ′, θ ′; ω′)eiω′t ′

and
b(ρ ′, θ ′; ω′)eiω′t ′

can be separated by two parts as

a(ρ ′, θ ′; ω′)eiω′t ′ = (a+ + a−)eiω′t ′
(21a)

and

b(ρ ′, θ ′; ω′)eiω′t ′ = (b+ + b−) sin θ ′eiω′t ′
, (21b)

where incoming (a+ and b+) and outgoing (a− and b−) field
components are given by

a+ = eiω′ρ ′/c

2iω′ρ ′/c
, a− = − e−iω′ρ ′/c

2iω′ρ ′/c
, (22a)

b+ = 4

π

[
eiω′ρ ′/c

2i(ω′ρ ′/c)2
− eiω′ρ ′/c

2ω′ρ ′/c

]
, (22b)

and

b− = 4

π

[
− e−iω′ρ ′/c

2i(ω′ρ ′/c)2
− e−iω′ρ ′/c

2ω′ρ ′/c

]
. (22c)

In this section, the electromagnetic field focused by the
RFPM is expressed in the boost frame. In the following

sections, the Lorentz transformation of the field into the labo-
ratory frame (L2) and the spatiotemporal field distribution in
the laboratory frame will be explained.

C. Lorentz transformation for incoming and outgoing fields

For phase factors of incoming and outgoing fields, the
Lorentz transformations from the boost frame to the labora-
tory frame yield

ω′
(

t ′ + ρ ′

c

)

= ω′t ′ + k′
xx′ + k′

yy′ + k′
zz

′

= ω′tγ (1 − β cos θ ′) + k′x sin θ ′ cos φ′

+ k′y sin θ ′ sin φ′ + k′zγ (cos θ ′ − β ) (23a)

and

ω′
(

t ′ − ρ ′

c

)

= ω′t ′ − k′
xx′ − k′

yy′ − k′
zz

′

= ω′tγ (1 + β cos θ ′) − k′x sin θ ′ cos φ′

− k′y sin θ ′ sin φ′ − k′zγ (cos θ ′ + β ), (23b)

with the expression of (ω′/c)ρ ′ = k′
xx′ + k′

yy′ + k′
zz

′. By intro-
ducing new variables ω′′

+ and ω′′
− for the angular frequencies

of incoming and outgoing fields in the laboratory frame, we
define

ω′′
+ = ω′γ (1 − β cos θ ′

+) and ω′′
− = ω′γ (1 + β cos θ ′

−),
(24)

and obtain the Lorentz-invariant properties for the phase
as ω′(t ′ + ρ ′/c) = ω′′

+(t + ρ/c) and ω′(t ′ − ρ ′/c) = ω′′
−(t −

ρ/c). Here, + and − symbols in the subscript are used to
represent incoming and outgoing fields. From the Lorentz
invariant properties of the phase, the following relationships
between the polar angles for the incoming and outgoing fields
are obtained:

sin θ ′
+ = sin θ

γ (1 + β cos θ )
and cos θ ′

+ = cos θ + β

1 + β cos θ
, (25a)

sin θ ′
− = sin θ

γ (1 − β cos θ )
and cos θ ′

− = cos θ − β

1 − β cos θ
. (25b)

And, with the help of Eq. (25), Eq. (23) can be rewritten as

ω′
(

t ′ + ρ ′

c

)
= ω′t

γ (1 + β cos θ )
+ k′x sin θ cos φ

γ (1 + β cos θ )

+ k′y sin θ sin φ

γ (1 + β cos θ )
+ k′z cos θ

γ (1 + β cos θ )
(26a)

and

ω′
(

t ′ − ρ ′

c

)
= ω′t

γ (1 − β cos θ )
− k′x sin θ cos φ

γ (1 − β cos θ )

− k′y sin θ sin φ

γ (1 − β cos θ )
− k′z cos θ

γ (1 − β cos θ )
.

(26b)
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So, it is clear that ω′′
± should be expressed as

ω′′
± = ω′

γ (1 ± β cos θ )
(27)

in the laboratory frame. When θ = 0 (+z direction), the an-
gular frequencies for incoming and outgoing fields become
ω′′

± = [(1 + β )/(1 ± β )]ω. Now, it is convenient to introduce
new variables �1,2 and �1,2, defined as

�1 = ω′

γ (1 − β2 cos2 θ )
, �2 = ω′β cos θ

γ (1 − β2 cos2 θ )
, (28a)

�1 = ω′/c

γ (1 − β2 cos2 θ )
, �2 = (ω′/c)β cos θ

γ (1 − β2 cos2 θ )
. (28b)

Then, the phase factors for incoming and outgoing fields
can be rewritten as

ω′
(

t ′ + ρ ′

c

)
= (�1 − �2)t + (�1 − �2)ρ (29a)

and

ω′
(

t ′ − ρ ′

c

)
= (�1 + �2)t − (�1 + �2)ρ. (29b)

By adding or subtracting Eqs. (29a) and (29b), we obtain

t ′ = T (t, ρ) = t − (ρ/c)β cos θ

γ (1 − β2 cos2 θ )
, (30a)

ρ ′ = R(ρ, t ) = ρ − ctβ cos θ

γ (1 − β2 cos2 θ )
, (30b)

and

t ′ ± ρ ′

c
= T (t, ρ) ± R(ρ, t )

c
= t ± (ρ/c)

γ (1 ± β cos θ )
. (30c)

Equation (30) shows how lightcone variables in the boost
frame are Lorentz transformed into the laboratory frame.
Hereafter, the variables T and R will be used as short expres-
sions for representing T (t, ρ) and R(ρ, t ).

The Lorentz transformations for the full electric and mag-
netic fields from the boost frame to the laboratory frame (L2)
are given by

�E ′′
‖ = �E ′

‖, �B′′
‖ = �B′

‖, (31a)

�E ′′
⊥ = γ ( �E ′

⊥ − c�β × �B′
⊥), (31b)

and

�B′′
⊥ = γ ( �B′

⊥ + �β × �E ′
⊥/c). (31c)

Since the parallel polarization components for the field
remain unchanged through the Lorentz transformation, we
have

E ′′
f ,z′′,± = E ′

f ,z′,±

= −iE ′
p(ω′)a± sin θ ′

± (32a)

and

B′′
f ,z′′,± = B′

f ,z′,± = 0. (32b)

The perpendicular components for the focused fields in the
laboratory frame are expressed as[

E ′′
f ,x′′,±(ω′)

E ′′
f ,y′′,±(ω′)

]
= γ

[
E ′

f ,x′,± + cβB′
f ,y′,±

E ′
f ,y′,± − cβB′

f ,x′,±

]

= γ E ′
p(ω′)(ia± cos θ± + βb± sin θ±)

[
cos φ′
sin φ′

]
(33a)

and [
B′′

f ,x′′,±(ω′)
B′′

f ,y′′,±(ω′)

]
= γ

[
B′

f ,x′′,± − (β/c)E ′
f ,y′,±

B′
f ,y′,± + (β/c)E ′

f ,x′,±

]

= γ

c
E ′

p(ω′)(b± sin θ±

+ iβa± cos θ±)

[− sin φ′
cos φ′

]
. (33b)

The final field expression can be obtained by summing
incoming and outgoing fields as[

E ′′
f ,x′′ (ω′)

E ′′
f ,y′′ (ω′)

]
= γ

[
E ′

f ,x′ + cβB′
f ,y′

E ′
f ,y′ − cβB′

f ,x′

]

= γ E ′
p(ω′)(ia′ + βb′)

[
cos φ′
sin φ′

]
, (34a)

[
B′′

f ,x′′ (ω′)
B′′

f ,y′′ (ω′)

]
= γ

[
B′

f ,x′′ − (β/c)E ′
f ,y′

B′
f ,y′ + (β/c)E ′

f ,x′

]

= γ

c
E ′

p(ω′)(b′ + iβa′)
[− sin φ′

cos φ′

]
, (34b)

E ′′
f ,z′′ (ω′) = −iE ′

p(ω′)(aout sin θ ′
− + ain sin θ ′

+), (34c)

and

B′′
f ,z′′ (ω′) = 0. (34d)

Here, a′ and b′ in Eq. (34) are expressed as

a′ = a− cos θ ′
− + a+ cos θ ′

+ (35a)

and

b′ = b− sin θ ′
− + b+ sin θ ′

+, (35b)

with a± and b± defined in Eq. (22). Equation (34) represents
the focused electric and magnetic field distributions at a cer-
tain angular frequency, but it is still expressed in terms of
four-vector components in the boost frame.

D. Spatiotemporal field distribution in the laboratory frame

By using the same analogy as in Eqs. (3) and (8) and taking
the Fourier transformation in the ω′ space, the spatiotemporal
field distribution of the RLF in the laboratory frame is ob-
tained as

�E ′′
f =

∫ ∞

−∞
dω′ �E ′′

f (ω′)eiω′t ′ = γ

⎡
⎣(iI1 + βI2) cos φ′

(iI1 + βI2) sin φ′
−i(1/γ )I3

⎤
⎦ (36a)

and

�B′′
f =

∫ ∞

−∞
dω′ �B′′

f (ω′)eiω′t ′ = γ

c

⎡
⎣−(I2 + iβI1) sin φ′

(I2 + iβI1) cos φ′
0

⎤
⎦.

(36b)
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Here, In (n = 1, 2, 3) are definite integrals defined as

I1 =
∫ ∞

−∞
dω′E ′

p(ω′)a′eiω′t ′

= Cf

√
I

4c

∫ ∞

−∞
dω′ω′G(ω′)a′eiω′t ′

, (37a)

I2 =
∫ ∞

−∞
dω′E ′

p(ω′)b′eiω′t ′

= Cf

√
I

4c

∫ ∞

−∞
dω′ω′G(ω′)b′eiω′t ′

, (37b)

and

I3 = Cf

√
I

4c

∫ ∞

−∞
dω′ω′G(ω′)(aout sin θ ′

− + ain sin θ ′
+)eiω′t ′

,

(37c)

with Eq. (18). These integrals can be calculated with the help
of Lorentz transformation given by Eq. (26). For example, the
integral I1 can be first separated into incoming and outgoing
parts as

I1 = Cf

√
I

8iρ ′ cos θ ′
+

∫ ∞

−∞
dω′eiω′(t ′+ ρ′

c )e− (ω′−ω′
0 )2

2
ω′2

− Cf

√
I

8iρ ′ cos θ ′
−

∫ ∞

−∞
dω′eiω′(t ′− ρ′

c )e− (ω′−ω′
0 )2

2
ω′2 .

(38)

Then, after applying the Lorentz transformation [Eqs. (25) and
(30c)] to the coordinates, we obtain

I1 = Cf

√
I

8iρ ′
cos θ + β

1 + β cos θ

∫ ∞

−∞
dω′ei ω′ (t+ρ/c)

γ (1+β cos θ ) e− (ω′−ω′
0 )2

2
ω′2

−Cf

√
I

8iρ ′
cos θ − β

1 − β cos θ

∫ ∞

−∞
dω′ei ω′ (t−ρ/c)

γ (1−β cos θ ) e− (ω′−ω′
0 )2

2
ω′2 . (39)

Now, by using the relationship obtained in Eq. (27) and the
linear shift of the angular frequency of ω̃± = ω′′

± − ω′′
0,±,

Eq. (39) is rewritten in the form

I1 = Cf

√
I

8iρ ′ γ (cos θ + β )eiω′′
0,+(t+ ρ

c )

×
∫ ∞

−∞
dω̃+ exp

[
iω̃+

(
t + ρ

c

)]
exp

[
− ω̃2

+

ω′′2+

]

− Cf

√
I

8iρ ′ γ (cos θ − β )eiω′′
0,−(t− ρ

c )

×
∫ ∞

−∞
dω̃− exp

[
iω̃−

(
t − ρ

c

)]
exp

[
− ω̃2

−

ω′′2−

]
.

(40)

Again, the center frequency and the spectral bandwidth, ω′
0,±

and 
ω′′
±, in the laboratory frame (L2) are defined as

ω′′
0,± = ω′

0

γ (1 ± β cos θ )
and 
ω′′

± = 
ω′
±

γ (1 ± β cos θ )
, (41)

by Eq. (27). Using the integral identity [56] of∫ ∞

0
xp−1e−qx2

cos sxdx

= 1

2
q−p/2�

( p

2

)
exp

(
− s2

4q

)
1F1

(
− p

2
+ 1

2
;

1

2
;

s2

4q

)
,

(42)

the integral ∫ ∞

−∞
dω̃± cos ω̃±

(
t ± ρ

c

)
e−ω̃2

±/
ω′′
±

2

(43)

becomes

√
π
ω′′

± exp

[
−
ω′′

±
2(t ± ρ/c)2

4

]
, (44)

with p = 1, q = 1/
ω′′
±

2, and s = t ± ρ/c, since �(1/2) =√
π and 1F1(0; 1/2; s2/4q) = 1. Here, �() and 1F1() are the

Gamma function and the confluent hypergeometric function.
Note that

∫ ∞
−∞ e−qx2

sin sxdx = 0. Finally, after integrating
over (-∞,∞), Eq. (40) becomes

I1 = √
π


ω′Cf

8iR

√
I cos θ + β

1 + β cos θ
eiω′

0(T +R/c)

× exp

[
−
ω′2

4

(
T + R

c

)2]

−√
π


ω′Cf

8iR

√
I cos θ − β

1 − β cos θ
eiω′

0(T −R/c)

× exp

[
−
ω′2

4

(
T − R

c

)2]
, (45)

with the help of Eq. (30). This integral contains information
on the incoming (T + R/c) and outgoing (T − R/c) spherical
fields in the R − T space. These incoming and outgoing fields
can be expressed with spherical Bessel functions as

eiω′
0(T ±R/c)

R
= ω′

0

c

[
y0

(
ω′

0

c
R

)
± i j0

(
ω′

0

c
R

)]
eiω′

0T , (46)

where j0(·) and y0(·) are the spherical Bessel functions of the
first and the second kinds, respectively. Since the functional
value of y0(ω′

0R/c) is infinity at R = 0, we take the imaginary
part from Eq. (46) as the solution of Eq. (45). Then, we have

I1 =
√

πω′
0
ω′Cf

√
I

4c
j0

(
ω′

0

c
R

)
ϒ1eiω′

0T , (47)

with the definition of the envelope function of

ϒ1 = 1

2

{
cos θ + β

1 + β cos θ
exp

[
−
ω′2

4

(
T + R

c

)2]

+ cos θ − β

1 − β cos θ
exp

[
−
ω′2

4

(
T − R

c

)2]}
. (48)

Similarly, by applying the same mathematical procedures, we
obtain the following results for the other integrals:

I2 =
√

πω′
0
ω′Cf

√
I

4c
j1

(
ω′

0

c
R

)
ϒ2eiω′

0T (49a)
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and

I3 =
√

πω′
0
ω′Cf

√
I

4c
j0

(
ω′

0

c
R

)
ϒ2eiω′

0T , (49b)

with the definition of another envelope function,

ϒ2 =1

2

{
sin θ

γ (1 − β cos θ )
exp

[
−
ω′2

4

(
T − R

c

)2]

+ sin θ

γ (1 + β cos θ )
exp

[
−
ω′2

4

(
T + R

c

)2]}
. (50)

Now, inserting Eqs. (47) and (49) into Eq. (36), the general
mathematical expressions for the spatiotemporal field distri-
bution of the RLF with the radial polarization are obtained as

�E ′′
f = γ

√
πω′

0
ω′Cf

√
I

4c

×
⎡
⎣{− j0 sin(ω′

0T )ϒ1 + β j1 cos(ω′
0T )ϒ2} cos φ

{− j0 sin(ω′
0T )ϒ1 + β j1 cos(ω′

0T )ϒ2} sin φ

(1/γ ) j0 sin(ω′
0T )ϒ2

⎤
⎦

(51a)

and

�B′′
f =γ

c

√
πω′

0
ω′Cf

√
I

4c

×
⎡
⎣−{ j1 cos(ω′

0T )ϒ2 − β j0 sin(ω′
0T )ϒ1} sin φ

{ j1 cos(ω′
0T )ϒ2 − β j0 sin(ω′

0T )ϒ1} cos φ

0

⎤
⎦
(51b)

in the laboratory frame. In Eq. (51), the azimuthal angle φ′ is
replaced by φ due to φ′ = φ, and j0,1 should read j0,1(ω′R/c).
Equation (51) is valid in the relativistic limit since the 4π -
spherical focusing scheme that is used is valid only when
γ � 1.

When the TE mode (azimuthally polarized) laser pulse is
incident and focused by the RFPM, from the symmetry in the
polarization, the EM field distributions of the 4π -spherically
focused monochromatic TE mode EM wave are expressed as

�E ′
f (x′μ; ω′) = −φ̂′E ′

p(ω′)b(ρ ′, θ ′; ω′)eiω′t ′

= �E ′
f ,‖ (52a)

and

�B′
f (x′μ; ω′) = θ̂ ′iB′

p(ω′)a(ρ ′, θ ′; ω′)eiω′t ′

= �B′
f ,⊥ + �B′

f ,‖. (52b)

In this case, followed by the similar mathematical proce-
dures taken as before, the general mathematical expressions
for the spatiotemporal field distribution of the RLF with the
azimuthal polarization are obtained as

�E ′′
f = γ

√
πω′

0
ω′Cf

√
I

4c

×
⎡
⎣−{ j1 cos(ω′

0T )ϒ2 − β j0 sin(ω′
0T )ϒ1} sin φ

{ j1 cos(ω′
0T )ϒ2 − β j0 sin(ω′

0T )ϒ1} cos φ

0

⎤
⎦

(53a)

and

�B′′
f =γ

c

√
πω′

0
ω′Cf

√
I

4c

×
⎡
⎣{− j0 sin(ω′

0T )ϒ1 + β j1 cos(ω′
0T )ϒ2} cos φ

{− j0 sin(ω′
0T )ϒ1 + β j1 cos(ω′

0T )ϒ2} sin φ

(1/γ ) j0 sin(ω′
0T )ϒ2

⎤
⎦.

(53b)

In Eqs. (51) and (53), the peak field strength of the E-field
of RLF can be rewritten as

γ

√
πω′

0
ω′Cf

√
I

4c
= γ

1 + β

1 − β

√
πω0
ωCf

√
I

4c

= γ
1 + β

1 − β

√
3π

cε0

πω0we
√
Ip

4c
, (54)

with the definition of the intensity, Ip (=
ω2I), in time
shown in Sec. II. So, it is clear that in the relativistic limit of
β → 1, the field strength and the intensity are enhanced by a
factor of γ 3(we/λ0) and γ 6(we/λ0)2, as discovered in [43].
Comparing the intensity enhancement given by the RFFM
case, the RFPM gives an additional enhancement of a factor of
(3π5/8)γ 2(we/λ0)2 with an incident beam size of D = 2we.

The change in the angular frequency of the RLF can be
calculated by decomposing the spherical Bessel function into
the incoming and outgoing fields again. The phase for the
incoming or outgoing field is given by ω′

0T ± ω′
0R/c or [(1 +

β )/(1 ± β cos θ )]ω0(t ± ρ/c) in Eqs. (51) and (53). Thus, the
angular frequency for the outgoing laser pulse is enhanced by
(1 + β )/(1 − β ) in the forward direction (θ = 0) or ∼4γ 2 in
the relativistic limit, which is consistent with the result from
the RFFM case. The change in the nominal pulse duration
of the outgoing laser pulse is determined by the argument of

ω′2(T − R/c)2/4 in Eq. (48) or (50). From the argument, it
is clear that the nominal pulse duration τ ′′

F of the RLF in the
laboratory frame is given by (1/
ω)(1 − β cos θ )/(1 + β ).
In the forward direction (θ = 0), the nominal pulse duration
is reduced by a factor of (1 − β )/(1 + β ), which is also
consistent with the RFFM case. Although Eqs. (51) and (53)
well describe the field distribution and its propagation of the
RLF, its limitation should be addressed here. In this study,
an ideal RFPM, which has a constant velocity and a flat
perfect reflectance over the wavelength and incidence angle, is
assumed and the recoil effect happening during the reflection
of the incident strong laser pulse [57] is ignored. Therefore,
obtaining a mathematical expression for the RLF under a more
realistic circumstance will be the next step to be pursued.

Figure 3 shows the squared electric field (E2 = E2
x + E2

z )
distribution of the RLF at different times. The center fre-
quency (ω0) of the incident laser pulse is ∼2.36 × 1015 rad/s,
assuming the center wavelength of 0.8 μm. The Gaussian
width (
ω) of the spectrum is 1.77 × 1014 rad/s, supporting
a FWHM pulse duration of ∼9.4 fs. The first row in Fig. 3
presents the squared electric field at γ = 1. The electric and
magnetic fields are separated in space and time, and the field
oscillates with a period (Tperiod = 2π/ω0) of ∼2.67 fs. The
second row presents the squared electric field at γ = 10. In
this case, the squared field is expressed in the logarithmic
scale, and it is normalized by the peak laser intensity of the
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FIG. 3. The squared electric field distribution calculated from Eq. (51). The squared electric field distribution is expressed in the x-z
(vertical-horizontal) plane. In this plane, E ′′

f ,y becomes zero since φ = 0. The electric field distributions in the first row are calculated under γ =
1, i.e., the mirror is stationary. The field distribution agrees well with the characteristics obtained under the 4π -spherical focusing condition.
The squared electric field distributions in the second and third rows are calculated under γ = 10. The field distribution travels with a relativistic
velocity of cβ = c

√
(γ 2 − 1)/γ 2 as shown in the third row, and the peak field strength is enhanced by a factor given by Eq. (54).

RLF given by the square of Eq. (54). The third row presents
an enlarged view of the red dashed area in the second row.
The spot size of the peak calculated from the second-order
moment is ∼2.5 nm, which is close to the nominal wavelength
of 2.0 nm obtained from λ0/4γ 2. The second and third rows
clearly show that the RLF travels at a relativistic speed of βc
and how its field distribution propagates in time over several
hundreds of nm in range.

E. Recoil effect with a low mirror reflection

The field calculation, so far, has been based on an ideal
mirror which has perfect reflectance, i.e., R = 1. However,
the reflectance of the mirror is dependent on the mirror model
and is, in general, very low [46,53,58,59]. Due to a low mir-
ror reflectance, most of the incident (source) pulse energy is
transmitted through the mirror, which leads to much lower dis-
tortion in the flying mirror than expected. The low reflection
of the mirror minimizes the change in mirror shape during
reflection. Here we explain how the low mirror reflectance
reduces the recoil effect on the frequency upshift, and show
that the beam radius-wavelength ratio can further intensify the
focused intensity toward the nonlinear QED regime even with
a low reflectance of the mirror.

From momentum and energy conservation, we rewrite
Eqs. (3) and (4) of [57] in two-dimensional form as

ne pe − nω pω = ne p′′
e cos θe + Rnω p′′

ω cos θ

− (1 − R)nω pω, (55a)

0 = ne p′′
e sin θe − Rnω p′′

ω sin θ, (55b)

where θe and θ refer to the angles for the electron and photon
after reflection, respectively, and

neεe + nωεω = neε
′′
e + Rnωε′′

ω + (1 − R)nωεω. (55c)

Here, p and ε refer to the momentum and energy for
the individual electron and photon, and the subscripts e and
ω are used to denote the electron and photon. ne and nω

are population densities for the electron and photon. The
reflectance R depends on the incident angle, but, consider-
ing the mathematical simplicity and aperture function, we
ignore the angle dependency for the mirror. The unprimed and
double-primed quantities refer to quantities before and after
reflection. Equations (55a) and (55b) can be combined by use
of sin2 θe + cos2 θe = 1 to yield

n2
e p′′

e
2 = n2

e p2
e + R2n2

ω p′′
ω

2 + R2n2
ω p2

ω − 2Rnenω pe p′′
ω cos θ − 2Rnenω pe pω + 2R2n2

ω pω p′′
ω cos θ, (56)

and, subtracting n2
e p′′

e
2c2 from n2

eε
′′
e

2, we obtain

n2
e

(
ε′′

e
2 − p′′

e
2c2

) = n2
e

(
ε2

e − p2
ec2

) + R2n2
ω

(
ε2
ω − p2

ωc2
) + R2n2

ω

(
ε′′
ω

2 − p′′
ω

2c2
) + 2Rnωne(εeεω + pe pωc2)

− 2Rnωne(εeε
′′
ω − pe p′′

ωc2 cos θ ) − 2R2n2
ω(εωε′′

ω + pω p′′
ωc2 cos θ ). (57)
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Since ε′′
e

2 − p′′
e

2c2 = ε2
e − p2

ec2 = m2
ec4 for electrons and

ε′′
ω

2 − p′′
ω

2c2 = ε2
ω − p2

ωc2 = 0 for photons, Eq. (57) becomes

[ne(εe − pec cos θ ) + Rnωεω(1 + cos θ )]
ε′′
ω

εω

= ne(εe + pec).

(58)
Here, me is the electron mass. Then, with the help of pec =
βεe, we obtain

ε′′
ω = εω

neεe(1 + β )

neεe(1 − β cos θ ) + Rnωεω(1 + cos θ )
. (59)

The energy density can be further expressed as

neεe = γ nemec2 and nωεω = I/c. (60)

The ratio Rnωεω/neε = RI/γ nemec3 in Eq. (59) can be ex-
pressed as ∼3 × 1019 × (R/ne) at I = 2.3 × 1017 W/cm2

in terms of the reflectance and the electron density of the
mirror. The reflectance R is very low. For example, according
to the thin foil electron layer mirror model, the reflectance
of the mirror is given by R = 0.5γ −3 [53,58,59] and yields
2.75 × 10−4 for a Lorentz γ of 12.2. Thus, the frequency for
reflected photons can be approximated as

ω′′ ≈ ω
1 + β

1 − β cos θ

×
[

1 − RI0

γ nemec3
(1 + cos θ )2e

− sin2 θ

sin2 θ0

]
. (61)

Here, the laser intensity I is replaced by
I0 sin2 θe− sin2 θ/ sin2 θ0 , which is the incident intensity
distribution for the TM or TE mode beam profile. Comparing
Eq. (61) to the well-known frequency upshift formula
ω′′ = ω(1 + β )/(1 − β cos θ ), the second term in the bracket
on the right-hand side gives the correction to the wavelength
shift by the recoil effect. Equation (61) shows how the
frequency upshift for the curved mirror is modified by the
recoil effect when the mirror reflectance is considered.
Since RI0/γ nemec3 � 1 at a source laser power of 180
TW or an intensity I0 of 2.3 × 1017 W/cm2, the frequency
shift is approximated as ω′′ ≈ ω(1 + β )/(1 − β cos θ ). In
addition, the consideration of a low reflectance of R does
not allow violation of the energy balance condition through
n′′

ω h̄ω′′ ≈ R(4γ 2I0/c) < γ nemec2. A numerical calculation
shows that energy densities [R(4γ 2I0/c) and γ nemec2] for
the reflected laser pulse and the electron layer acting as the
RFM are ∼1.25 × 106 J/cm3 and ∼1 × 107 J/cm3 with a
γ -factor of 12.2, respectively. So, it is valid to apply the
approach used in previous sections when calculating the field
distribution since it does not seriously modify the frequency
upshift and the field distribution with a low reflectance.
However, the low reflectance affects the reflected energy, and
consequently the peak intensity of a focused laser field and
the e+e− pair production rate, as discussed in the following
section.

After reflection, the frequency-upshifted source laser pulse
is further intensified by the beam radius-wavelength ratio
we/λ0, as shown in Eqs. (53) and (54). This factor first ap-
peared in the original paper on the RFM [46] and results in
the intensification of the electromagnetic pulse, while main-
taining a substantially low source laser intensity on the mirror

with a substantially large beam size. With a given reflectance
of R, the peak electric field strength of a focused field can be
written from Eqs. (53a) and (54) as

E ′′
f =

√
Rγ

1 + β

1 − β

√
3π

cε0

πωwe

4c

√
I. (62)

Under the condition of E ′′
f = ESch, Eq. (62) can be reexpressed

as

I = (λ0/we)2

6π5Rγ 6
ISch, (63)

with the definition of ISch = (1/2)cε0E2
Sch ≈ 2.3 × 1029

W/cm2. Then, the source laser intensity I required for reach-
ing the Schwinger field is calculated to be ∼2.27 × 1017

W/cm2 with parameters such as γ = 12.2, λ = 0.2 μm, w0 =
156 μm, and R = 0.1γ −3. Thus, the beam radius-wavelength
ratio plays a critical role in boosting the focused field strength
to the nonlinear QED regime.

IV. PAIR PRODUCTION UNDER THE RLF FIELD

Until now, the analytical field expression for the TM or
TE mode RLF has been obtained in the laboratory frame.
In this section, the electron-positron (e+e−) pair production
rate is investigated with the field expressions obtained in the
relativistic limit. Here we consider the Schwinger mechanism
for the pair production.

A. Invariant fields and pair production rate

Assuming the Compton wavelength is much less than the
wavelength of the RLF [19,60–62], the spacetime-dependent
e+e− pair production rate Wep can be calculated from

Wep = e2E2
Sch

4π3h̄2c
EinvBinv coth

(
π

Binv

Einv

)
e−π/Einv . (64)

Here, Einv and Binv are invariant fields defined by

Einv =
√

(F2 + G2)1/2 − F
ESch

(65a)

and

Binv =
√

(F2 + G2)1/2 + F
ESch

. (65b)

In Eq. (65), the Poincaré invariants F and G for the RLF
are calculated as

F = c2B2 − E2

2
and G = c �B · �E . (66)

Then, the Poincaré invariants for the TM mode laser pulse can
be calculated with Eq. (51) and become

FTM =1

2

(
1 + β

1 − β

√
πω0Cf

√
Ip

4c

)2

× [
j2
1 cos2(ω′

0T )ϒ2
2 − j2

0 sin2(ω′
0T )

(
ϒ2

1 + ϒ2
2

)]
=1

2

(
1 + β

1 − β

√
πω0Cf

√
Ip

4c

)2

j2
{1−0} (67a)
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and

GTM = 0, (67b)

where the function j2
{1−0} is defined as j2

1 cos2(ω′
0T )ϒ2

2 −
j2
0 sin2(ω′

0T )(ϒ2
1 + ϒ2

2 ), and ji represents the spherical
Bessel function ji(ω′

0ρ
′/c). The invariant fields Einv and

Hinv are determined by the sign of F . When F � 0 [i.e.,
j2
1 cos2(ω′

0T )ϒ2
2 � j2

0 sin2(ω′
0T )(ϒ2

1 + ϒ2
2 )],

√
F2 = F . On

the other hand, when F < 0,
√
F2 = −F . This results in

Einv =1 + β

1 − β

√
πω0Cf

√
Ip

4cESch

{
0, F � 0√

− j2
{1−0}, F < 0

(68a)

and

Binv =1 + β

1 − β

√
πω0Cf

√
Ip

4c2ESch

{√
j2
{1−0}, F � 0

0, F < 0.
(68b)

Thus, from Eq. (64), it follows that no pair production is
expected even with the enhanced field strength of the RLF
when F � 0. In the other case (F < 0), the e+e− pair pro-
duction rate via the Schwinger mechanism can be explicitly
calculated in terms of the Lorentz γ -factor, the beam radius-
wavelength ratio (we/λ0), and the laser intensity (Ip) as

Wep ≈ 12π2αγ 4
(we

λ0

)2
(Ip

h̄c

)(− j2
{1−0}

)

× exp

⎡
⎣− 1

γ 2

λ0

we

(ESch/Ep)
√

6π3
√

− j2
{1−0}

⎤
⎦, (69)

in the relativistic limit. Here, α is the fine structure constant
defined as e2/4π h̄cε0 and the peak field strength Ep in time as√

2Ip/cε0. The e+e− pair production occurs only in the region
of j2

{1−0} < 0.
For the TE mode laser pulse, the e+e− pair production rate

can be calculated with Eq. (53) and the final form is given by

Wep ≈ 12π2αγ 4
(we

λ0

)2
(Ip

h̄c

)(− j2
{0−1}

)

× exp

⎡
⎣− 1

γ 2

λ0

we

(ESch/Ep)
√

6π3
√

− j2
{0−1}

⎤
⎦, (70)

where j2
{0−1} is defined as j2

0 sin2(ω′
0T )(ϒ2

1 + ϒ2
2 ) −

j2
1 cos2(ω′

0T )ϒ2
2 . Again, the e+e− pair production occurs

only in the region of j2
{0−1} < 0.

Now, let us consider the reflectance R of the flying plasma
mirror in the calculation of e+e− pair production. The re-
flectance can be modeled as 0.5γ −3 for the infinitely thin
foil model, ∼0.1γ −4, for the wake wave model, and a rather
complicated form can be found for the double-sided mirror
model [53,58,59]. By multiplying the reflectance R into the

intensity Ip, the pair production rate can be modified as

Wep ≈6π2αγ
(we

λ0

)2
(Ip

h̄c

)(− j2
{0−1}

)

× exp

⎡
⎣− 1√

γ

λ0

we

(ESch/Ep)
√

3π3
√

− j2
{0−1}

⎤
⎦ (71a)

for the thin foil model or

Wep ≈1.2π2α
(we

λ0

)2
(Ip

h̄c

)(− j2
{0−1}

)

× exp

⎡
⎣− λ0

we

(ESch/Ep)

0.32
√

6π3
√

− j2
{0−1}

⎤
⎦ (71b)

for the wake wave model. From Eq. (71b), it is obvious
that in the case of the wake wave model, due to the reflectance
of the mirror, the pair production rate becomes dependent
only on the beam radius-wavelength ratio (we/λ0). Thus, the
e+e− pair production from the thin foil model will be mostly
considered.

The total number Ne+e− of e+e− pairs produced by the
RLFs can be estimated by integrating the pair production rate
Wep over a four-volume [61]. The threshold of the incident

FIG. 4. (a) Schematic diagram for collinear coupling of driver
and source laser pulses. (b) Formation of RFPMs and collision in
vacuum of two source pulses reflected from the respective RFPMs.
CSLP: Converging source laser pulse.
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laser power required for a single e+e− pair production is
examined with a γ -factor of 12.2. Such a relativistic mirror
can be driven by focusing a 100 PW Ti:sapphire (λ0= 0.8 μm)
laser pulse within a focal spot radius of 100 μm, assuming the

γ -factor of the mirror is given by
√

1 + a2
0. A laser pulse with

a0 = 0.1 and a beam radius w0 of 100 μm is considered as
an incident laser pulse to be reflected. According to [57], in
order to minimize the recoil effect, an incident pulse duration
should be less than a characteristic time τc, given as

τc = κ
24/3mec2

2�2(2/3)

(
ω0

ωpe

)8/3

γ
1/3
L

neλL

Ip
. (72)

Here, ωpe is the Langmuir frequency, γL the Lorentz γ -factor
for the Langmuir wave, and λL the Langmuir wavelength. The
parameter κ can be obtained from the simulation. Although
this analysis is based on a one-dimensional particle-in-cell
(PIC) approach, it provides a rough estimation of the maxi-
mum pulse duration required for minimizing the recoil effect
in time. The calculation with κ = 1.5 × 10−4 and an electron
density of 0.01ncr shows that the incident laser pulse with an
a0 of 0.1 can have a maximum pulse duration of about 30
fs before the mirror is severely affected by the recoil effect.
This pulse duration can be supported by a spectral bandwidth

ω of 19 nm (∼32 nm at FWHM). This means that a laser
pulse with a pulse duration of ∼9.4 fs (supported by a spectral
bandwidth 
ω of 60 nm at 800 nm center wavelength ω0)
can be used as the incident laser pulse to be reflected. In this
case, the minimum reflectance of the mirror required for a sin-
gle e+e− pair production is estimated as ∼14.1%. The e+e−
pairs production is strongly suppressed by the low reflectance

(2.7 × 10−2% for 0.5γ −3 and 4.5 × 10−4% for 0.1γ −4) of
the mirror. The required laser field strengths, expressed as
a0, increase to ∼2.8 for the thin foil and ∼21.6 for the wake
wave cases. Under these field strengths, the characteristic time
given by Eq. (72) becomes as short as 0.05 fs for the thin
foil and 8 × 10−4 fs for the wake wave cases, so the RFPM
is destroyed before reaching a field strength required for the
single e+e− pair production event.

B. Pair production with two counterpropagating RLFs

It is now interesting to consider when two counterpropa-
gating RLFs collide with each other. The experimental setup
considered is visualized in Fig. 4. The two (driver and source)
laser pulses are coupled by a hole mirror and propagate in
a plasma medium. The source laser pulse (SLP1) proceeds
ahead to be reflected by the other counterpropagating RFPM
formed by another driver laser pulse (DLP2). Two sets of
plasma media are prepared to ensure the collision of the re-
flected SLPs in vacuum. An ideally sharp edge is preferred.
Figure 4(b) shows two different scenarios of forming a RFPM:
one is the mirror formed at the rear side of the plasma cavity
as proposed in [43] and the other is the mirror formed by
a sharp and narrow electron-ion layer driven by the laser
pulse [53,59]. One focus, expressed by �E+

f (ρ, t ) and �B+
f (ρ, t ),

propagates along the +z axis and the other one, expressed by
�E−

f (ρ, t ) and �B−
f (ρ, t ), along the −z axis. The + and − sym-

bols in the superscripts are used to express the propagating
and the counterpropagating RLFs. TM mode laser pulses are
assumed in the calculation, so the total fields are expressed as
follows:

�E±
f = γ

1 + β

1 − β

√
πω0Cf

√
Ip

4cESch

⎡
⎢⎣

{− j±0 sin(ω′
0T ±)ϒ±

1 ± β j±1 cos(ω′
0T ±)ϒ±

2 } cos φ+

{− j±0 sin(ω′
0T ±)ϒ±

1 ± β j±1 cos(ω′
0T ±)ϒ+

2 } sin φ±

(1/γ ) j±0 sin(ω′
0T ±)ϒ±

2

⎤
⎥⎦ (73a)

and

�B±
f = γ

c

1 + β

1 − β

√
πω0Cf

√
Ip

4cESch

⎡
⎢⎣

−{± j±1 cos(ω′
0T ±)ϒ±

2 − β j±0 sin(ω′
0T ±)ϒ±

1 } sin φ±

{± j±1 cos(ω′
0T ±)ϒ±

2 − β j±0 sin(ω′
0T ±)ϒ±

1 } cos φ±

0

⎤
⎥⎦. (73b)

Here, j±i = ji(ω′
0R±/c) and the minus sign in front of j−1

comes from the change in the sign of the magnetic field. The
functions T ± and R± for the propagating and counterpropa-
gating RLFs in Eq. (73) are expressed as

T ±(t, ρ) = t − (ρ/c)β cos θ±

γ (1 − β2 cos2 θ±)
(74a)

and

R±(ρ, t ) = ρ − ctβ cos θ±

γ (1 − β2 cos2 θ±)
. (74b)

Since the two RLFs counterpropagate with respect to each
other, we find the following relationships for the polar and
azimuthal angles between the propagating and the counter-
propagating RLFs:

θ− = π − θ+ = π − θ and φ− = φ+ = φ. (75)

By using Eq. (75), the following relationships for variables
between the propagating and counterpropagating RLFs are
obtained:

T −(t, ρ) = −T +(−t, ρ) and

R−(ρ, t ) = R+(ρ, t ), (76a)

T −(t, ρ) ± R−(ρ, t )

c
= −

[
T +(−t, ρ) ∓ R+(ρ,−t )

c

]
,

(76b)

sin θ−

γ (1 ± β cos θ−)
= sin θ

γ (1 ∓ β cos θ )
, (76c)

cos θ− ± β

1 ± β cos θ− = − cos θ ∓ β

1 ∓ β cos θ
, (76d)
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and

ϒ−
1 (t, ρ) = −ϒ+

1 (−t, ρ) and ϒ−
2 (t, ρ) = ϒ+

2 (−t, ρ). (76e)

Thus, the total fields �ET
f and �BT

f given as the sum of propagating and counterpropagating fields are calculated as

�ET
f = �E+

f + �E−
f = γ

1 + β

1 − β

√
πω0Cf

√
Ip

4cESch

⎡
⎣{−[J0(t ) + J0(−t ′)] + β[J1(t ) − J1(−t ′)]} cos φ

{−[J0(t ) + J0(−t ′)] + β[J1(t ) − J1(−t ′)]} sin φ

(1/γ )[J ′
0(t ) − J ′

0(−t ′)]

⎤
⎦ (77a)

and

�BT
f = �B+

f + �B−
f = γ

c

1 + β

1 − β

√
πω0Cf

√
Ip

4cESch

⎡
⎣−{[J1(t ) − J1(−t ′)] − β[J0(t ) + J0(−t ′)]} sin φ

{[J1(t ) − J1(−t ′)] − β[J0(t ) + J0(−t ′)]} cos φ

0

⎤
⎦. (77b)

Here, t ′ is given by t + td with a time delay td between two fields. The new functions J0(t ) and J1(t ) are defined as

J0(t ) = j0

[
ω′

0R+(ρ, t )

c

]
sin[ω′

0T +(t, ρ)]ϒ+
1 (t, ρ), (78a)

J ′
0(t ) = j0

[
ω′

0R+(ρ, t )

c

]
sin[ω′

0T +(t, ρ)]ϒ+
2 (t, ρ), (78b)

and

J1(t ) = j1

[
ω′

0R+(ρ, t )

c

]
cos[ω′

0T +(t, ρ)]ϒ+
2 (t, ρ). (78c)

Equation (78) has the same form as Eq. (51) with the replacement of field components by the ones superposed with two
propagating and counterpropagating RLF fields. In this case, the Poincaré invariants FT and GT are given by

FT = 1

2

(
1 + β

1 − β

√
πω0Cf

√
Ip

4c

)2

{[J1(t ) − J1(−t ′)]2 − [J0(t ) + J0(−t ′)]2 − [J ′
0(t ) − J ′

0(−t ′)]2} (79a)

and

GT = 0. (79b)

The e+e− pair production rate W T
ep is calculated as

W T
ep ≈ 12π2αγ 4

(we

λ0

)2
(Ip

h̄c

)
[−J 2(t, t ′)] exp

[
− 1

γ 2

λ0

we

(ESch/Ep)√
6π3

√
−J 2(t, t ′)

]
, (80)

when FT < 0. In Eq. (80), the function J 2(t, t ′) is de-
fined as [J1(t ) − J1(−t ′)]2 − [J0(t ) + J0(−t ′)]2 − [J ′

0(t ) −
J ′

0(−t ′)]2. At t = 0, two RLFs overlap at the origin, and FT

becomes −2 × ( 1+β

1−β

√
πω0Cf

√
Ip

4c )2J 2
0 (0). But, in general, it is

not necessary for two RLFs to be overlapped at t = 0.
The threshold field strength of the incident laser pulse

required for a single e+e− pair production is examined.
In the calculation, two identical RFPMs with a γ -factor
of 12.2 are considered with a mirror reflectance of 2.7 ×
10−2% [see Fig. 5(a)]. Due to the beam radius-wavelength
ratio, the high harmonic laser pulse is more favorable than
the fundamental wavelength of a high-power laser pulse
in reducing the threshold required for the pair production.
In the numerical calculation of e+e− pairs produced, the
ω′

0T ±(t, ρ) and ω′
0R±(ρ, t ) in Eq. (74) were calculated with

ω′
0 = √

(1 + β )/(1 − β )ω0. Then, J0(t ), J ′
0(t ), J1(t ), and

J 2(t, t ′) in Eqs. (78) and (80) were calculated in series with
ω′

0T ±(t, ρ) and ω′
0R±(ρ, t ). Next, the e+e− pair production

rate W T
ep in Eq. (80) was calculated for different time delays.

Figure 5(b) shows the calculated W T
ep at different time delays.

Finally, the number of e+e− pairs produced for a specific laser
[shown in Fig. 5(c)] was obtained after summing up the inte-
grations of W T

eps over the four-volume obtained for different
time delays. The pair production rate is much enhanced in
an overlapped volume of two RLFs [see Fig. 5(b)] and the
total number of pairs produced in the volume dominates. A
time that has the maximal pair production rate for a single
RLF is chosen as a proper time delay td between two RLFs.
For the fourth harmonic Ti:sapphire high power laser pulse,
a single e+e− pair can be produced at a0 = 0.23 with a γ -
factor of 12.2. The characteristic time τc for the maximum
pulse duration is calculated as about 3.7 fs. This condition
can be satisfied by focusing an optical laser pulse (with τF

= 3.5 fs and a peak power of 0.18 PW at the fourth harmonic
wavelength) within a beam radius of 158 μm. By assuming
the RFPM with a γ -factor of 12.2 can be driven by focusing a
250 PW laser pulse with a beam radius of 158 μm, this result
implies that electron-positron pair production from two collid-
ing RLFs can be expected with a lower laser-power (2×250
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FIG. 5. (a) The e+e− pair production by colliding two RLFs. The RFPM is driven by a 250 PW laser pulse and the fourth harmonic laser
pulse with a center wavelength of 0.2 μm is incident on the RFPM. The diameter D of the mirror is given by 2w0. The two RLFs collide
with a proper time delay to maximize the pair production. (b) The calculated e+e− pair production rate, W T

ep, when two RLFs collide. A strong
enhancement in pair production is observed over the overlapped volume at t = td/2. (c) The number of e+e− pairs produced as a function of
the source laser power.

PW) laser than that (∼1000 PW level) calculated under the
4π -spherical focusing condition [24,33]. Again, the determi-
nation of characteristic time is based on the one-dimensional
model, so the recoil effect in time should be fully understood
by a three-dimensional model developed in the near future.

V. CONCLUSION

The mathematical formulas describing the electromagnetic
field of the relativistic-flying laser focus formed by an ideal
relativistic-flying parabolic mirror were obtained. The main
optical characteristics of the relativistic-flying laser focus,
such as the enhancement of field strength and its distribution
in time and space, could be well understood by the formulas.
The field expression of the relativistic-flying laser focus was
applied to the estimation of the e+e− pair production by the
Schwinger mechanism. The pair production rate under the
relativistic-flying laser focus was modified by the Lorentz γ -
factor and the beam radius-wavelength ratio. The calculation
shows that even with a strong suppression due to the low
reflectance of the relativistic-flying parabolic mirror, the e+e−
pair production is feasible by colliding two counterpropagat-
ing relativistic-flying laser focuses at a relatively lower laser
power of 250 PW. Although we assume an ideal parabolic
shape for the relativistic-flying parabolic mirror, the actual

shape of the mirror will have a small deviation from the ideal
shape, introducing the wavefront error. The wavefront error
deforms the distribution and induces the degradation of the
focused intensity. Thus, the next step is to generalize the math-
ematical formulas for a beam having a wavefront aberration
and to calculate the Strehl ratio assessing the focusability. On
the other hand, since the formation of the relativistic-flying
parabolic mirror will be strongly affected by the instability of
the high-power laser pulse and its propagation in the plasma
medium, the generation of a stable relativistic-flying parabolic
mirror will be a technical challenge for practical applications
of the flying mirror. The results obtained can be used to
understand the fundamental question of the electron-positron
pair production from vacuum.
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