
PHYSICAL REVIEW A 104, 053532 (2021)

Transfer-matrix method of circular polarization light in an axionic photonic insulator
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The photonic analog of an axioniclike system (or electronic topological insulator) is called an axionic photonic
crystal. These materials are classified by three physical properties: permittivity ε, permeability μ, and the
topological parameter θ . As a particular case, crystals with periodic ε and μ are the so-called photonic crystals.
In this paper, we employ a transfer-matrix treatment to study the propagation of light waves in an axionic
photonic crystal composed of alternating building layers A and B. We present numerical results for the photonic
band structure as a function of the ratio between permittivities R = εB/εA, layer thicknesses X = dB/dA, and
topological parameters δ = π 2(θA − θB )2/α2. Our numerical results reveal that the band-gap features (width,
center position, upper and lower frequencies) depend on the three parameters ε, μ, and θ , but with the dependence
on θ being stronger. In particular, as far as the band-gap width is concerned, we find that X and R work against
each other; that is, as X increases, R must decreases for a wide band-gap emergence and vice versa. More
interesting, however, are the results for the topological parameter θ . We show that the presence of θ produces a
photonic band gap (PBG) which depends only on the δ term. The widening of this PBG is slightly asymmetrical
and monotonic as a function of δ. It was also found that δ has no influence on the center position of the PBG. Our
results open possibilities for technological applications of axionic photonic crystals with regard to the controlling
and confinement of the propagation of light.
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I. INTRODUCTION

Photonic crystals (PCs) are very interesting optical mate-
rials with periodic dielectric properties. The first concept of
periodic optical structure was introduced in 1887 by Lord
Rayleigh, who carried out experiments with several periodic
dielectric layered cells, nowadays called Bragg’s mirror, and
showed that they had a photonic band gap (PBG) [1]. A
century later, in 1987, Yablonovitch [2] and John [3] indepen-
dently investigated these optical structures in more than one
dimension, and both suggested that those structures are capa-
ble of guiding and confining the propagation of light. They
are nowadays referred to as photonic crystals [4]. Since the
work of Yablonovitch and John, PCs have become, both the-
oretically and experimentally, attractive objects of research.
This interest is related to the appearance of PBGs in those
structures [2,3,5].

*cbezerra@fisica.ufrn.br

A timely question that naturally arises is why is it so impor-
tant to study PBG materials with any number of dimensions?
The importance of studying these materials lies in the way in
which electromagnetic (EM) waves propagate within the bulk,
enabling the investigation of many optical properties. For ex-
ample, certain light wavelengths are allowed to pass through
the structure; that is, in these materials the propagation of
light is forbidden in some frequencies and directions [6].
Therefore, one can manipulate the propagation of light within
a frequency range, adjusting the geometric, dielectric, and
magnetic parameters of the photonic crystal, among others, in
a manner very similar to the way in which a lattice of atoms
can give rise to allowed and forbidden electronic bands. Thus,
the absence of EM waves within a PBG in some frequency
ranges can lead to some unusual features, with many potential
applications in photonic devices [7].

Researchers have started to study quantum topological sys-
tems and have discovered a new class of matter, so-called
topological insulators (TIs) [8,9]. Along with the advances
in that research area, new classes of TIs, such as crys-
talline topological insulators, axion insulators, higher-order

2469-9926/2021/104(5)/053532(9) 053532-1 ©2021 American Physical Society

https://orcid.org/0000-0003-2571-8919
https://orcid.org/0000-0002-7603-5141
https://orcid.org/0000-0002-3455-4285
https://orcid.org/0000-0001-9660-2142
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.053532&domain=pdf&date_stamp=2021-11-29
https://doi.org/10.1103/PhysRevA.104.053532


ANNY C. ARAÚJO et al. PHYSICAL REVIEW A 104, 053532 (2021)

topological insulators, topological semimetals, and topolog-
ical superconductors, have emerged [10–13]. In general, TIs
are materials that present band gaps, but their bands are
topologically distinct from the bands of a conventional in-
sulator. Those differences are connected to the emergence
of nontrivial band gaps perceived for the first time in two-
dimensional (2D) TIs, also known as 2D quantum spin
Hall insulators [8,14]. Thus, electron propagation inside
of a TI is not allowed, but the edge electrons can move
freely as surface modes. Therefore, the surface of a TI is
filled with exotic topologically protected edge states, which
means that the energy transport on the edges is topologi-
cally protected and robust against structural perturbations and
disorder. Many theoretical and experimental demonstrations
of TIs have been reported for electronic (fermionic) systems
[13,15,16]. From an experimental perspective, (Hg,Cd)Te
and monolayer hexagonal Sn, Sb were characterized as 2D
TIs, and (Bi,Sb)2(Se,Te)3, (Bi,Sb)2Te2Se, Bi2−xSbxTe3−ySey,
TlBi(S,Se,Te)2, Pb(Bi,Sb)2Te4, GeBi2Te4,and PbBi4Te7 were
characterized as three-dimensional (3D) TIs [16]. All of these
materials have attracted increasing fundamental and techno-
logical interest around the world because of their excellent
properties and characteristics such as low power dissipation,
spin-polarized electrons [17], and more [16,18–21].

In the context of TIs, there is the axion insulator [11,22].
Axions are pseudoscalar weakly interacting low-mass parti-
cles and electrically neutral. However, even without electrical
charge they can interact in an unusual way with the electro-
magnetic field. They were postulated in 1977 by the physicists
Peccei and Quinn in order to explain the absence of charge-
parity violation in the strong interaction between quarks in
high-energy physics [23]. Despite intensive research, axions
have not yet been observed in nature. The connection between
axions and TIs relies on the fact that a term of the form
θ ( �B · �E ) may be added to the standard Maxwell’s Lagrangian
without modifying the familiar laws of electricity and mag-
netism. The θ term is known in particle physics as the axionic
field, but in condensed matter θ ( �B · �E ) is a generic expres-
sion which comes from the magnetoelectric effect present
in three-dimensional topological materials and is analogous
to the action that describes the coupling of the photon and
the axion. Therefore, it can be applied to magnetoelectric
materials, for instance, Cr2O3 (with θ � π ) [24–26]. Systems
with time-reversal symmetry present a quantized value of θ ,
being 0 for trivial insulators and π for topological insulators.
However, for magnetically ordered phases the value of θ can
be arbitrary [27].

As a matter of the fact, a remarkable development in 3D
TIs is the so-called topological magnetoelectric effect (TME),
in which the crossed induction of magnetization and electric
polarization is expected to occur when external electric and
magnetic fields are applied. This effect appears in the ax-
ion electrodynamics, which is known to describe the unusual
magnetoelectric properties of 3D TIs [28–31]. For those rea-
sons, TME of the kind that appears in TIs has been called
“axion electrodynamics” [32]. One can understand that, in the
context of electrodynamics, the axions’ behavior is analogous
to the TIs’ behavior. Therefore, axions naturally emerged in
condensed-matter physics as the effective low-energy theory
for TIs, where these materials can be composed of periodic

arrangements with electric permittivity ε, magnetic perme-
ability μ, and topological parameter θ modulated along a
given direction [33]. The electrodynamics of an axion can be
found in Ref. [34].

At the beginning of this century, Haldane and Raghu first
investigated the electromagnetic analog of the electronic TI,
which is the so-called photonic topological insulator (PTI)
[35–39]. In their works, they predicted that photonic crystals
made of magneto-optical materials could have topologically
nontrivial bands and therefore could host topologically pro-
tected light states that unidirectionally propagate along the
edges, with no possibility of backscattering. As the band struc-
ture is viewed, these edge states appear as continuous bands
crossing the photonic band gap. As a consequence, light is
allowed to unidirectionally propagate on the surface without
scattering [40], in a manner very similar to electrons on the
surface of a 2D TI [18,41]. The discovery of topological pho-
tonic systems has transformed our view of electromagnetic
propagation and opened several venues of basic and applied
science exploration. It also led to the understanding that much
of the physics associated with the quantum Hall effect was
not fundamentally quantum, but rather a very general wave
phenomenon [39]. From an experimental perspective, the 3D
topological photonic insulator was experimentally realized
using a composite material consisting of split-ring resonators
with strong magnetoelectric coupling which behaves like a
“weak” TI (i.e., with an even number of surface Dirac cones)
or a stack of 2D quantum spin Hall insulators [18]. In addition,
recent advances in topological 2D, 3D, and higher-order PTIs
have been observed [42]. In general, the advantage of these
materials for technology is that topological photonic systems
promise a new generation of photonic devices and communi-
cation systems [18,43,44].

The study of the propagation of electromagnetic waves in
layered media has been the object of research for decades,
for example, in chiral and bi-isotropic media (see Ref. [45]).
There is also the growing field of topological photonics [37],
which uses topological invariants, such as the Chern num-
ber, to classify and study photonic crystals. One such TI is
the one-dimensional (1D) stacking of alternating dielectrics,
whose properties can be mapped in the Su-Schrieffer-Heeger
model, which has two distinct topological phases character-
ized by the winding number being 0 or 1 [46]. The interface
between topological photonic crystals with different topo-
logically regions can sustain edge states in a way similar
to how topological insulators have conductive surface states
[38,47,48]. However, less attention has been paid to the prop-
agation of electromagnetic waves in layered axionic crystals.

In this paper, we use the powerful transfer-matrix method
(TMM) to study the propagation of circularly polarized light
waves through one-dimensional multilayers composed of two
axionic photonic crystals, A and B, which are characterized by
the magnetoelectric effect, whose properties are dictated by
the topological parameter θ , similar to what happens in axion
electrodynamics. This method shows how the light waves
interact with the interface between alternating A and B layers
of a photonic crystal [49]. We present numerical results for
the photonic band structures as a function of the ratio between
permittivities R = εB/εA, layer thicknesses X = dB/dA, and
topological parameters δ = π2(θA − θB)2/α2. In addition, we
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FIG. 1. Scheme of the 1D APC composed of alternating layers A
and B.

analyzed the width and frequencies of the center and lower
and upper edges of the lowest band gap by varying X and
R in photonic crystals, with different values of δ, in order
to map how the first band gap behaves as these parameters
are changed. In this way, the propagation of light can be
controlled through periodic modulation of the topological
and lattice parameters, forming a band structure very simi-
lar to that of a conventional photonic crystal. This paper is
organized as follows. In Sec. II we present the classical elec-
tromagnetic theory for a one-dimensional axionic photonic
crystal (1D APC) made of two building blocks (A and B), with
their respective electric, magnetic, topological, and geometric
parameters, which are periodically stacked along the z direc-
tion. The transfer-matrix method for such a system, presenting
the transmission (when the waves cross any interface) and
propagation (when the waves propagate inside a given layer)
matrices, is also described in Sec. II. In Sec. III we present
our numerical results, which are the band structures of the
one-dimensional APC, as a function of parameters δ, X , and
R, with emphasis on the behavior of the first gap. Finally, in
Sec. IV we summarize the main results obtained in this work.

II. PHYSICAL MODEL

We consider a 1D axionic photonic crystal composed of an
arrangement of two layers, A and B, with dielectric permittivi-
ties εA and εB, magnetic permeabilities μA and μB, topological
parameters θA and θB, and thicknesses dA and dB, respectively,
as described in Fig. 1. We choose a coordinate system such
that the axionic photonic crystal is perpendicular to the z axis.
Throughout the entire paper we use SI units.

Here, we assume that the electrical permittivity ε(�r), the
magnetic permeability μ(�r), and the topological angles θ (�r)
are real, isotropic, nondispersive, and periodic, with transla-
tion vector �R = Dẑ, where D = dA + dB is the unit-cell size,
i.e.,

ε(�r) = ε(�r + �R) ⇒ ε(z) = ε(z + D), (1)

μ(�r) = μ(�r + �R) ⇒ μ(z) = μ(z + D), (2)

and

θ (�r) = θ (�r + �R) ⇒ θ (z) = θ (z + D). (3)

By using an analogy with classical axion electrodynam-
ics, the modified constitutive relations, with the additional

topological term represented by θ , are [30,34,50]

�D = ε �E − ε0αcθ (�r)

π
�B (4)

and

�H = �B
μ

+ αθ (�r)

μ0cπ
�E . (5)

Here, �E and �D are the electric and electric displacement
fields, and �H and �B are the magnetic intensity and mag-
netic flux fields, respectively. In addition, α ≈ 1/137 is the
fine-structure constant, θ is the dimensionless topological pa-
rameter, c = 1/

√
μ0ε0 is the light speed in vacuum, and ε0

and μ0 are the vacuum dielectric permittivity and magnetic
permeability, respectively. In Eqs. (4) and (5), the dielec-
tric permittivity ε and magnetic permeability μ are given by
ε = ε0ε j and μ = μ0μ j , where ε j and μ j ( j = A or B) are
the relative dielectric permittivity and magnetic permeability,
respectively, corresponding to layer A or B. Another important
point is that, in the classical context, the θ term can assume
any value, and in general, this parameter characterizes the
state of matter [32].

Maxwell’s equations for a source-free and current-free
system with monochromatic and oscillating fields, i.e.,
�E , �D, �H , �B ∝ e−iωt , can be written as

�∇ · �D = 0, (6a)

�∇ · �B = 0, (6b)

�∇ × �E = iω �B, (6c)

�∇ × �H = −iω �D. (6d)

Here, ω is the angular frequency. Notice that the magneto-
electric features are introduced into the constitutive equations
of the material and not directly into the Maxwell’s equations
[32].

A. Transfer-matrix method

The TMM is a powerful approach for the analysis of
light propagating through any multilayered media. Within the
framework of the TMM, there are two kinds of matrices: (i)
the transmission matrix, which connects the fields across an
interface, and (ii) the propagation matrix, which describes
the fields propagating inside a layer. In order to obtain both
matrices we need to know how the electromagnetic waves
behave at the boundaries.

In order to obtain the transfer matrix for the normal-
incidence case, we start by considering the superposition of
two different propagating waves with opposite directions on
the z axis and the same frequency. The boundary conditions
that arise from the θ term imply that we need to consider
the circularly polarized basis v̂λ, with λ = + (−) labeling
the right (left) rotation. After some algebra, we find that the
total electric and magnetic fields in a medium j (= A, B) are
given by

�Ej,λ = [Ej,λeik j zv̂λ + E ′
j,λe−ik j zv̂λ] (7)

and

�Hj,λ = [g j,λEj,λeik j zv̂λ + ḡ j,λE ′
j,λe−ik j zv̂λ]. (8)
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Here, the real wave vector is �k j = (0, 0, k j ), with k j = n jω/c
and nj = √

ε jμ j being the refraction index of the jth medium.
Ej,λ (E ′

j,λ) is the amplitude of the wave traveling to the right
(left). Also, v̂λ = v̂± is given by

v̂± = 1√
2

(
1
±i

)
. (9)

In addition, we have defined g j,λ as

g j,λ = α

μ0cπ
θ j − λ

i

ωμ0μ j
k j, (10)

with ḡ j,λ being the complex conjugate.
By starting from the interface, the boundary conditions are

given by [51]
�EA,λ = �EB,λ (11)

and
�HA,λ = �HB,λ. (12)

Applying the above boundary conditions at z = 0 and using
Eqs. (7) and (8), we have (one can omit the index λ without
loss of generality)

EA + E ′
A = EB + E ′

B (13)

and

gAEA + ḡAE ′
A = gBEB + ḡBE ′

B. (14)

Here, EB and E ′
B can be related to EA and E ′

A by a 2 × 2
interface matrix from medium A to B,(

EB

E ′
B

)
=MAB

(
EA

E ′
A

)
, (15)

where

MAB = 1

2iIm[gB]

(
gA − ḡB ḡA − ḡB

−gA + gB −ḡA + ḡB

)
. (16)

From Eqs. (13) and (14), one can obtain the 2 × 2 interface
matrix MBA which relates the coefficients from medium B to
medium A, (

EA

E ′
A

)
=MBA

(
EB

E ′
B

)
, (17)

with

MBA = 1

2iIm[gA]

(
gB − ḡA ḡB − ḡA

−gB + gA −ḡB + ḡA

)
. (18)

A general expression for the transmission matrix, which con-
nects the fields across an interface from medium m to medium
n, can be written as

Mmn = 1

2iIm[gn]

(
gm − ḡn ḡm − ḡn

−gm + gn −ḡm + ḡn

)
. (19)

Here, Im[gn] corresponds to the imaginary part of g for
medium n, which is defined in Eq. (10). Finally, for the case of
an electromagnetic wave propagating inside medium j = A or
B, with thickness d j and wave vector k j , the 2 × 2 propagation
matrix is given by

Mj =
(

eik j d j 0
0 e−ik j d j

)
. (20)

See Ref. [52] for more details.

B. Dispersion relation

In 1D photonic crystals composed of dielectric layers (or
building blocks) arranged in a periodic fashion, the prop-
agating electromagnetic waves are modulated by Bragg’s
scatterings, resulting in the photonic band structure, in which
the photonic band gaps emerge. Consider the lth unit cell
[A|B] of a 1D APC. The electric fields inside layers A and
B are labeled �EA,l = (EA,l , E ′

A,l ) and �EB,l = (EB,l , E ′
B,l ). In

order to obtain the transfer matrix for this unit cell, one must
relate the electric field coefficients of the (l + 1)th unit cell to
the electric field coefficients of the lth unit cell. We can write
for an electromagnetic wave, propagating from layer A and
crossing the interface from A to B, both in the same lth unit
cell, (

EB,l

E ′
B,l

)
= MAMAB

(
EA,l

E ′
A,l

)
. (21)

In a similar way, we consider the electromagnetic wave prop-
agating from layer B and crossing the interface from B to A,
but now B belongs to the lth unit cell, while A belongs to the
(l + 1)th unit cell,(

EA,l+1

E ′
A,l+1

)
= MBMBA

(
EB,l

E ′
B,l

)
. (22)

By substituting Eq. (21) into Eq. (22), we get(
EA,l+1

E ′
A,l+1

)
= M

(
EA,l

E ′
A,l

)
, (23)

where

M = MBMBAMAMAB (24)

is the 2 × 2 transfer matrix for the whole unit cell [A|B].
From Bloch’s theorem, the eigenvalues of M are related

to Bloch’s phase QD, which is the phase change in the fields
after propagating along the unit cell. Here, Q is Bloch’s wave
vector, and D is the unit-cell size of the structure (D = dA +
dB in the present case). Therefore, Eq. (23) can be rewritten as(

EA,l+1

E ′
A,l+1

)
= eiQD

(
EA,l

E ′
A,l

)
= M

(
EA,l

E ′
A,l

)
. (25)

On the other hand, for a wave propagating from the right to
the left, Eq. (25) becomes(

EA,l−1

E ′
A,l−1

)
= e−iQD

(
EA,l

E ′
A,l

)
= M−1

(
EA,l

E ′
A,l

)
. (26)

Equations (25) and (26) may be also written as

[M − eiQD1]

(
EA,l

E ′
A,l

)
=

(
0
0

)
(27)

and

[M−1 − e−iQD1]

(
EA,l

E ′
A,l

)
=

(
0
0

)
. (28)

Here, 1 is the 2 × 2 identity matrix, and M−1 is the inverse of
the transfer matrix M. If we add Eqs. (27) and (28), we obtain

[M + M−1 − (eiQD + e−iQD)1]

(
EA,l

E ′
A,l

)
=

(
0
0

)
, (29)
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whose nontrivial solutions are obtained from the condition

det[M + M−1 − (eiQD + e−iQD)1] = 0. (30)

By using the fact that the transfer matrix is a unimodular
matrix, i.e., its determinant det[M] = 1, we can write Eq. (30)
as an algebraic expression, i.e. [49],

cos(QD) =
(

1

2

)
Tr[M] = M11 + M22

2
. (31)

Here, Tr[M] is the trace of the transfer matrix M, and M11 and
M22 are their diagonal elements. Equation (31) is a transcen-
dental equation, and it shows that, since we are able to obtain
the transfer matrix M of the system, we can numerically
obtain its solutions; that is, we can obtain the frequencies for
which Bloch’s wave vector Q is real. The allowed frequencies
are such that the condition |(1/2)Tr[M]| � 1 is satisfied. Oth-
erwise, if |(1/2)Tr[M]| > 1, Bloch’s wave vector is complex,
and consequently, the light wave has an evanescent profile,
and the photonic band gaps emerge. For an allowed band,
from Eq. (31) we obtain

Q = cos−1 [(M11 + M22)/2]

D
, (32)

so that Bloch’s wave vector Q varies from −π/D to π/D,
which is the unit-cell size in reciprocal space.

In our case of interest, a 1D APC composed of two building
blocks, A and B, with dielectric permittivities ε j , magnetic
permeabilities μ j , topological parameters θ j , and thickness d j

( j = A or B) whose unit cell [A|B] is arranged in a periodic
fashion, Eq. (31), can be analytically obtained (see Ref. [49]
for more details),

cos(QD) = cos(φA) cos(φB) − 
 sin(φA) sin(φB), (33)

with φ j = k jd j being the phase of medium j and


 = 1

2

{
kBμA

kAμB
+ kAμB

kBμA
+

[
ωα(θA − θB)

cπ

]2
μAμB

kAkB

}

= 1

2

{ZA

ZB
+ ZB

ZA
+ δZAZB

}
. (34)

Here, Zj = √
μ j/ε j is the impedance of medium j, and

δ =
[
π (θA − θB)

α

]2

. (35)

The first two terms in Eq. (34) are responsible for the emer-
gence of the conventional photonic band gaps, whose physical
origin relies on Bragg’s scattering. The third term in Eq. (34),
containing the topological parameters, is responsible for the
emergence of non-Bragg’s photonic band gaps. As expected,
by taking the limit δ → 0,Eq. (34) reduces to the dispersion
relation of a conventional (nonaxionic) 1D PC [49]. Also,
notice that δ = 0 only for θA = θB 
= 0 or θA = θB = 0. This
means that, even for εA = εB and μA = μB, a photonic band
gap will be expected to emerge for any values of θA and θB

with θA 
= θB.

III. NUMERICAL RESULTS

In this section we present the numerical results for the band
structures for normally incident electromagnetic waves in 1D

FIG. 2. Band structure of the axionic photonic crystal, consid-
ering R = 1.0, with (a) X = 0.0, (b) X = 0.5, (c) X = 1.0, and (d)
X = 2.0. The different values of δ are indicated.

APCs. From now on, we assume that the axionic photonic
crystal consists of two alternating building blocks, represented
by A and B, and both are nonmagnetic materials, i.e., μA =
μB = 1. Also, according to Eq. (35), the topological param-
eters are related by θB = θA − π

√
δ/α [53]. For the central

wavelength λ0, we have defined a midgap frequency ω0 =
2πc/λ0 = 1012 rad/s. Thus, the band structures are all given
in terms of the dimensionless reduced frequency ω̄ = ω/ω0

and the normalized Bloch’s wave vector QD/π . In this paper
we defined the thickness of layer A as dA = λ0/4nA, satisfying
the quarter-wavelength condition; that is, the thickness of
layer A is defined as being a quarter of the central wavelength
[49]. The thickness of layer B is obtained from the values
of X .

Let us consider the most trivial case. We calculated the
band structure of a 1D APC with R = εB/εA = 1 for different
values of X = dB/dA and δ in order to infer the effects of the
topological parameters on the light dispersion relation. We
should remark that this is not a realistic situation. However,
it can provide us valuable insights about different axionic
photonic materials presenting similar dielectric constants, i.e.,
materials that present εA ≈ εB. The band structures are plotted
in Figs. 2(a)–2(d) for X = 0.0, X = 0.5, X = 1.0, and X =
2.0, respectively. The different values of δ are indicated in the
legend of Fig. 2, and a given curve corresponds to a specific
value of δ. As expected, from Fig. 2, for δ = 0 (θA = θB), the
band structure has no gap, and the light is transmitted through
the structure without any reflection, despite the values of X ,
corresponding to 
 = 1 in Eq. (34). One can also observe
from Fig. 2(a) that, no matter what the value of δ is, there is no
band gap. This is because the system is a continuous medium
without interfaces (X = 0.0). However, for X 
= 0 and δ 
= 0,
we can observe that a range of forbidden frequencies naturally
emerges in Figs. 2(b), 2(c), and 2(d). Those photonic band
gaps provide us the means of controlling the propagation
of light by manipulating the topological parameters of the
system. We can also observe that, for a given value of X , the
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FIG. 3. Same as Fig. 2, considering X = 0.5, with (a) R = 0.25,
(b) R = 0.5, (c) R = 1.0, and (d) R = 2.0. The different values of δ

are indicated.

band-gap width becomes wider as the δ parameter increases,
although the band-gap center appears not to be considerably
affected. On the other hand, the band-gap centers are shifted
to the low-frequency regions, and also, the band gaps become
narrower as the ratio of the thicknesses X is increased [since
X 
= 0; see Figs. 2(b)–(d)]. This behavior also occurs in con-
ventional photonic crystals [54].

Let us now consider a more realistic situation: a structure in
which the two building blocks present different dielectric per-
mittivities, i.e., εA 
= εB. We consider X = 0.5, 1.0, and 2.0,
and the corresponding photonic band structures are presented
in Figs. 3–5, respectively, with R = 0.25, R = 0.5, R = 1.0,
and R = 2.0. We can notice from Figs. 3–5 that the band
structures are very similar to those of Fig. 2. However, now
the band gaps have two contributions: Bragg’s scattering and
the topological term [see Eq. (34) and the discussion about
it].

FIG. 4. Same as Fig. 3, but for X = 1.0.

FIG. 5. Same as Fig. 3, but for X = 2.0.

Figure 3, with X = 0.5, shows that the lower edge of the
gap is around ω̄ ≈ 1.1. For a given δ, the position of the
center of the band gap is shifted to lower-frequency regions
as R increases. On the other hand, for a given R, the band
gaps’ width becomes wider as the topological parameter δ

increases, while the band gaps’ center is not substantially
affected. Moreover, we can see that the upper edge is less
shifted than the lower edge; that is, the upper and lower edges
of the band gap are slightly asymmetrically shifted to higher
and lower frequencies, respectively. We can infer that the
band gaps are very sensitive to the difference between the
topological parameters θA and θB at the interfaces. In Figs. 4
and 5 we present plots which are qualitatively analogous to
the plots of Fig. 3, but with slight differences. For example,
the position of the center of the band gap is around ω̄ ≈ 1.0
in Fig. 4 and ω̄ � 1.0 in Fig. 5. All other features of the band

FIG. 6. Plots of ω̄c (solid lines), ω̄u (dot-dashed lines), and ω̄l

(dashed lines) as a function of (a) X , considering R = 1.0, and of R
for (b) X = 0.5, (c) X = 1.0, and (d) X = 2.0.
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FIG. 7. Surface plots of the band-gap widths as a function of (a) δ and X , considering R = 1.0, and of δ and R for (b) X = 0.5, (c) X = 1.0,
and (d) X = 2.0.

structure related to R and δ are qualitatively the same as in
Fig. 3.

For technological applications it is quite relevant to know
how the band structure is affected by the physical R, geomet-
rical X , and topological δ parameters. More specifically, we
are interested in the center and edge positions, as well as the
width, of the first band gap. Let us illustrate our numerical
results in Figs. 6 and 7. In Fig. 6 we present the plots of
the reduced frequencies corresponding to the center ω̄c, upper
edge ω̄u, and lower edge ω̄l of the first band gap for different
values of δ. Those frequencies are represented by the solid,
dot-dashed, and dashed lines, respectively. Figure 6(a) shows
ω̄c, ω̄u, and ω̄l as a function of X with R = 1.0. In agreement
with Fig. 2, the band gap is null for δ = 0. As we can also see,
the center of the band gap is not really affected by δ, while
the band gap width reaches its maximum around X ≈ 1.0.
In Figs. 6(b)–6(d), we present the same plot as in Fig. 6(a),
but now with ω̄c, ω̄u, and ω̄l as a function of R for X = 0.5,
X = 1.0, and X = 2.0, respectively. As observed in Figs. 2–5,
the gaps are non-null once the condition R 
= 1.0 and δ 
= 0 is
satisfied. The topological effects on the photonic band struc-
tures are now clearer and more evident. From Figs. 6(b)–6(d),
considering δ = 0 (corresponding to a conventional photonic
crystal), for 0 < R < 1, the band gap becomes narrower until
it vanishes when R = 1.0. On the other hand, for R > 1, the
band gap is not null anymore, and it becomes wider as R
increases. In addition, we can observe that the superior and
inferior edges of the band gap are slightly asymmetrical; that
is, they have approximately the same relative distance from
the center of the gap. However, for δ 
= 0, the band gap does
not vanish even for R = 1.0. The center of the band gap
presents the same behavior as in the δ = 0 case. For a given
value of R, the band-gap width becomes monotonically wider
as δ increases, while for a given δ (since δ 
= 0), the band-gap
width becomes narrower as R becomes higher. It is interesting
that the band-gap width for the conventional photonic crystal
works as the limit case; that is, the band-gap width for δ 
= 0
cannot be narrower than that for δ = 0. From the results pre-
sented up to now, one can conclude that we have several ways
to combine the geometrical X , physical R, and topological δ

parameters to manipulate the edges and center of the band

gap to control light wave propagation in 1D APCs. Thus, for
the purpose of knowing which set of parameters provides the
wider band gap, we show the band-gap width as a function of
δ and X and δ and R in Fig. 7. Figure 7(a) shows the surface
plot of the width of the first band gap as a function of δ and
X , with R = 1.0, while Figs. 7(b)–7(d) show the surface plot
of the width of the first band gap as a function of δ and R
for X = 0.5, X = 1.0, and X = 2.0, respectively. In Fig. 7 the
color scale indicates band-gap width from 0 (black) and to 0.8
(white). Also, the green dot-dashed lines represent the level
curves for some values of the band-gap width.

Figure 7(a) confirms that the band gap is null for any value
of X when δ = 0 and for any value of δ when X = 0.0. We
can observe from Figs. 7(b)–7(d) that the band-gap width
vanishes whenever δ = 0 and R = 1.0 (dark regions). On the
other hand, the wider band gaps (larger than 0.6 and repre-
sented by the brighter regions) are obtained for (i) δ > 0.8,
X ≈ 0.5, and R = 1.0 in Fig. 7(a); (ii) δ > 0.6, R ≈ 0.25, and
X = 0.5 in Fig. 7(b); and (iii) δ > 0.5, R ≈ 0.25, and X = 1.0
in Fig. 7(c). There is no band gap larger than 0.6 in Fig. 7(d).
Therefore, from Fig. 7 one can conclude that the topological
parameter δ works almost independently of the geometrical
X and physical R parameters; that is, the band-gap width is
always wider if δ increases, no matter the values of X and
R are. On the contrary, X and R work against each other;
that is, as X increases, R must decrease for a wide band-gap
emergence and vice versa.

IV. CONCLUSIONS

In summary, we have used a transfer matrix method to
study the propagation of circularly polarized light waves in an
axionic layered medium. We calculated the dispersion spectra
to investigate the structure of band gaps of this material. We
presented numerical results for the photonic band structure
as a function of the ratio between permittivities R = εB/εA,
layer thicknesses X = dB/dA, and topological parameters δ =
π2(θA − θB)2/α2. We found that, for a given value of X (since
X 
= 0), the band-gap width becomes wider as the δ parameter
increases, although the band-gap center appear not to be con-
siderably affected. On the one hand, the band-gap centers are
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shifted to the low-frequency regions, and also, the band gaps
become narrower as the ratio between the thicknesses X is
increased. Also, for a given δ, the position of the center of the
band gap is shifted to lower-frequency regions as R increases.
On the other hand, for a given R, the band-gap width be-
comes wider as the topological parameter δ increases, but the
band-gap center is not affected. It was also observed that the
band-gap upper edge is less shifted than the band-gap lower
edge; that is, the upper and lower edges of the band gap are
slightly asymmetrically shifted. On the one hand, considering
δ = 0 (corresponding to a conventional photonic crystal), for
0 < R < 1, the band gap becomes narrower until it vanishes
when R = 1.0. On the other hand, for R > 1, the band gap
is not null anymore, and it becomes wider as R increases.
However, for δ 
= 0 (corresponding to an axionic photonic
crystal), the band gap does not vanish even for R = 1.0. For a
given value of R, the band-gap width becomes monotonically
wider as δ increases, while for a given δ, the band-gap width
becomes narrower as R becomes higher. One can conclude

that the topological parameter δ works almost independently
of the geometrical X and physical R parameters; that is, the
band-gap width is always wider if δ increases no matter what
the values of X and R are. On the other hand, X and R work
against each other; that is, as X increases, R must decrease for
a wide band-gap emergence and vice versa. Our results open
possibilities for technological applications of axionic photonic
crystals by manipulating the flow of light by means of the
topological parameter of the system. Surely, our model can
be realized experimentally, and we hope that experimentalists
are encouraged to face it.
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