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Topological photonic Su-Schrieffer-Heeger-type coupler
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We examine the coupling process between the surface modes of a Su-Schrieffer-Heeger lattice both in
the linear and the nonlinear regimes. We first develop a coupled-mode theory formalism for the modes of a
finite lattice with zero boundary conditions. Our analysis relies on the closed-form expressions for the bulk and
the surface eigenmodes of the system. The coupled-mode theory formalism is based on a decomposition of the
supermodes into sublattice modes. In the case of the two zero sublattice surface modes, this leads to periodic
oscillations between them without the involvement of the bulk modes. We analytically show that launching light
only on the waveguide that is located at either edge of the array can be very effective in successfully exciting
the respective surface mode. We extend our analysis, in the case of Kerr nonlinearity, and develop a simplified
model that accounts only for the surface modes. By direct numerical simulations, we find that this model can
very accurately capture the dynamics of the surface modes when the nonlinearity is small or moderate. On the
other hand, in the case of strong nonlinearity, wave mixing leads to the quasiperiodic excitation of the bulk
modes, or even to a chaotic behavior where all the modes of the systems are excited, and no prominent signature
of the surface modes can be detected.
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I. INTRODUCTION

Topological phenomena, such as the quantum Hall effect,
play a fundamental role in condensed-matter physics [1,2].
In optics, topological directional interface modes were first
predicted in [3,4]. In [5], such topologically protected states
were observed using magneto-optical photonic crystals. Even
in the absence of a magnetic field, photonic Floquet topo-
logical insulators were experimentally observed, by breaking
the time-reversal symmetry of the system [6]. Since then, a
significant amount of work has been devoted in the field of
topological photonics [7,8], including topological states in
ring resonators [9], and topological insulator lasers [10,11].

In the case of one transverse dimension, the Su-Schrieffer-
Heeger (SSH) lattice is known to support interface modes
of topological origin [12]. In particular, the SSH model is a
diatomic lattice with alternating coupling coefficients. It has
a topological winding number which is equal to 1, when the
intercell coupling coefficient is stronger than the intracell cou-
pling coefficient, and zero in the opposite case. Surface modes
of the SSH lattice were experimentally observed in optically
induced photonic lattices [13,14]. Topological interface states
were also observed in Aubry-André quasicrystals [15], as well
as in photonic quantum walks [16]. The presence of gain and
loss in systems with alternating coupling coefficients has been
utilized to observe topological transitions [17], midgap states
[18], optical isolation [19], enhancement of topologically in-
duced interface states in microresonators [20], and recovery of
the topological zero modes in non-Hermitian lattices [21]. In
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the presence of nonlinearity, the surface modes of the SSH lat-
tice turn into a family of topological gap solitons [14,22,23].

Most commonly, directional light coupling is achieved
between optical fibers or waveguides in the total inter-
nal reflection regime [24]. Light coupling in nontopological
systems is also possible by using different mechanisms,
for example, Bragg reflection [25,26], adiabatic elimination
methods [27,28], or even engineered lattices that support
fractional revivals [29]. In a topological setting, Floquet en-
gineering has been examined in [30], and adiabatic pumping
of light in Aubry-André lattices, between the two surface
modes, has been observed in [15], in a process that relies
on dynamically modifying the Hamiltonian, as a function
of the propagation distance. Topological adiabatic pumping
processes have also been examined in [31–33]. In the SSH
lattice, it is known that in the linear case periodic oscillations
occur between the “zero modes,” which are the local surface
modes located on the left and the right side of the lattice
(see for example [21]). However, a theoretical framework that
examines the coupling process and its efficiency is missing.

In this paper, we examine the coupling between the modes
of an SSH lattice both in the linear and in the nonlinear
regimes. We utilize the closed-form expressions for the modes
of the SSH lattice, that were originally derived in [34]. We
develop a coupled-mode theory formalism that applies to
both the bulk and the surface modes. By decomposing the
supermodes into local sublattice modes, we find that coupling
processes take place between pairs of modes with different
sublattice symmetry. Of particular interest are the periodic os-
cillations between the surface zero modes, which are localized
on the left and the right side of the lattice. In experiments,
the exact initial excitation of the surface modes might be
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FIG. 1. A diatomic SSH waveguide array with alternating cou-
pling coefficients κ1 and κ2.

a difficult task. In this respect, we analytically investigate
the amount of power that excites the surface and the bulk
sublattice modes, when only one waveguide on the left (or,
equivalently, the right) edge of the array is excited. We find
that the efficiency of the surface mode excitation in this very
simple scheme can be very high. We extend our analysis in
the nonlinear regime by accounting for the effect of Kerr
nonlinearity and perform a series of numerical simulations.
We also derive a simplified coupler-type model that accounts
only for the surface zero modes. The comparison of this model
with the full SSH system is found to be excellent in the case of
small and even moderate nonlinearities. By further increasing
the nonlinearity, wave mixing can lead to the quasiperiodic
excitation of the bulk modes. Finally, in the strongly nonlinear
regime, there is a transition length, after which the behavior
becomes chaotic with all the modes being excited, and no
signature of the presence of the surface modes. The transition
length decreases as the nonlinearity of the system increases.

A main advantage in using such topological couplers as
compared to conventional couplers is related to the fact that
the former is an array configuration consisting of a variable
number of elements. Thus, we can select to couple light be-
tween distant nonadjacent lattice elements, a utilization that
can be useful in multiport switching and routing applications.

II. SSH LATTICE

Let us consider a diatomic lattice with alternating coupling
coefficients, κ1 and κ2, as shown in Fig. 1, which is described
by the Hamiltonian

H = −κ1

N∑
n=1

[|n, β〉〈n, α| + |n, α〉〈n, β|]−

− κ2

N∑
n=2

[|n − 1, β〉〈n, α| + |n, α〉〈n − 1, β|]. (1)

In the above SSH model, we account for a lattice with N
primitive cells and zero boundary conditions, and denote
|n, γ 〉 = |n〉 ⊗ |γ 〉, where ⊗ is the tensor product. In addition,
γ = {α, β} represents the intracell internal degrees of free-
dom, whereas n = 1, . . . , N accounts for the intercell external
degrees of freedom. We can expand the optical wave in nodal
space as

|�〉 =
∑
n,γ

Cn(z)|n, γ 〉,

where, depending on γ , C = {A, B}, leading to
id〈n, γ |�〉/dz = 〈n, γ |H |�〉. Looking for stationary

solutions [Cn(z) = Cn(0)e−iεz], we derive two coupled
difference equations for the amplitudes An and Bn:

εAn = −κ2Bn−1 − κ1Bn, (2)

εBn = −κ1An − κ2An+1, (3)

where z is the propagation distance and ε is the eigenvalue.
Combining the above equations, we can write(

ε2 − κ2
1 − κ2

2

)
Cn = κ2κ1(Cn−1 + Cn+1) (4)

for the amplitudes of each sublattice.
Even in the case of zero boundary conditions, the SSH

lattice has a chiral symmetry. Specifically, if

Pγ =
N∑

n=1

|n, γ 〉〈n, γ |

is a projection operator into sublattice γ , then we can define
the chiral operator as � = Pα − Pβ with properties �† = �

and �2 = I . Since �H�† = −H or �H = −H�, for each
mode |l,+〉 with positive eigenvalue ε(l,+) = ε(l ) > 0, a mode
exists with amplitude profile |l,−〉 = �|l,+〉 and eigenvalue
ε(l,−) = −ε(l ). Furthermore, as long as the eigenvalue is not
zero, the power of each mode is equidistributed between the
two sublattices 〈l, q|Pα|l, q〉 = 〈l, q|Pβ |l, q〉, where q = ±.
We can expand the optical wave in modal space in terms of
the supermodes |�〉 = ∑N

l=1

∑
q=± u(l,q)(z)|l, q〉, where l is

the mode number and q determines the sign of the eigenvalue.
We select to arrange the modes

|l, q〉 =
∑
n,γ

C(l,q)
n |n, γ 〉 (5)

according to their eigenvalues, so that 0 < ε(1) < ε(2) < . . . <

ε(N ). When a pair of surface modes exists, they have the lowest
absolute eigenvalues and, thus, index l = 1.

III. MODES OF THE SSH LATTICE

The modes of the SSH lattice were derived in [34]. Here,
we review the calculations for the computation of the modes
and the condition for the existence of surface modes, since
they are going to be useful for the theoretical and numerical
calculations of the following sections.

A. Bulk modes

Looking for sinusoidal solutions of Eq. (4) that satisfy the
compatibility conditions of Eqs. (2) and (3) along with the
boundary conditions B(l,q)

0 = A(l )
N+1 = 0, we derive

A(l,q)
n = A(l )(−1)l+1 sin[α(l )(N + 1 − n)], (6)

B(l,q)
n = B(l,q) sin(α(l )n). (7)

Following the calculations, we find that the eigenvalues are
given by

ε(l,±) = ±2

(
κ2 cos2 α(l )

2
+ δ2 sin2 α(l )

2

)1/2

, (8)
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where we have defined

κ = κ1 + κ2

2
, δ = κ2 − κ1

2
,

and, due to the chiral symmetry, |A(l )| = |B(l,q)|. The coeffi-
cients α(l ) are derived from the transcendental equation

tan

[
α(l )

(
N + 1

2

)]
= δ

κ
tan

α(l )

2
, (9)

and the relative amplitudes of the two lattices are given by

B(l,±) = ∓A(l ). (10)

The odd tan(α(l )/2) function on the right-hand side of Eq. (9)
is strictly increasing with limiting values ±∞ at ±π , respec-
tively. On the other hand, the tan[(2N + 1)α(l )/2] function of
the left-hand side has a period that is 2N + 1 times smaller.
As a result, we expect to have at most 2N + 1 crossings
(roots). However, the zero crossing is trivial (results in a zero
eigenfunction). In addition, since both functions go to ±∞
at ±π , it remains to be determined when these two crossings
exist. Thus, the system supports at least 2N − 2 bulk modes.
Dividing Eq. (9) with its left-hand side, and using l’Hôpital’s
rule, it can be shown that the system supports 2N − 2 bulk
modes, when the condition

δ

κ
>

1

1 + 2N
(11)

is satisfied [34]. Note that Eq. (11) can be written as

κ2

κ1
> 1 + 1

N
.

This latter expression is a finite N refinement of the condition
κ2/κ1 > 1 that leads to a nontrivial Zak phase [2]. When the
direction of the inequality is inverted, then the lattice supports
2N bulk modes.

B. Surface modes

In a similar fashion, looking for hyperbolic solutions we
find

A(1,q)
n = A(1)(−1)n+1 sinh[α(1)(N + 1 − n)], (12)

B(1,q)
n = B(1,q)(−1)n+1 sinh(α(1)n), (13)

where the coefficient α(1) is determined from the transcenden-
tal equation

δ

κ
tanh

[
α(1)

(
N + 1

2

)]
= tanh

α(1)

2
, (14)

and, since the surface modes have the lowest absolute eigen-
values, we select l = 1. In agreement with our previous
results, dividing with the tanh term that appears on the left-
hand side, it can be verified that Eq. (14) supports two
solutions, α(1,±) = ±α(1) with α(1) > 0, only when Eq. (11)
is satisfied. The respective propagation constants are given by

ε(1,±) = ±(
κ2

1 + κ2
2 − 2κ1κ2 cosh α(1)

)1/2
, (15)

with the sublattice amplitudes satisfying Eq. (10). For the rest
of this paper, we choose to determine the coefficients A(l ), l =

1, . . . , N , by normalizing the power of each mode to unity
〈l, q|l, q〉 = 1 and selecting A(l ) > 0.

In addition to the exact numerical calculation of α(1) from
Eq. (14), below we derive a direct asymptotic expression,
which is then utilized to determine the eigenvalues of the
surface modes. We substitute Eqs. (12) and (13) to Eqs. (2)
and (3) and set n = 1 and n = N . Since α(1) > 0, and ap-
proximating ε(1) ≈ 0, we obtain κ2/κ1 ≈ eα(1)

. We look for a
higher-order correction by setting

eα(1) = κ2/κ1 + u. (16)

Substituting to Eqs. (2) and (3) and keeping first-order terms
we obtain

u = −
(κ2

κ1
− κ1

κ2

)(
κN

2

κN
1

− κN
1

κN
2

)−2

. (17)

Then, from Eqs. (15) and (17), we derive

ε(1) = κ2
2 − κ2

1

κ2

(
κN

2

κN
1

− κN
1

κN
2

) = ±κ1
(

κ2
κ1

− κ1
κ2

)
κN

2

κN
1

− κN
1

κN
2

. (18)

The above expression is useful in determining the propagation
constant (and thus, as we will see, the coupling period) di-
rectly, as a function of the coupling coefficients and the length
of the lattice. It is found to be in very good agreement with
the numerical solution of the transcendental Eq. (14). Note
that the surface supermodes of the SSH lattice are known
as “near-zero modes,” because their eigenvalues are close to
zero.

IV. COUPLED-MODE THEORY

For the rest of this paper, we assume that the condition
given by Eq. (11) is satisfied, and thus the lattice supports
two surface modes. We are going to develop a coupled-mode
theory formalism that incorporates all the modes of the SSH
lattice (both bulk and surface). We select to utilize a local
mode decomposition of the form

|l, α〉 =|l,+〉 + |l,−〉√
2

, (19)

|l, β〉 = (−1)N+l+1(|l,+〉 − |l,−〉)√
2

. (20)

In Eqs. (19) and (20), the local mode |l, γ 〉 excites only the γ

sublattice, and the coefficient 1/
√

2 is used for normalization
purposes. Note that, even in this decomposition, the modes
are orthogonal: 〈l ′, γ ′|l, γ 〉 = δl,l ′δγ ,γ ′ . In the basis given by
Eqs. (19) and (20), the surface modes or zero modes |l = 1, γ 〉
are exponentially localized, one on the left (γ = α) and one
on the right (γ = β) side of the lattice. We expand the optical
wave as

|�〉 =
N∑

l=1

∑
γ={α,β}

c(l )(z)|l, γ 〉,
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where c = {a, b}, depending on the sublattice, and derive the
following coupled-mode theory equations for the wave ampli-
tudes:

i
d

dz
a(l )(z) = −ε(l )b(l ), (21)

i
d

dz
b(l )(z) = −ε(l )a(l ). (22)

The solution of Eqs. (21) and (22) leads to periodic sinusoidal
oscillations between |l, α〉 and |l, β〉, with period equal to

L(l ) = π

ε(l )
. (23)

Note that we can define the coupling lengths as half of the
respective periods, L(l )/2.

V. EDGE EXCITATION

From Eqs. (21) and (22) with l = 1, we see that when the
zero edge modes are excited the power oscillates periodically
between them without leakage into the bulk modes. However,
experimentally, it is not very simple to engineer the initial
condition to selectively excite only the surface modes. Thus, it
is important to ask how much of the power is going to go to the
surface modes, when simpler excitation schemes are used. In
particular, we consider perhaps the simplest case, where only
a single waveguide on the left edge of the lattice is excited on
the input plane:

|�(0)〉 = |n = 1, α〉. (24)

It is straightforward to see that the amount of power that
excites the surface mode |l = 1, α〉 is

P1,α = |〈l = 1, α|�(0)〉|2 = 2(A(1) )2 sinh2[a(1)(N + 1)],
(25)

whereas the power of the bulk mode |l > 1, α〉 is given by

Pl,α = |〈l > 1, α|�(0)〉|2 = 2(A(l ) )2 sin2[a(1)(N + 1)]. (26)

On the other hand, the modes of sublattice β are not excited
on the input plane Pl,β = 0 (〈l, β|�(0)〉 = 0).

VI. LINEAR DYNAMICS

Below, we present numerical results of an SSH lattice with
N = 6 primitive cells and coupling coefficients κ1 = 1 and
κ2 = 3. Using these parameters, we obtain ε(1) ≈ 0.003 66
and thus L(1) ≈ 859. Reducing the coupling contrast κ2/κ1 or
the size of the lattice N leads to the reduction of the period
of the oscillations. For example, for N = 5 and the same
coupling coefficients, we obtain L(1) ≈ 286. In Fig. 2(a), we
depict the eigenvalues of the SSH lattice with zero boundary
conditions, in increasing eigenvalue order. The bulk eigenval-
ues form two bands, whereas the surface modes are located
close to the middle of the gap. In addition, in Fig. 2(b), we
can see the amplitude profile of the near zero surface mode
with positive eigenvalue |l = 1,+〉. The second supermode
|l = 1,−〉 is derived by application of the chiral operator,
leading to opposite amplitudes for the β sublattice. Thus,
since |l = 1,+〉 is even, |l = 1,−〉 is odd. The left zero mode
that excites the α sublattice, |l, α〉, is shown in Fig. 2(c). We

2 4 6 8 10 12
Mode number
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-2

0

2

4

n

-0.5

0

0.5

n

0

0.5

1

(a) (b)

(c)

FIG. 2. (a) Eigenvalues of an SSH lattice with coupling coeffi-
cients κ1 = 1 and κ2 = 3, consisting of N = 6 primitive cells. (b) The
amplitude profile of the near-zero surface mode with a positive eigen-
value |l = 1, +〉. (c) The amplitude profile of the left zero surface
mode that excites only the α sublattice |l = 1, α〉.

numerically integrate the SSH lattice by utilizing a Runge-
Kutta scheme. In the simulation shown in Fig. 3(a), we launch
the left zero mode, |l = 1, α〉, which is localized on the left
edge of the array. The theoretical value for the period of the
oscillations between the two surface modes is verified by
the numerical results. In Fig. 3(b) we use the, experimen-
tally simpler, excitation scheme, where only the waveguide
on the left edge of the lattice, |n = 1, α〉, is initially exited.
Interestingly, we only see minor differences when comparing
these two simulations. In particular, in Fig. 3(b), we notice
some low-intensity high-frequency noise in between the two
surface modes. To quantify the comparison between the two
simulations shown in Fig. 3, we decompose the initial profile,
in the case where only the left waveguide of the lattice is
excited, into the sublattice modes |l, α〉. As we have shown,
the modes of sublattice β (|l, β〉) are not involved (Pl,β = 0).
In Fig. 4, we see the distribution of power between the modes
of the α sublattice, Pl,α , which is given by Eqs. (25) and (26).
Importantly, about 89% of the power excites the surface mode
|l = 1, α〉. The rest of the power is distributed between the
bulk modes, with the highest amount, about 3.7%, exciting
the mode |l = 3|α〉. Then, during propagation, the power
oscillates in pairs, between the |l, α〉 and the |l, β〉 modes,

FIG. 3. Intensity dynamics depicting the periodic oscillations
between the two zero surface modes. In (a) the left zero surface
mode that excites the α sublattice, |l = 1, α〉, is launched on the
input plane, while in (b) the first waveguide that resides on the left
edge of the array, |n = 1, α〉, is excited. Only minor differences are
observed between the two simulations. The parameters are the same
as in Fig. 2.
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FIG. 4. Initial distribution of power Pl,α between the modes of
the SSH lattice |l, α〉, when only the first (left) waveguide is excited.
The lattice parameters are the same as in the previous figures.

with each oscillation having its own spatial frequency. Since
ε(l>1) 
 ε(1), the low-intensity noise generated by the excita-
tion of the bulk modes is high frequency, as compared to the
oscillations between the surface modes.

VII. NONLINEAR DYNAMICS

Assuming that the waveguide lattice is Kerr nonlinear then,
in nodal space, the dynamics of the SSH lattice satisfy

i
dan

dz
+ κ2bn−1 + κ1bn + g|an|2an = 0, (27)

i
dbn

dz
+ κ1an + κ2an+1 + g|bn|2bn = 0. (28)

On the other hand, we can follow a modal approach similar
to the one used in the linear case. This can be done by ex-
panding the optical wave into the sublattice modes, where
the effect of the Kerr nonlinearity results in additional wave
mixing terms. The resulting modal system of equations reads

i
dc(l )

dz
+ ε(l )c̃(l ) + γ

∑
l1,l2,l3

Ql,l1,l2,l3 (c(l1 ) )∗c(l2 )c(l3 ) = 0, (29)

where c(l ) = {a(l ), b(l )} is the z-dependent amplitude of mode l
that excites the sublattice c, c̃ = b when c = a and vice versa,

Ql,l1,l2,l3 =
∑

n

(
C(l1 )

n

)∗(
C(l )

n

)∗
C(l2 )

n C(l3 )
n ,

and C(l )
n = {A(l )

n , B(l )
n } are the field profiles of modes |l, α〉 and

|l, β〉, respectively. Note that each sum in Eq. (29) involves N3

terms. Thus, the modal system of equations is numerically far
more complicated to solve in comparison to the original nodal
system. Focusing on the case of surface mode excitation, then
a significant simplification of Eq. (29) arises, by ignoring the
nonlinear contributions that do not play a significant role in
the dynamics. These are the small wave mixing terms and/or
the asynchronous terms between the surface (l = 1) and the

bulk modes or the surface modes (l � 1). Thus, we obtain the
following coupled equations for the surface modes,

i
da(1)

dz
+ κb(1) + G|a(1)|2a(1) = 0, (30)

i
db(1)

dz
+ κa(1) + G|b(1)|2b(1) = 0, (31)

that generalize the linear system described by Eqs. (21) and
(22). In Eqs. (30) and (31) κ = ε(1) is the coupling coefficient,
the effective nonlinearity is given by G = gQ,

Q =
∑

n

(
A(1)

n

)4 =
∑

n

(
B(1)

n

)4
, (32)

and A(1)
n and B(1)

n are the field profiles of the zero (sublattice)
surface modes. Note that Eqs. (30) and (31) can be solved
analytically [35]. Equation (29) is far more complicated than
the reduced system, which is derived by ignoring a variety
of nonlinear terms. Thus, it is important to examine the ac-
curacy and regimes of validity of Eqs. (30) and (31). In the
remaining section, we perform a series of numerical simula-
tions, to examine the dynamics of Eqs. (27) and (28) [which
are equivalent to Eq. (29)], when the left surface mode is
initially excited. In addition, we are going to compare these
results with the solution of the simplified coupler model (30)
and (31). The lattice parameters are kept the same as in the
linear case (N = 6, κ1 = 1, κ2 = 3), which leads to Q = 0.8.
In all our simulations on the SSH lattice, we have included
additional random noise, to trigger four-wave mixing terms
that can lead to the excitation of the bulk modes.

In Figs. 5(a)–5(c), the nonlinear coefficient is small: g =
0.01. We clearly see in Fig. 5(a) the oscillations between
the two surface modes. The nonlinearity slightly modifies the
period and the amplitude of the oscillations, in comparison
to the linear limit. Furthermore, we are not able to detect
any noticeable excitation of bulk modes due to the presence
of nonlinearity. This can be clearly demonstrated by decom-
posing the amplitude profile into the bulk and the surface
sublattice |l, γ 〉 modes of the lattice. In particular, in Fig. 5(b),
we can see that the amplitudes of the two zero surface modes
exhibit periodic oscillations. The power exchange between the
two surface modes is almost 100%, whereas the amplitude
of the bulk modes is almost zero. In Fig. 5(c) we depict
the dynamics of the two surface zero modes, by solving the
simplified coupled-mode theory Eqs. (30) and (31). We note
that the comparison with Fig. 5(b) is excellent.

In Figs. 5(d)–5(f) the nonlinear coefficient is increased to
γ = 0.02. We can see periodic oscillations between the left
and the right surface modes. However, in this case only a
small part of the total power is transferred from the left to
the right surface mode. We also observe that the excitation
of the bulk modes is still very small and the comparison with
the simplified coupler model is excellent. Once we increase
the nonlinearity to γ = 0.1 [Figs. 5(g)–5(i)] almost all the
power remains trapped into the left zero surface mode. In
particular, the bulk modes are effectively not excited, and
we observe some minute high-frequency oscillations between
the two zero surface modes. Interestingly, even in this case,
the coupler model is in very good agreement in predicting
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FIG. 5. Dynamics of an SSH lattice when the Kerr nonlinear
coefficient is g = 0.01, 0.02, 0.1, and 1 in the first, second, third, and
fourth row, respectively. In the fist column the intensity dynamics
as a function of the propagation distance is shown when the left
zero surface mode is initially excited. In the second column the
modal power occupancies vs the propagation distance z, derived
by expanding the amplitude profile into a basis that consists of the
sublattice modes |l, γ 〉, is presented. In the last column, the surface
mode dynamics is depicted by utilizing the simplified coupled-mode
theory Eqs. (30) and (31) that does not account for the surface modes.
Note that the comparison between the second and the third column
is excellent, except in the last row where, due to the relatively strong
nonlinearity, bulk modes are excited.

the period and small amplitude oscillations between the two
surface modes.

In Figs. 5(j)–5(l) the nonlinearity is increased to γ = 1.
During propagation most of the power remains in the left
surface mode. However, the main difference in comparison
to the previous simulations is that the presence of relatively
strong nonlinearity induces the excitation of the bulk modes
of the system. Specifically, in Fig. 5(k) we observe that,
quasiperiodically, a small portion of the total power of the
left surface zero mode is transferred to the bulk modes. Of
course, this behavior cannot be captured by the simplified
coupler equations in Fig. 5(l) that do not account for the bulk
modes. However, since the portion of the total power that
is transferred to the bulk modes is small, we can still claim

FIG. 6. Dynamics of an SSH lattice in the case of strong Kerr
nonlinearity g = 2 and 3 in the first and second row, respectively. In
the fist column the intensity dynamics as a function of the propaga-
tion distance is shown when the left zero surface mode is initially
excited. In the second column the modal power occupancies vs the
propagation distance z, derived by expanding the amplitude profile
into a basis that consists of the sublattice modes |l, γ 〉, are presented.

that the reduced model can be utilized to provide a relatively
accurate estimate of the wave dynamics.

If we further increase the nonlinearity, as we can see in
Fig. 6, then strong interactions between the bulk and the
surface modes take place. The power is gradually transferred
to all the modes of the system leading to a chaotic behavior.
For example, in the first row of Fig. 6 where γ = 2, we see
that, in the initial stages, most of the power remains in the left
surface mode. However, gradually the power is transferred to
all the modes of the system. Eventually, at z ≈ 7L(1) there is
no signature of the highlighted presence of the surface modes.
In general, as the nonlinearity is increased the transition to
chaotic behavior is going to take place faster. For example,
in the second row of Fig. 6 where γ = 3 the transition takes
place at z ≈ L(1). The dynamics of the SSH lattice after this
point might be examined using, for example, a thermody-
namic approach.

VIII. CONCLUSIONS

In conclusion, we have developed a coupled-mode theory
approach for the sublattice modes of an SSH lattice. The
theory can be applied to analytically describe the coupling
behavior between the two zero surface modes of the system.
We have found that launching light on the waveguide that
is located on the left (or the right) edge of the array can be
very efficient in exciting the surface modes. Such an excita-
tion scheme is very simple to experimentally implement. We
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extended our analysis in the nonlinear regime by including
the effect of cubic (Kerr) nonlinearity. Our simplified model
is able to capture the dynamics when the nonlinearity is small
or moderate. On the other hand, strong nonlinearity results in
the quasiperiodic excitation of the bulk modes and eventually

in chaotic behavior with no actual signature of the presence of
surface modes. We expect that our results can be generalized
to different types of lattices, including systems with broken
sublattice symmetry, provided that nontrivial edge states are
supported.
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