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Electromagnetic nonlinearity, combined with symmetry breaking, can be exploited to obtain highly nonrecip-
rocal light transmission. In previous studies on nonreciprocity, it has been generally assumed that the material’s
nonlinearity responds instantaneously to the applied field. Here, we consider a noninstantaneous nonlinear
response and study its influence on nonreciprocity. We show that the inclusion of such delayed effects can
lead to highly nontrivial nonreciprocal dynamics, which are forbidden in the instantaneous regime. Particularly,
when the characteristic delay time of the nonlinearity approaches the input pulse’s duration, high-contrast
nonreciprocal compression and reshaping of the pulse can be achieved. In the high-power regime, we show
that it is possible to generate a nonreciprocal response in a single resonator, which, for instance, is chaotic when
sourced along one direction and periodically modulated when sourced from the opposing direction. Indeed, by
tuning the nonlinearity’s memory time we can flexibly control the system’s response, enabling a wide range of
nonreciprocal functionalities in compact, passive, and bias-free devices.
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I. INTRODUCTION

Achieving unidirectional light transmission is a major goal
in developing photonic technologies, but in many standard
scenarios it is forbidden by the Lorentz reciprocity theorem
(LRT) [1]: In any electromagnetic system whose permittivity
and permeability tensors are symmetric, time invariant, and
linear, light transmission between a source and a detector
is the same when their locations are interchanged. In order
to break reciprocity at least one of the assumptions of the
LRT must be violated. The most common approach involves
applying a dc magnetic bias to magneto-optical materials
[2,3], but its implementation in integrated circuits is hin-
dered by the need for large magnetic fields. Time-varying
materials can also be used to break reciprocity without the
need for magnetic fields [4–10], but the resulting devices
require complex modulation networks, and suffer trade-offs
between the footprint, modulation features, and operational
bandwidth [10].

As an alternative approach, nonlinearity-based methods
have raised significant attention in recent years, offering a path
towards bias-free, fully passive nonreciprocity in nanoscale
devices [11]. Among the various types of nonlinearities, Kerr-
like responses, in which the material permittivity depends
linearly on the local field intensity, are the most commonly in-
vestigated and utilized due to their ubiquity in optics [12]. By
combining a nonlinear material with tailored spatial symmetry
breaking, the same signal, injected from opposite directions,
induces different field distributions that in turn create differ-
ent intensity-dependent permittivity profiles, and thus break
reciprocity [11]. Interestingly, no external bias is required in
this approach, since the system is “self-biased” by the input

field. Due to its simplicity, this approach has been success-
fully demonstrated in vastly different frameworks, such as
integrated Si [13,14] and InP [15] microcavities operating
in the near infrared, microwave circuits [16], and asymmet-
ric azobenzene compounds [17]. Theoretical proposals have
demonstrated free-space nonreciprocity via single [18,19] and
cascaded [20,21] metasurfaces. Similar phenomena have also
been demonstrated in quantum systems [22,23], where the
nonlinearity is due to the saturable response of atoms. In all
of the mentioned studies, the nonlinearity is assumed to have
a negligible buildup time: Upon application of an electric
field E(r), the permittivity at each point r changes instanta-
neously from its low-intensity value εlin(r) to ε(r) = εlin(r) +
ε0χ

(3)|E(r)|2. Thus, the resonant frequency and/or linewidth
of a resonator filled with such a material are instantaneously
affected as the intracavity power changes. Importantly, this
instantaneous assumption implies that the system still obeys
time-reversal (TR) symmetry, which is known to lead to
bounds between the nonreciprocal power bandwidth and in-
sertion loss [18]. The instantaneous approximation is well
justified in many practical scenarios: For example, the char-
acteristic buildup time of the optical Kerr effect is less than
10 fs in silicon [24], much smaller than any other relevant
timescale. However, there exist nonlinearities with more pro-
nounced memory effects and buildup times. The thermoelec-
tric effect in liquids, for example, has a buildup time as large
as tens of μs [25,26], and recent studies have employed such
delayed nonlinearities in oil-filled cavities [25,26]. Impor-
tantly, such slow buildup times can approach or even surpass
the relevant timescales of the system, such as the pump pulse’s
temporal width or the lifetime of the hosting resonator. No-
tably, a nonzero buildup time manifestly breaks TR symmetry,
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since upon time inversion the nonlinearity-induced permittiv-
ity change precedes the input pulse, violating causality.

This fundamental difference between instantaneous and
noninstantaneous nonlinear responses, and the associated re-
lation with TR symmetry, raises the intriguing question of
whether and how a temporal delay in the nonlinear response
affects the nonreciprocal response, and whether different
functionalities can be obtained. As we show, introducing a
delay in the nonlinear response leads to phenomena not ob-
servable in the instantaneous regime, such as nonreciprocal
self-induced oscillations, pulse compression, and reshaping.
A general theory of self-oscillatory behavior due to noninstan-
taneous responses, such as those caused by interactions with
free carriers and thermal effects in photonic cavities, has been
developed in Refs. [27–29]. Here, the goal is to investigate
whether such behavior can be induced in nonlinear devices
with structural asymmetries, leading to nonreciprocal signal
modulation. Furthermore, it is known that the inclusion of
delayed responses in optical cavities can lead to determinis-
tic chaos [30,31]. A chaotic modulation in laser outputs has
a number of appealing applications, including sensing of a
weak coherent radiation source masked by a large incoherent
background [32], random-bit generation [33], and securing
optical communications [34]. A few previous works have
considered inducing nonreciprocal chaos [35,36]. In contrast
to these works, here we explore the opportunity of induc-
ing a chaotic output with a delayed nonlinearity in a single
resonator. By calculating the period-doubling bifurcation di-
agram, we also show the conditions under which our system
can exhibit chaotic output for excitation along one direction
and nonchaotic output in the opposite direction, when being
excited by the same source. Having directional control over
a chaos-induced signal would add important functionalities to
the encryption and sensing applications mentioned above. The
paper is organized as follows: In Sec. II we give the details
of our model; in Sec. III we present analytical and numerical
results, highlighting nonreciprocal functionality which is only
possible with the inclusion of delayed nonlinear responses; in
Sec. IV we give some concluding remarks.

II. MODEL DESCRIPTION

We begin by considering a resonator supporting a single
mode with bare frequency ω0, loaded with a Kerr-like nonlin-
earity and connected to two external input/output ports [see
Fig. 1(a)]. The resonator energy decays into the two ports with
rates γ j ( j = 1, 2) and, neglecting any other decay channels,
the total decay rate is γ ≡ γ1 + γ2. Employing coupled-mode
theory (CMT) with conveniently normalized quantities (see
Appendix), including time normalized in units of γ −1, the res-
onator dynamics are described by the adimensional amplitude
a(t ) given by the equations

ȧ(t ) = {i[� − n(t )] − 1}a(t ) +
√

2
∑
j=1,2

μ jξ
+
j (t ), (1a)

τ ṅ(t ) = |a(t )|2 − n(t ), (1b)

where ξ+
j (t ) is the envelope of the input field from the jth

port, and � ≡ (ω − ω0)/γ is the detuning of the input car-
rier frequency, ω. The complex coefficients μ j quantify the

FIG. 1. (a) Schematic of the system considered in the text: An
asymmetric single resonator is side coupled to a waveguide. (b) The
port-to-port transmissions T12 and T21 (defined in the text) at steady
state with cw pumping vs injected power for τ = 0, � = 4, r0 =
1/

√
2, and increasing asymmetry γ2/γ1 = 11/9 (blue), γ2/γ1 = 2

(red), and γ2/γ1 = 4 (green) (grayscale: dark to light). The NRIR
is highlighted by the shaded area and the arrows indicate hysteresis
as a function of injected power due to the bistability of the steady-
state solutions. The stable (unstable) portions of the curves are solid
(dashed).

coupling between input fields and the resonator, and satisfy
|μ j |2 = γ j/γ . The system is electromagnetically asymmetric
if it couples to the two ports differently, i.e., γ1 �= γ2 [11].
The time-dependent adimensional detuning n(t ) is induced by
the Kerr-like nonlinearity with a characteristic buildup time τ .
Such a model is commonly used to describe delayed nonlin-
ear responses, e.g., Refs. [25,31,37,38]. The noninstantaneous
nature of the nonlinearity in (1) is seen by formally integrating
(1b), giving

n(t ) = 1

τ

∫ t

−∞
e−(t−s)/τ |a(s)|2ds, (2)

where the temporal nonlocality of the response is explicitly
expressed as a convolution with an exponentially decaying
kernel. Importantly, Eq. (2) shows that system (1) is not, in
general, symmetric under TR for finite τ > 0. Only when
the delay becomes negligible (τ → 0) does the kernel func-
tion in (2) formally approach the Dirac delta distribution and
TR symmetry is restored. Note that the steady-state solu-
tion [ȧ(t ), ṅ(t )] = [0, 0] of (1) under cw pumping and for
a finite delay τ is formally equivalent to the steady-state
solution obtained in the instantaneous case. However, and
quite importantly, the noninstantaneous nature of the nonlin-
earity can drastically alter the system’s stability around these
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steady-state solutions. Regions of linear instability about
steady states can lead to dynamic asymptotic responses such
as stable limit cycles. Also, the evolution of a(t ) and n(t )
in system (1) can even become chaotic [31,39] in the highly
detuned regime, which is discussed further below.

The possible nonreciprocity arising in our system,
schematically shown in Fig. 1, can be described by calcu-
lating the port-to-port transmissions Ti j ≡ |ξ−

i |2/|ξ+
j |2 (i, j =

1, 2), where ξ− ≡ [ξ−
1 , ξ−

2 ]T are the outgoing fields. These
are related to the input fields ξ+ ≡ [ξ+

1 , ξ+
2 ]T and the cav-

ity field via the linear relation ξ− = √
2[μ1, μ2]Ta + Mξ+,

where M ≡ [r0, it0; it0, r0] and r0 and t0 are the transmission
and reflection coefficients (t2

0 + r2
0 = 1) of the system when

excited far off resonance. In the linear case, the following
constraints on our system’s parameters can be derived from
general time-reversibility and energy conservation arguments
(see Ref. [40]),(

r0 it0
it0 r0

)(
μ∗

1
μ∗

2

)
= −

(
μ1

μ2

)
, |μ1|2 + |μ2|2 = 1. (3)

Here, we assume that the off-resonant reflection and transmis-
sion coefficients r0 and t0, as well as the normalized decay
coefficients μ1 and μ2, are independent of the field intensity
and the nonlinear relaxation time τ . Therefore, since these
constraints hold in the small-amplitude (linear) regime, they
must also hold in our nonlinear model at arbitrary intensities
and characteristic nonlinear delays. Equation (3) leads to strict
bounds between the parameters r0, γ1, and γ2, and on the
phases of μ1, μ2 [41].

In the instantaneous case (τ = 0), the steady-state trans-
missions T12 and T21 of an asymmetric system (γ1 �= γ2) can
be markedly different in a certain range of input powers
|ξ+

j |2 [11,18], as shown in Fig. 1(b) for different values of
γ2/γ1 and fixed � and r0. Sharp transitions from low to high
transmission values in Fig. 1(b) are obtained by using Fano
line shapes (i.e., 0 < r0 < 1) [42] (see caption of Fig. 1 for
parameter values). The power range over which nonreciproc-
ity occurs, termed the nonreciprocal intensity range (NRIR)
[18], can be controlled by the degree of asymmetry γ2/γ1.
Importantly, as shown in Ref. [18], increasing the NRIR also
necessarily reduces the maximum transmission (i.e., increases
the insertion loss). This is clear from comparing the different
shaded regions and transmissions in Fig. 1(b). Such a bound is
deeply rooted in the TR symmetry of the system, and implies
that unitary transmission is only possible when the system is
electromagnetically symmetric and hence reciprocal.

III. RESULTS AND DISCUSSION

A. Nonreciprocal moderate-power pulse reshaping

After having briefly summarized the nonreciprocal be-
havior in the instantaneous case, we now focus on the
noninstantaneous nonlinear response (τ > 0). We consider a
pulsed source with a duration much longer than the cavity
lifetime, which is equal to γ −1 = 1 in our system. Figure 2
shows the normalized input pulse (black dashed line) and the
corresponding transmitted profiles for excitation from either
port 1 [|ξ−

2 (t )|2, blue line] or port 2 [|ξ−
1 (t )|2, red line], for

γ2/γ1 = 2 and various values of τ , while all other parameters

FIG. 2. Nonreciprocal response upon pulse excitation with full
width at half maximum FWHM = 90 for different nonlinear relax-
ation times. The black dashed curves show the normalized input
pulse power profile |ξ+

1,2(t )|2, and the solid blue (red) curves show the
transmitted pulse profiles when excited from port 1 (2), |ξ−

2,1(t )|2/P.
Parameters are the same as in Fig. 1(b) with γ2/γ1 = 2 and the peak
pulse power is set to P = 10, which lies in the highlighted NRIR. The
shaded strip in (b) highlights the calculated self-oscillation period of
2.45 in the given normalized units.

are the same as in Fig. 1(b). Following Fig. 1(b), we set
the input peak power to P ≡ |ξ+

i,max|2 = 10, for which the in-
stantaneous steady-state solution (red curves) clearly exhibits
large nonreciprocity. Indeed, near the instantaneous limit [τ =
0.01, Fig. 2(a)] the transmission profiles are virtually identical
to the ones obtained when using an instantaneous nonlinearity
(not shown here), as expected, resulting in large transmission
(blue) in one direction and low transmission (red) along the
opposite direction. For a larger τ = 0.5 [Fig. 2(b)], rapid
self-oscillations appear in the highly transmitted pulse, while
along the opposite direction the transmitted pulse remains
virtually identical to the instantaneous limit. For longer re-
laxation times [τ = 10, Fig. 2(c)], the self-oscillations are
replaced by a nonreciprocal response largely delayed with
respect to the beginning of the input pulse, resulting in
significant pulse compression and reshaping combined with
nonreciprocity. Finally, when the relaxation time is much
longer than both pulse width and cavity lifetime [τ = 500,
Fig. 2(d)], reciprocity is fully restored, since the nonlinear
shift of the cavity frequency is only triggered after the pulse is
gone, and hence there is no mechanism to break reciprocity.

These results show that breaking TR symmetry (TRS),
along with an electromagnetic asymmetry and a delayed non-
linearity, can generate highly nontrivial responses remarkably
different from the instantaneous scenario. Of particular inter-
est are the self-oscillatory dynamics shown in Fig. 2(b), which
show that the system cannot reach a steady state, and are
a direct consequence of TRS breaking in these systems. To
obtain more insights into this response, we analyze the linear
stability of (1) around the cw steady state. We make the ansatz

a(t ) = a0 + ε(ueλt + v∗eλ∗t ),

n(t ) = n0 + εw(eλt + eλ∗t ), (4)

where 0 < ε � 1 and a0 and n0 ≡ |a0|2 are the pumping-
power-dependent steady-state solutions to (1). Substituting (4)
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FIG. 3. Real (solid lines) and imaginary (dashed lines) parts of
the three eigenvalues of system (5) (denoted by different colors or
shades) as a function of steady-state intracavity energy for the same
nonlinear relaxation times considered in Fig. 2. The blue shaded
regions in (a)–(c) indicate a region of bistability and the red shaded
region in (b) indicates the onset of self-oscillations due to a Hopf
bifurcation. At the Hopf bifurcation in (b), the purely imaginary
eigenvalues ±λH are indicated with black dots. The oscillation period
calculated as Ts = 2π/λH = 2.45 matches well the one observed in
Fig. 2(b).

into (1) and collecting terms linear in ε leads to

λ

⎛
⎝u

v

w

⎞
⎠ =

⎛
⎝ M0 0 −ia0

0 M∗
0 ia∗

0
a∗

0/τ a0/τ −1/τ

⎞
⎠

⎛
⎝u

v

w

⎞
⎠, (5)

where M0 = i(� − |a0|2) − 1. The eigenvalues of this system
versus |a0|2 are shown in Fig. 3, for the same parameter values
used in Fig. 2. In the nearly instantaneous limit [τ = 0.01,
Fig. 3(a), compare also with Fig. 2(a)] the eigenvalues are vir-
tually identical to the ones of the 2 × 2 instantaneous version
of (5), with a region of instability shown in the blue shaded
region where the real part of a simple eigenvalue crosses zero
and becomes positive over a finite range of |a0|2 values. In
terms of the pumping power, this unstable region corresponds
to the middle branch of the well-known S-shaped steady-state
bistability curve [12]. Importantly, the imaginary part of the
unstable eigenvalue (in blue) is identically zero in the bistabil-
ity region shown in Fig. 3(a), which precludes self-oscillatory
behavior in the instantaneous limit. In contrast, Figs. 2(b) and
3(b) show a totally different self-oscillatory dynamic when
a longer delayed nonlinearity is considered. Figure 3(b) still
shows a region of bistability (blue shaded region), but the real
parts of two eigenvalues (red and blue curves) become identi-
cal after the bistability region and cross zero again at |a0|2 =
5, leading to instability. Unlike the instability described earlier
and arising in the bistability region, here the zero-crossing
eigenvalues have nonzero conjugate imaginary parts, causing
a Hopf bifurcation [red shaded area in Fig. 3(b)]. The con-
sequence can be clearly seen in Fig. 2(b), with the onset of
rapid self-oscillations in the dominantly transmitted signal.
The period of these self-oscillations Ts can be calculated from
the magnitude of the purely imaginary eigenvalues at the Hopf
bifurcation [marked in Fig. 3(b) with black dots], leading to

FIG. 4. (a) Nonreciprocal contrast T12 − T21, for the same param-
eters used in Fig. 3, as a function of peak input power P and nonlinear
delay τ . (b) Slices of (a) for fixed P = 12 (red dashed) and P = 17.5
(black dashed). Insets: Transmitted pulse profiles at indicated points.
(c) Normalized transmitted pulses for a cascaded two-resonator sys-
tem, for �A = �B = 4, rA = 0.7, rB = 0.2, and delay phase θ = π/4
and with the same color scheme used in Fig. 2, showing a highly
nonreciprocal response where the dominantly transmitted pulse is
compressed to less that one-tenth the duration of the incident pulse.
Inset: T12 − T21 as a function of τA for a fixed P and τB = 0.5, show-
ing a similar behavior as observed for the single-resonator P = 12
curve in (b), but with unitary transmission as τA → 0.

Ts ≈ 2.45 which agrees well with the period extracted from
the numerical calculations in Fig. 2(b). The Hopf bifurcation
is no longer present for τ = 10 [Fig. 3(c)], which results
in a lack of sustained self-oscillations in Fig. 2(c) and is
discussed further below. Finally, Fig. 3(d) shows that, for
nonlinear delays much longer than the pulse duration, both
regions of instability effectively vanish, leading to reciprocal
propagation [Fig. 2(d)].

Further insights can be obtained by studying how the
delayed nonlinearity affects the total pulse transmission, de-
fined as the ratio of total output to input energy, i.e., Ti j =∫ |ξ−

j (t )|2dt/
∫ |ξ+

i (t )|2dt . Figure 4(a) shows the difference
in transmission T12 − T21 as a function of τ and peak power of
the impinging pulse P while keeping all other parameters as in
Figs. 2 and 3. The vertical white dashed lines mark the edges
of the NRIR in the instantaneous limit (τ = 0). We find that,
as the nonlinearity delay increases, the NRIR increases, albeit
with a reduced contrast, and the boundaries of the NRIR be-
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come less well defined. This is more clearly seen in Fig. 4(b)
for fixed P = 12 (red) and P = 17.5 (black). The insets in
Fig. 4(b) show the transmitted pulse profiles for P = 17.5 in
the instantaneous limit τ = 0 (highly reciprocal) and for the
optimal value of τ ≈ 6.9 for which nonreciprocity is maxi-
mized. This clearly shows how particular nonzero values of
the delay τ allow for highly nonreciprocal behavior at power
levels for which the instantaneous system would be nearly
reciprocal. Furthermore, in the case P = 12 in Fig. 4(b), we
find that even though maximum nonreciprocity is achieved
near τ = 0, there exists a local maximum in the nonreciprocal
contrast for a nonzero critical delay, τp ≈ 1.9 [red dot in
Fig. 4(b)].

Following Ref. [31], in the case of cw pumping it can
be shown that the presence of self-oscillations, due to the
Hopf bifurcation discussed above, disappears for nonlinear
relaxation times τ > τc, where τc is the positive real root of

τ 3
c + τ 2

c −
(

1 + �2

4

)
τc − 1 = 0. (6)

For � = 4, τc ≈ 1.9, which agrees well with what is observed
in Fig. 4(b). Indeed, we can attribute the dip in nonrecipro-
cal contrast in the P = 12 curve for τ < τp to the onset of
self-oscillations, leading to a smaller integrated value of the
dominantly transmitted signal. It can be seen from Fig. 4(a),
where the horizontal white dashed line is at τc, that the dip
in nonreciprocity, for τ < τc approximately holds for all P in
the instantaneous NRIR. We note here that to accurately in-
tegrate these highly oscillatory signals, a temporal resolution
sufficiently smaller than their period must be used (�t ∼ 0.01
in Fig. 4).

Having thoroughly analyzed the effect a delayed nonlin-
earity has on nonreciprocal transmission, defined by Ti j , we
now show that a delayed nonlinearity can also be exploited
to reshape and compress an incident pulse with a high non-
reciprocal contrast, as measured by the transmitted pulse’s
peak power along opposite directions. This effect can already
be observed in Fig. 2(c), although with a relatively small
contrast between transmission in the two directions. Pulse
compression with a much larger nonreciprocal contrast can
be obtained by extending our model to include two spatially
separated resonators, with different nonlinear relaxation times
τA and τB and coupled via a delay line imparting a fixed
phase delay θ (see the Appendix for details), Indeed, in the
identically instantaneous case (τA = τB = 0), it was shown
[16] that such a configuration can be tailored to exhibit unitary
transmission over a finite power range still preserving the
nonreciprocal response, which is not possible in the case of
a single resonator due to TR symmetry. Figure 4(c) shows
how this system, properly tailored, can generate a highly non-
reciprocal response and simultaneous pulse compression: The
pulse transmitted along one direction has the same peak power
as the input pulse’s, and it is compressed in time by a factor
∼10, while virtually no signal is transmitted along the other
direction. The inset in Fig. 4(c) shows the integrated pulse
transmission for such a system as a function of τA and for a
fixed τB = 0.5. Here, the dip shown in nonreciprocal contrast
is very similar to the one observed in Figs. 4(a) and 4(b), due
to self-oscillations, but with a higher contrast that becomes

unitary in the instantaneous limit. Even though there exist
transient dynamics when considering an instantaneous nonlin-
earity, where nonreciprocity can differ substantially from the
cw case, these transient effects depend only on the resonator’s
frequency and linewidth. Importantly, the ability to control
the nonreciprocal response freely over the pulse duration, as
exhibited in the main plot in Fig. 4(c), is only possible by
utilizing a delayed nonlinear response.

B. High-power nonreciprocal cw modulation: Chaotic regime

In this section we investigate the nonreciprocal dynamics
of a single cavity when excited by a cw signal which is
detuned far off resonance. Note that in this regime the steady-
state bistability region occurs for much higher input powers
[11]. Our goal here is not to optimize the nonreciprocal con-
trast, but to show that, when the resonator’s characteristic
nonlinear delay is on the same order as the cavity lifetime and
the source is tuned far from the resonator’s bare frequency,
it is possible to tailor a periodic or chaotic modulation of the
source in a highly nonreciprocal manner.

In Fig. 5, we fix the resonator asymmetry to γ2/γ1 = 2, the
detuning to � = 15, and the characteristic delay at τ = 0.35.
In this regime, we expect the onset of chaotic behavior in the
dynamics described by (1) near the bistable switching points,
due to the destabilization of limit cycles [27,31]. The main
plot in Fig. 5 tracks the period-doubling bifurcation route to
chaos as the input power is decreased from port 1 (blue) and
port 2 (red). The vertical axis shows the corresponding output
power when the intracavity amplitude a(t ) is at the fixed
phase where the imaginary part of a(t ) = 0 (over sufficiently
long times so that transient dynamics are not included). As
expected, we find the emergence of periodic and chaotic win-
dows in the output power. The main plot in Fig. 5 shows that,

FIG. 5. A single resonator with � = 15, τ = 0.35, and γ2/γ1 =
2. The main plot is the transmitted output power for a fixed phase
intracavity amplitude (set by Im[a(t )] = 0) at long times as a func-
tion of the input power when sourced from port 1 (blue) or port 2
(red). Regions of chaos due to a period-doubling bifurcation among
periodic windows are seen. The insets show corresponding temporal
modulations with the same color scheme at the input powers shown
in the black dashed lines.
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due to the asymmetry, these windows may be tailored in such
a way as to induce a desired nonreciprocal modulation of the
signal. Indeed, the insets in Fig. 5 show possible nonreciprocal
modulations at different input powers. The upper-left-hand
inset (P = 390) shows a scenario where the initial intracavity
amplitude is zero and along one direction the output eventu-
ally settles into a stable doubly periodic limit cycle, whereas
in the opposite direction the output approaches a stable fixed
point. Similarly, the upper-right-hand inset (P = 1000) shows,
after a brief transient dynamic of aperiodic oscillations, steady
periodic and doubly periodic modulations in opposing direc-
tions. Finally, the lower-right-hand inset (P = 600) shows,
for an initial intracavity amplitude determined using the main
bifurcation diagram, a deterministic chaotic modulation in one
direction, contrasted by a doubly periodic modulation in the
other.

In Ref. [32] it was proposed that a chaotic resonator could
be used as a detector for a weak laser signal from a remote
source in the presence of strong background noise, by detect-
ing large qualitative changes in the resonator’s dynamics due
to small changes in resonant power injection. One possible
application of the nonreciprocal chaotic regime demonstrated
here would be the additional directional feature added to such
a detector.

IV. CONCLUSION

We have shown that the inclusion of noninstantaneous
nonlinearities combined with spatial asymmetries opens re-
markable opportunities to tailor the nonreciprocal response
of passive, bias-free resonant systems, leading to different
practical functionalities, including pulse shaping, compres-
sion, and self-oscillatory responses. Besides demonstrating
these functionalities, we also verified that large nonlinearity-

induced nonreciprocity can be obtained also in the case of
slow nonlinear responses. This is very important in practical
scenarios, since often materials characterized by slower non-
linearities, such as carrier injection or thermo-optical effects,
are utilized for nonreciprocal devices. Furthermore, we have
shown that the nonreciprocal contrast of such functionalities
can be greatly increased by coupling together multiple res-
onators. In the high-detuning regime we have shown that it is
possible to engineer the asymmetry and characteristic delay of
a single resonator to generate nonreciprocal chaotic dynamics.
Achieving such advanced control over highly nonreciprocal
cw and pulse shaping would be of great interest for a variety
of classical and quantum photonic scenarios.
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APPENDIX: COUPLED TWO-RESONATOR MODEL

We model two cascaded noninstantaneous nonlinear res-
onators coupled by a constant phase shift θ , shown schemati-
cally in Fig. 6, by the equations [11]

da
dt

= Ma + KT ξ+, τA,B
dnA,B

dt
+ nA,B = |aA,B|2,

ξ− = Ka + Cξ+, (A1)

where a = (aA, aB)T are the separated resonance amplitudes,
ξ± = (ξ±

1 , ξ±
2 )T are the input/output fields at the two ports, τA

and τB are the individual nonlinear relaxation times, and the
matrices M, K , and C are given by

M =

⎛
⎜⎜⎝

i(�A − nA(t )) − 1 +
√

2μ2
A,2rBeiθ

e2iθ − rArB

√
2μA,2μB,1

e2iθ − rArB√
2μA,2μB,1

e2iθ − rArB
i(�B − nB(t )) − 1 +

√
2μ2

B,1rAeiθ

e2iθ − rArB

⎞
⎟⎟⎠, (A2)

K =
√

2

⎛
⎜⎜⎝

μA,1 + iμA,2rBtA
e2iθ − rArB

ieiθμB,1tA
e2iθ − rArB

ieiθμA,2tB
e2iθ − rArB

μB,2 + iμB,1rAtB
e2iθ − rArB

⎞
⎟⎟⎠, C =

⎛
⎜⎜⎝

rA − t2
ArB

e2iθ − rArB
− eiθ tAtB

e2iθ − rArB

− eiθ tAtB
e2iθ − rArB

rB − t2
BrA

e2iθ − rArB

⎞
⎟⎟⎠. (A3)

FIG. 6. Schematic of the considered two-port, two-resonator (A
and B) asymmetric and noninstantaneous nonlinear system with a
phase delay θ .

In the expressions above, �A,B are the individual de-
tunings of the resonators, (rA,B, tA,B) are the off-resonant
reflection and transmission coefficients of each separate res-
onator, and (μA, j, μB, j ) ( j = 1, 2) are the individual coupling
parameters to the ports. Importantly, the matrices above
satisfy the time-reversibility condition CK∗ = −K . Again,
since we assume that the entries in C and K are inde-
pendent of field intensities and the characteristic nonlinear
relaxation times, these constraints continue to hold even
though the inclusion of a noninstantaneous nonlinearity
explicitly breaks the overall time-reversal symmetry of our
model.

053529-6



NONRECIPROCAL PULSE SHAPING AND CHAOTIC … PHYSICAL REVIEW A 104, 053529 (2021)

[1] R. E. Collin, Antennas and Radiowave Propagation (McGraw-
Hill, New York, 1985).

[2] L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling,
and C. Ross, On-chip optical isolation in monolithically inte-
grated non-reciprocal optical resonators, Nat. Photonics 5, 758
(2011).

[3] Y. Zhang, Q. Du, C. Wang, T. Fakhrul, S. Liu, L. Deng, D.
Huang, P. Pintus, J. Bowers, C. A. Ross et al., Monolithic in-
tegration of broadband optical isolators for polarization-diverse
silicon photonics, Optica 6, 473 (2019).

[4] Z. Yu and S. Fan, Complete optical isolation created by indirect
interband photonic transitions, Nat. Photonics 3, 91 (2009).

[5] K. Fang, Z. Yu, and S. Fan, Realizing effective magnetic field
for photons by controlling the phase of dynamic modulation,
Nat. Photonics 6, 782 (2012).

[6] K. Fang, Z. Yu, and S. Fan, Photonic Aharonov-Bohm Effect
Based on Dynamic Modulation, Phys. Rev. Lett. 108, 153901
(2012).

[7] H. Lira, Z. Yu, S. Fan, and M. Lipson, Electrically Driven
Nonreciprocity Induced by Interband Photonic Transition on a
Silicon Chip, Phys. Rev. Lett. 109, 033901 (2012).

[8] D. L. Sounas, C. Caloz, and A. Alu, Giant non-reciprocity at the
subwavelength scale using angular momentum-biased metama-
terials, Nat. Commun. 4, 2407 (2013).

[9] D. B. Sohn, S. Kim, and G. Bahl, Time-reversal symme-
try breaking with acoustic pumping of nanophotonic circuits,
Nat. Photonics 12, 91 (2018).

[10] D. L. Sounas and A. Alù, Non-reciprocal photonics based on
time modulation, Nat. Photonics 11, 774 (2017).

[11] M. Cotrufo, S. A. Mann, H. Moussa, and A. Alù, Nonlinearity-
induced nonreciprocity–Part I, IEEE Trans. Microwave Theory
Tech. 69, 3569 (2021).

[12] R. Boyd, Nonlinear Optics, 4th ed. (Elsevier, Amsterdam,
2020).

[13] L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M.
Weiner, and M. Qi, An all-silicon passive optical diode, Science
335, 447 (2011).

[14] K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M.
Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù et al.,
Inverse-designed non-reciprocal pulse router for chip-based li-
dar, Nat. Photonics 14, 369 (2020).

[15] Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, Non-
reciprocal transmission in a nonlinear photonic-crystal Fano
structure with broken symmetry, Laser Photonics Rev. 9, 241
(2015).

[16] D. L. Sounas, J. Soric, and A. Alù, Broadband passive isolators
based on coupled nonlinear resonances, Nat. Electron. 1, 113
(2018).

[17] Y. Pan, C. Wang, Z. Lyu, and T. Chen, Nonlinearity-induced
asymmetric diffraction in a hybrid A/B structure with two azo-
containing materials, Appl. Phys. Lett. 118, 011108 (2021).

[18] D. L. Sounas and A. Alù, Fundamental bounds on the operation
of Fano nonlinear isolators, Phys. Rev. B 97, 115431 (2018).

[19] M. Lawrence, D. R. Barton, and J. A. Dionne, Nonrecipro-
cal flat optics with silicon metasurfaces, Nano Lett. 18, 1104
(2018).

[20] B. Jin and C. Argyropoulos, Self-Induced Passive Nonrecip-
rocal Transmission by Nonlinear Bifacial Dielectric Metasur-
faces, Phys. Rev. Applied 13, 054056 (2020).

[21] A. Mekawy, D. L. Sounas, and A. Alù, Free-space nonrecipro-
cal transmission based on nonlinear coupled Fano metasurfaces,
Photonics 8, 139 (2021).

[22] C. Müller, J. Combes, A. R. Hamann, A. Fedorov, and
T. M. Stace, Nonreciprocal atomic scattering: A saturable,
quantum Yagi-Uda antenna, Phys. Rev. A 96, 053817
(2017).

[23] A. Rosario Hamann, C. Müller, M. Jerger, M. Zanner, J.
Combes, M. Pletyukhov, M. Weides, T. M. Stace, and A.
Fedorov, Nonreciprocity Realized with Quantum Nonlinearity,
Phys. Rev. Lett. 121, 123601 (2018).

[24] Q. Lin, O. J. Painter, and G. P. Agrawal, Nonlinear optical
phenomena in silicon waveguides: Modeling and applications,
Opt. Express 15, 16604 (2007).

[25] Z. Geng, K. J. H. Peters, A. A. P. Trichet, K. Malmir, R.
Kolkowski, J. M. Smith, and S. R. K. Rodriguez, Universal
Scaling in the Dynamic Hysteresis, and Non-Markovian Dy-
namics, of a Tunable Optical Cavity, Phys. Rev. Lett. 124,
153603 (2020).

[26] G. Keijsers, Z. Geng, K. J. H. Peters, M. Wouters, and S. R. K.
Rodriguez, Steady-state superfluidity of light in a tunable cavity
at room temperature, arXiv:2012.13463.

[27] K. Ikeda, H. Daido, and O. Akimoto, Optical Turbulence:
Chaotic Behavior of Transmitted Light from a Ring Cavity,
Phys. Rev. Lett. 45, 709 (1980).

[28] N. Cazier, X. Checoury, L.-H. Haret, and P. Boucaud, High-
frequency self-induced oscillations in a silicon nanocavity,
Opt. Express 21, 13626 (2013).

[29] D. M. Abrams, A. Slawik, and K. Srinivasan, Nonlinear Oscil-
lations and Bifurcations in Silicon Photonic Microresonators,
Phys. Rev. Lett. 112, 123901 (2014).

[30] K. Ikeda and O. Akimoto, Instability Leading to Periodic and
Chaotic Self-Pulsations in a Bistable Optical Cavity, Phys. Rev.
Lett. 48, 617 (1982).

[31] A. Armaroli, S. Malaguti, G. Bellanca, S. Trillo, A. de Rossi,
and S. Combrie, Oscillatory dynamics in nanocavities with
noninstantaneous Kerr response, Phys. Rev. A 84, 053816
(2011).

[32] W. W. Chow and S. Wieczorek, Using chaos for re-
mote sensing of laser radiation, Opt. Express 17, 7491
(2009).

[33] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet,
I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and
K. A. Shore, Chaos-based communications at high bit rates
using commercial fibre-optic links, Nature (London) 438, 434
(2005).

[34] K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz, Syn-
chronization of Lorenz-based chaotic circuits with applications
to communications, IEEE Trans. Circuits Syst. II 40, 626
(1993).

[35] S. Lepri and A. Pikovsky, Nonreciprocal wave scattering
on nonlinear string-coupled oscillators, Chaos 24, 043119
(2014).

[36] D.-W. Zhang, L.-L. Zheng, C. You, C.-S. Hu, Y. Wu,
and X.-Y. Lu, Nonreciprocal chaos in a spinning
optomechanical resonator, Phys. Rev. A 104, 033522
(2021).

[37] H. Mori, Transport, collective motion, and Brownian motion,
Prog. Theor. Phys. 33, 423 (1965).

053529-7

https://doi.org/10.1038/nphoton.2011.270
https://doi.org/10.1364/OPTICA.6.000473
https://doi.org/10.1038/nphoton.2008.273
https://doi.org/10.1038/nphoton.2012.236
https://doi.org/10.1103/PhysRevLett.108.153901
https://doi.org/10.1103/PhysRevLett.109.033901
https://doi.org/10.1038/ncomms3407
https://doi.org/10.1038/s41566-017-0075-2
https://doi.org/10.1038/s41566-017-0051-x
https://doi.org/10.1109/TMTT.2021.3079250
https://doi.org/10.1126/science.1214383
https://doi.org/10.1038/s41566-020-0606-0
https://doi.org/10.1002/lpor.201400207
https://doi.org/10.1038/s41928-018-0025-0
https://doi.org/10.1063/5.0021522
https://doi.org/10.1103/PhysRevB.97.115431
https://doi.org/10.1021/acs.nanolett.7b04646
https://doi.org/10.1103/PhysRevApplied.13.054056
https://doi.org/10.3390/photonics8050139
https://doi.org/10.1103/PhysRevA.96.053817
https://doi.org/10.1103/PhysRevLett.121.123601
https://doi.org/10.1364/OE.15.016604
https://doi.org/10.1103/PhysRevLett.124.153603
http://arxiv.org/abs/arXiv:2012.13463
https://doi.org/10.1103/PhysRevLett.45.709
https://doi.org/10.1364/OE.21.013626
https://doi.org/10.1103/PhysRevLett.112.123901
https://doi.org/10.1103/PhysRevLett.48.617
https://doi.org/10.1103/PhysRevA.84.053816
https://doi.org/10.1364/OE.17.007491
https://doi.org/10.1038/nature04275
https://doi.org/10.1109/82.246163
https://doi.org/10.1063/1.4899205
https://doi.org/10.1103/PhysRevA.104.033522
https://doi.org/10.1143/PTP.33.423


A. HOFSTRAND, M. COTRUFO, AND A. ALÙ PHYSICAL REVIEW A 104, 053529 (2021)

[38] P. Hänggi, Correlation functions and mastere quations of gener-
alized (non-Markovian) Langevin equations, Z. Phys. B 31, 407
(1978).

[39] K. Peters and S. Rodriguez, Limit cycles and chaos induced by
a nonlinearity with memory, arXiv:2108.02680.

[40] S. Fan, W. Suh, and J. D. Joannopoulos, Temporal coupled-
mode theory for the Fano resonance in optical resonators,
J. Opt. Soc. Am. A 20, 569 (2003).

[41] K. X. Wang, Z. Yu, S. Sandhu, and S. Fan, Fundamental bounds
on decay rates in asymmetric single-mode optical resonators,
Opt. Lett. 38, 100 (2013).

[42] X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L.
Kwong, Observation of femtojoule optical bistability
involving Fano resonances in high Q/Vm silicon photonic
crystal nanocavities, Appl. Phys. Lett. 91, 051113
(2007).

053529-8

https://doi.org/10.1007/BF01351552
http://arxiv.org/abs/arXiv:2108.02680
https://doi.org/10.1364/JOSAA.20.000569
https://doi.org/10.1364/OL.38.000100
https://doi.org/10.1063/1.2757607

