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Cylindrical paraxial optical beams described by the incomplete gamma function
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An analytic formula for a certain type of a cylindrical beam, which might be called a γ beam, has been derived
directly from the paraxial equation and independently using the method of the Hankel transform formulated in
our previous work [T. Radożycki, Opt. Laser Technol. 147, 107670 (2022)]. The fundamental properties of
this beam are analyzed and the parameters characterizing the beam shape are identified. The connection with
Gaussian and elegant Laguerre-Gauss beams is demonstrated. In the plane perpendicular to the propagation
axis, this beam is shown to display an expanding ring of high-energy concentration. At large radial distances
the spatial profile exhibits a power-law falloff. The phase of the wave is also studied in this paper. Close to the
symmetry axis it is shown to be typical of modes that exhibit vortex character, such as Gaussian beams of nth
order, but at large distances it reveals a peculiar behavior distinct from Gaussian-type beams.
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I. INTRODUCTION

For a number of years, physics of optical laser beams has
attracted the attention of researchers due to its numerous and
important applications among which one can mention optical
trapping and guiding of particles, image processing, optical
communication, harmonics generation in nonlinear optics,
quantum cryptography, and even those outside the direct con-
cern of physics, such as biology and medicine [1–12], but the
full range of applications is very wide.

An important class constitutes beams exhibiting cylindrical
symmetry, in particular those that are solutions to the paraxial
wave equation. Of those for which rigorous analytical ex-
pressions have been found, and which therefore draw special
interest from a theoretical point of view, one should mention
pure Gaussian (G) beams [13–22], Bessel-Gauss (BG) beams,
hyperbolic BG and “special” hyperbolic BG beams [22–28],
as well as Laguerre-Gauss (LG) beams [14,22,25,29–33], a
number of which exhibit a ringlike pattern of irradiance in the
transverse plane and are endowed with vorticity “charge.”

It should be emphasized that these examples are realistic.
Their structure, far from the trivial, idealized, and purely
textbook case of plane waves, can lead to various intriguing
phenomena which call for, and certainly shall find, a wide
range of practical applications. The current paper fits into this
line of issues. It is devoted to the description of a certain
type of optical beams, for which the name “γ beams” seems
adequate, and which are again exact solutions of the paraxial
Helmholtz equation, but apparently have not been dealt with
in the literature. Their existence was briefly mentioned in our
previous work devoted to a different topic [34], but a detailed
examination was left as the focus of the present paper. Below
we derive their analytical form step by step and investigate
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the basic properties. These beams do not display any Gaussian
falloff but for n > 1 (where n stands for vorticity) they are still
square integrable in the transverse plane and, therefore, do not
constitute merely an academic example.

The findings of this paper are derived within the framework
of the standard scalar and paraxial approximations of Maxwell
equations. The wave propagating along the z axis is then
represented with a scalar function

�(r, z, t ) = eik(ct−z)ψ (r, z), (1)

where the envelope ψ (r, z) satisfies the paraxial equation:

�⊥ψ (r, z) + 2ik∂zψ (r, z) = 0. (2)

The Laplace operator �⊥ stands here for a two-dimensional
one acting in the transverse plane only, and ∂z denotes the
partial derivative ∂

∂z . The details of the above approximations
are given elsewhere [14,35].

In polar coordinates r =
√

x2 + y2 and ϕ, that are particu-
larly suitable for our purposes, the dependence on the angular
variable can be isolated by means of the substitution

ψ (r, ϕ, z) = einϕ�(r, z), where n ∈ Z, (3)

and the paraxial equation can be finally given the form

(
∂2

r + 1

r
∂r − n2

r2
+ 2ik∂z

)
�(r, z) = 0. (4)

A special analytical solution to this equation will be derived
in the next section and a couple of basic properties will be
indicated. In Sec. III we will study the parameters character-
izing the beam under consideration. Since at large distances
the beam’s behavior is not Gaussian, these parameters will be
defined ab initio. Finally, Sec. IV is devoted to the analysis of
the intensity and phase distributions both in the transverse and
axial planes.
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II. DERIVATION OF THE FORMULA FOR γ BEAMS

In order to find the desired solution, the function �(r, z) is
substituted into (4) in the form of

�(r, z) = 1

rn
χ (r, z). (5)

Simple and straightforward transformations lead to the fol-
lowing equation for the function χ (r, z):

∂2
r χ (r, z) + 1 − 2n

r
∂rχ (r, z) + 2ik∂zχ (r, z) = 0. (6)

Now, to solve it one can observe that when introducing a new
complex variable u as

u = r2

a + iz
, (7)

with a being a constant to be fixed later, the following differ-
ential equation for χ (u) is obtained:

χ ′′(u) + 1 − n

u
χ ′(u) + k

2
χ ′(u) = 0. (8)

The separate dependence on r and z has disappeared and,
contrary to (6), one has now to do with an ordinary differential
equation. Obviously, primes stand here for the differentiations
with respect to u. This equation can easily be solved in two
steps when substituting a certain new function for χ ′(u). Leav-
ing aside rather obvious computational details, it is readily
found that the solution of (8) has the form

χ (u) = C

(
2

k

)n

γ

(
n,

ku

2

)
+ C̃, (9)

where γ denotes the (lower) incomplete gamma function [36].
Since (8) is a homogeneous equation and only derivatives

of χ (u) appear, neither constant C nor C̃ can be fixed at this
stage. The latter is simply set to zero in order to get a normal-
izable solution. As regards the former, it will be found later
via the normalization condition. Consequently one obtains

�(r, z) = C

(
2

k

)n 1

rn
γ
(

n,
kr2

2(a + iz)

)
. (10)

It can be assumed that a is real since any eventual
imaginary part merely shifts the variable z. Moreover, the nor-
malization condition of the beam in the perpendicular plane
requires a to be positive, since otherwise the function would
be exponentially growing with r2. Denoting 2a/k =: w2

0, one
gets the final expression

�(r, z) = C

(
2

k

)n 1

rn
γ
(

n,
r2

w2
0 + 2iz/k)

)
. (11)

It is a straightforward task to verify that � in this form satisfies
the paraxial equation (4).

An independent and very simple way of deriving formula
(11) is based on the method proposed in our earlier work [34],
exploiting the Hankel transform [37,38], especially adapted
to problems manifesting cylindrical symmetry. It was demon-
strated there that a number of various beams of that kind can
be derived from the single formula

�(r, z) =
∫ ∞

0
ds sJn(rs)βn(s)e−α(z)s2/4, (12)

where α(z) = w2
0 + 2iz/k, by a proper choice of the function

β(s). Then it was observed that by picking this function in the
form

βn(s) = sn−2, where n = 2, 3, . . . , (13)

one obtains the desired expression. After completing the inte-
gral with respect to s, this choice yields the result

�(r, z) = 2n−1 1

rn
γ
(

n,
r2

α(z)

)
, (14)

which is identical to (11) apart from the overall normalization
constant. These results might naturally be obtained directly
using, for example, the computational program MATHEMATICA

[39]. In order to fix the constant, we require that∫
d2r|ψ (r, z)|2 =

∫ ∞

0
dr r

∫ 2π

0
dϕ |ψ (r, ϕ, z)|2

= 2π

∫ ∞

0
dr r|�(r, z)|2 = 1. (15)

In fact the calculation can be made easier by setting z = 0. The
conservation of the value of this integral along the beam axis
is guaranteed by the form of the paraxial equation (2) which is
identical to the Schrödinger equation for a free particle in two
spatial dimensions, with z playing the role of time. Moving
along the z axis corresponds then to the temporal evolution in
quantum mechanics and independence of (15) of z represents
in fact the probability conservation condition. If so, the radial
integral (without the inessential constants) can be boiled down
to ∫ ∞

0
dr r1−2nγ

(
n,

r2

w2
0

)
= w2−2n

0

2

∫ ∞

0
dξ ξ−nγ 2(n, ξ )

= 2n−2w2−2n
0 (n − 1), (16)

where the integration variable has been changed to ξ =
r2/w2

0. Finally the normalized envelope of the γ beam can
be written as

�(r, ϕ, z, t ) = (
√

2w0)n−1

√
π (n − 2)!

eik(ct−z)einϕ

× 1

rn
γ
(

n,
r2

w2
0 (1 + iz/zR)

)
, (17)

where the quantity zR acts as the so-called Rayleigh length for
a certain hypothetical Gaussian beam of the waist w0, i.e.,

zR = 1
2 kw2

0 . (18)

These expressions will provide the starting point for further
analysis in the following sections.

Some insight into the behavior of the beam can be gained
by using the explicit form of the function γ (n,w) which
applies for natural n [36]:

γ (n,w) = [n]

(
1 − e−w

n−1∑
j=0

w j

j!

)
. (19)

It entails that the function �(r, ϕ, z, t ) is a sum of sev-
eral Gaussian-like terms and of a power expression of r−n.
Nonetheless, none of these Gaussian-looking expressions in-
dividually is a solution to the paraxial equation nor represents
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FIG. 1. The comparison of the approximate expression
γas(n, r2

w2
0

) (solid line) with the exact one, i.e., γ (n, r2

w2
0

) (dashed line),

as functions of the radial distance from the beam’s core for n = 2.

any Gaussian mode, which implies that (17) actually repre-
sents a different type of a beam.

It may be readily checked that for small arguments (i.e.,
|w|) the γ function can be approximated with

γ (n,w) ∼ wn

n
, (20)

which implies that close to the propagation axis the beam
exhibits behavior typical for a vortex core of order n, i.e.,

ψ (r, ϕ, z) ∼ rn

α(z)n
einϕ. (21)

On the other hand for large arguments it is obvious from (19)
that

γ (n,w) ∼ γas(n,w) := (n) − wn−1e−w, (22)

where “as” stands for “asymptotic.”
To ascertain at what distance from the axis the γ beam

may be described with the use of (22), in Fig. 1 the quantities
γas(n, r2

w2
0
) and γ (n, r2

w2
0
) are simultaneously plotted as func-

tions of the radial variable r for the exemplary value of n = 2.
It can be concluded that already for r > 2w0 the asymptotic
expression can be used with good accuracy. In parallel, one
can see that the first term in (22), i.e., (n), is dominant, as the
solid line gets almost flat (actually the second term contributes
less than 7% at r = 2w0 and is very quickly decreasing with
r), leading to power-law decay of the function � with growing
r. For larger values of n, e.g., for n = 10, the distance at which
γas fits for use increases slightly but does not exceed 4w0.

In [34] it was demonstrated that various choices of the
function βn(s) under the integral (12) lead to different paraxial
beams possessing cylindrical symmetry. The particular choice
in the form of (13) results, as we know, in the γ beam. As
is obvious from this approach, it constitutes something like
a “primitive” beam, or a “parent” beam, for a Gaussian and
so-called elegant Laguerre-Gauss (eLG) beams. Accordingly,
these three types of beams can be treated as belonging to
a single family. As we know from [34], the functions βn(s)
generating these two latter beams assume the following forms:

βn(s) = sn, G beams, (23a)

βn(s) = sn+2p, eLG beams, (23b)

where n, p ∈ N.

A close inspection of Eq. (12) suggests that these ex-
pressions can be generated if this inverse Hankel integral
representing the γ beam gets differentiated an adequate num-
ber of times with respect to α, or better yet, over z. One has
then the following scheme (all beams here are of the same
vorticity n):

γ beam
∂
∂z�−−−→ G beam

( ∂
∂z )p

�−−−→ eLG beam. (24)

This is confirmed by direct computation with the use of the
formula

d

dw
γ (n,w) = wn−1e−w, (25)

which, after elementary transformations, yields

∂

∂z
ψ (n)

γ (r, ϕ, z) = C (n)
0 ψ

(n)
G (r, ϕ, z). (26)

One could then say that the γ beam is more “fundamental”
than the “fundamental Gaussian beam.”

A similar formula for eLG beams reads

∂ p+1

∂zp+1
ψ (n)

γ (r, ϕ, z) = C (n)
p ψ

(n)
eLG(p)(r, ϕ, z), (27)

with C (n)
0 and C (n)

p standing for some normalization constants
since the normalization in the transverse plane is not preserved
in the course of differentiation.

The results expressed in (26) and (27) constitute a pleasant
property, but as a matter of fact it is not surprising that by
computing derivatives with respect to z different solutions of
Eq. (2) are produced. This is due to the fact that the paraxial
operator has a vanishing commutator with ∂z [40]:[

∂2
r + 1

r
∂r − n2

r2
+ 2ik∂z, ∂z

]
= 0. (28)

Naturally exact expressions for G and eLG beams with
n < 2 cannot be generated that way, as the corresponding γ

beam does not exist. It should be mentioned that certain differ-
ential relations between the fundamental Gaussian mode and
the Hermite-Gauss or Laguerre-Gauss modes have already
been exploited (see, e.g., [41,42]). However, formula (12), if
applicable, makes this kind of relationship trivially simple.

The above property implies a useful result based on the
usual Taylor expansion:

eik�z� (n)
γ (r, ϕ, z + �z, t ) − � (n)

γ (r, ϕ, z, t )

= C (n)
0 �z �

(n)
G (r, ϕ, z, t )

+
∞∑

p=1

C (n)
p

(p + 1)!
�zp+1 �

(n)
eLG(p)(r, ϕ, z, t ), (29)

which implies that the propagation of the γ beam along the z
axis is determined by the values assumed by the correspond-
ing G and eLG beams at a given arbitrarily chosen point (for
instance at the beam’s waist). Taking the derivative of both
sides of (29) with respect to �z a similar expansion for the
Gaussian mode in terms of eLG modes can be easily derived.

Formula (29) states in fact that a wave resulting from the
superposition of two arbitrarily shifted γ beams with appro-
priately chosen relative phases regains the Gaussian form in
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the transverse plane due to the destructive interference. This
in turn reflects the fact, referred to earlier, that the asymptotic
“tails” are z independent.

III. PARAMETERS OF γ BEAMS

A. Beams with n � 3

From (22) it is obvious that unlike typical beams the inten-
sity profile does not display the Gaussian character. Already
at the distance of few w0 from the propagation axis the domi-
nating term exhibits the power-law falloff. This means that the
parameters that are commonly used to characterize a beam (its
waist, radius, Rayleigh length, etc.) cannot be read off directly
from the exponential factor and need to be redefined.

In order to obtain the expression for the analog of the
beam radius, commonly denoted with w(z), it is convenient
to calculate

〈r2〉z =
∫

d2r |r|2 · |�(r, z, t )|2. (30)

This two-dimensional integration is performed only in the
transverse plane, and the normalized wave function in cylin-
drical coordinates is taken from (17). The convergence at the
origin is assured by the mentioned behavior of the γ function
for small arguments [see Eq. (20)], and at infinity (for n > 2)
by the denominator 1/rn. The subscript z indicates that this
quantity is z dependent, as we are dealing with a diffracting
beam. Obviously, the time dependence disappears in (30).

Then the γ -beam radius is defined in a natural way as

wγ (z) = [〈r2〉z]
1/2. (31)

This seems a reasonable generalization, since for a pure Gaus-
sian of the type exp(−r2/r2

0 ) one would obtain that way
[〈r2〉]1/2 = r0.

In order to calculate this value we first consider the auxil-
iary integral:

I (ζ ) =
∫ ∞

0
dx x1−nγ

(
n,

x

1 + iζ

)
γ
(

n,
x

1 − iζ

)
, (32)

where ζ stands for a certain real parameter. Now I (ζ ) can be
found by differentiating both sides with respect to ζ ,

dI

dζ
= −i

[
1

(1 + iζ )n+1

∫ ∞

0
dx x e−x/(1+iζ )γ

(
n,

x

1 − iζ

)

− (ζ �−→ −ζ )

]
, (33)

where the explicit formula for γ ′(n,w) has been used:

γ ′(n,w) = wn−1e−w. (34)

Now, integrating by parts, one can “kill” the γ function, ob-
taining an elementary integral:

dI

dζ
= − i

2n
(1 + iζ )

[ ∫ ∞

0
dx

(
1

2
(1 − iζ )xn + xn−1

)
e−x

− (ζ �−→ −ζ )

]
, (35)

where some obvious and straightforward transformations have
been omitted. Finally one comes to the needed formula:

I ′(ζ ) = (n − 1)!

2n−1
ζ �⇒ I (ζ ) = (n − 1)!

2n
ζ 2 + I (0), (36)

with I (0) easily fixed to

I (0) =
∫ ∞

0
dx x1−nγ 2(n, x) = (n − 1)!(n + 2)

2n(n − 2)
. (37)

Now returning to the formula (31) with � given by (17),
one can readily observe that the simple substitution r2 = x w2

0
leads to the following result:

wγ (z) = w0

[
2n−1

(n − 2)!
I
( z

zR

)]1/2

= w0

[
n − 1

2

(
n + 2

n − 2
+ z2

z2
R

)]1/2

. (38)

This reveals the hyperbolic law of variation with z typical of
solutions of the paraxial equations [43,44].

For the beam dealt with in the present paper, the defined
parameters such as wγ (z) and others given below will bear
the additional subscript γ unlike those describing a Gaussian
beam. First, it is obvious from (38) that the waist is now given
as

w0γ := wγ (0) = w0

√
(n − 1)(n + 2)

2(n − 2)
, (39)

and increases with n, but the smallest value is assumed for
n = 4 (w0γ ≈ 2.12 w0). Second, the new Rayleigh length zRγ

can be found from the condition

wγ (zRγ )

w0γ

=
√

2, (40)

leading to

zRγ = zR

√
n + 2

n − 2
. (41)

As n increases starting from n = 3, zRγ declines from its initial
value of

√
5 zR to zR, which reflects the growing diffraction

effects. The relatively long distance
√

5 zR is related to the
larger spot size. What is interesting is that the smallest value of
w0γ (for n = 4) does not necessarily correspond to the shortest
length zRγ .

Using the above expressions the formula for the beam’s
radius may now be given the familiar form

wγ (z) = w0γ

√
1 + z2

z2
Rγ

, (42)

but one has to remember that both w0γ and zRγ are here n
dependent.

The divergence half angle of the beam is defined as

tan θ0γ ≈ θ0γ = lim
z→∞

wγ (z)

z
= w0γ

zRγ

=
√

n − 1

2

w0

zR
=

√
n − 1

2
θ0, (43)
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where 2θ0 represents the divergence angle of the Gaussian
beam. It should be noted that in the case of the least diverging
beam (i.e., for n = 3) θ0γ = θ0.

Finally one can define a number quantifying the beam
quality [45,46], namely,

Mγ
2 = πw0γ θ0γ

λ
= n − 1

2

√
n + 2

n − 2
M2 = n − 1

2

√
n + 2

n − 2
,

(44)

since for the Gaussian beam M = 1. The “best” situation
occurs again for n = 3 for which Mγ = 51/4 ≈ 1.5.

B. The special case of n = 2

A nontruncated γ beam with the vorticity n = 1 does not
exist as it would transport an infinite amount of energy. Beams
with n � 3 have been characterized in the previous subsec-
tion. One is then left with the case of n = 2, for which the
integral (30) would diverge, and thus the necessary parameters
need to be defined in a different way. In this case it seems
natural to calculate

〈r〉z =
∫

d2r |r| · |�(r, z, t )|2. (45)

This integral is more challenging to calculate in view of the
“inconvenient” power of r, but it does converge, since at
infinity the integrand function depends on the radial variable
as r−3. In order not to bore the reader with the details of
calculating this integral, only the final result will be provided:

wγ (z) :=〈r〉z =
√

8π w(z)

[
1

8
+ w0

w(z)

√
1 + w0

w(z)
− w2

0

w(z)2

]
,

(46)

where w0, w(z) = w0

√
1 + z2/z2

R, and zR given by (18), are
again quantities related to a Gaussian beam. It should be
pointed out that the quantities redefined in the present sub-
section, bearing an additional index γ [as for example wγ (z)],
and referring solely to the case of n = 2, are only applicable
here, and in later sections of this paper, unless explicitly
stated, the general formulas previously defined for n � 3
apply.

Expression (46) cannot be given a concise form similar to
(42). However, the minimal value of wγ (z) is still obtained at
z = 0, since the derivative of wγ (z) has there the only root,
which corresponds to a minimum. In order to define w0γ we
calculate then

w0γ := wγ (0) = √
π

(
4 − 7

√
2

4

)
w0 ≈ 2.7w0. (47)

This result is by no means surprising as � decays very weakly
in the radial direction (merely as r−2) so the beam’s intensity
is distributed in a broader region.

For large z, the beam’s width exhibits typical linear behav-
ior:

wγ (z) ≈
√

π

8

w0

zR
z, (48)

which shows that the slope is about 0.63 of that which appears
for the Gaussian beam (i.e., w0/zR). The new Rayleigh length

is derived from the condition (40), which now reads

√
1 + ζ 2 + 8

√
1 + 1√

1 + ζ 2
− 8

1 + ζ 2
= 16 − 7

√
2, (49)

where, in order to make the expression more condensed, the
symbol ζ = zRγ /zR has been introduced. Only numerical so-
lution of (49) is possible, and one gets

zRγ ≈ 0.58 zR. (50)

These results allow us to estimate the beam’s divergence
and quality:

tan θ0γ ≈ θ0γ =
√

π

8

w0

zR
=

√
π

8
θ0 ≈ 0.63 θ0, (51a)

Mγ
2 = π

(√
2 − 7

8

)
M2 ≈ 1.67 �⇒ M ≈ 1.29.

(51b)

From that point of view, the beam for n = 2 turns out to be
“better” (but simultaneously broader) than that found in the
previous subsection.

IV. INTENSITY AND PHASE

The local beam’s intensity may be characterized by the
function

|�(r, ϕ, z, t )|2 =
(
2w2

0

)n−1

π (n − 2)!

1

r2n

∣∣∣∣γ
(

n,
r2

w2
0 (1 + iz/zR)

)∣∣∣∣
2

,

(52)
which vanishes both for r → 0 and ∞. Owing to (20) close to
the propagation axis the following approximation holds:

|�(r, ϕ, z, t )|2 ≈ 2n−1

πn2(n − 2)!w2
0

(
r2

w2
0

(
1 + z2/z2

R

))n

. (53)

A similar formula for a Gaussian beam would have the addi-
tional power of (1 + z2/z2

R) in the denominator. For large r, as
stems from (22), the leading term is z independent, and reads

|�(r, ϕ, z, t )|2 ≈ 2n−1(n − 1)(n − 1)!

πw2
0

(
w2

0

r2

)n

. (54)

In Fig. 2 the contour plots of |�(r, ϕ, z, t )|2 are depicted
in the exemplary plane z = 0.1 zR for n = 2 [left plot (a)],
n = 10 [left plot (b)], and n = 30 [left plot (c)]. The accompa-
nying figures on the right illustrate the dependence of |�|2 on
the radial variable r along with the corresponding Gaussian
beams. It should be recalled, however, that the expressions
describing the γ -beam irradiance have yet slowly vanishing
“tails,” hardly visible in the figures but contributing substan-
tially to the integrals for the beam’s radius.

The convention adopted throughout the paper is that the
scale on the axes is specified by the parameters w0, or zR,
rather than w0γ or zRγ . As we recall, the latter are functions
of n, so one would have different scales in each of the figures,
making their easy comparison impossible.

The left column of Fig. 3, in turn, displays the same quan-
tity in the plane comprising the propagation axis for increasing
values of the parameter n (2, 3, 5, 10, and 20). The right
column provides the same diagrams with the additional lines
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FIG. 2. The intensity distribution of the γ beam in the plane
z = 0.1zR for (a) n = 2, (b) n = 10, and (c) n = 30. The left column
plots represent the wave intensities in grayscale starting from low
intensity (dark) to high intensity (bright). In the right column the
corresponding normalized value of |�|2 [in units (2π/λ)2] is plotted
as a function of the radial distance r (solid lines). For comparison the
same quantity is plotted for the appropriate Gaussian beam (dashed
lines).

representing the values of w(z) and wγ (z) imprinted on them.
For the latter, either formula (38) or (46) was used depending
on the value of n. Dark colors have been lightened slightly
relative to the previous figure in order to make the additional
lines and captions on the axes better visible.

A couple of observations can be made. First, contrary to
w(z), the calculated quantity wγ (z) well corresponds to the
surface of the high-energy concentration, represented by light
regions: the larger n is dealt with, the better is the agreement.
The reason for it can already be seen in Fig. 2: for high n
the beam is more focused around areas of high irradiance, for
smaller n more dilution occurs. Secondly, a bigger n correlates
to a larger waist and to a wider beam, which might also be
inferred from the formulas for wγ (z). Finally, at a distance of
one to two zR (i.e., about zRγ ) there occurs a visible dilution

FIG. 3. The intensity distribution of the γ beam in the plane
containing the wave propagation axis for (a) n = 2, (b) n = 3, (c) n =
5, (d) n = 10, and (e) n = 20. The left column and the right one
show the same distribution, but the diagrams on the right include
in addition the axial intersections of the surfaces w(z) (white lines)
and wγ (z) (black lines). For better visibility the grayscale is slightly
brightened up relative to Fig. 2.

of the irradiance, i.e., not a transverse expansion of the beam,
which at a distance of zRγ takes place by the factor of

√
2 by

definition, but a clear weakening of the energy concentration
areas. This is shown in Fig. 4 for z = 0, zR, and 2zR.

Moving on to the beam’s phase, it should be noted that due
to the asymptotic behavior of the γ function the phase at large
radial distances is determined solely by the factor ei(kz+nϕ)

(omitting the factor e−ikct which merely leads to a global
rotation of the whole structure). Therefore, in each plane z =
const, the lines of constant phase are (asymptotically) radially
oriented unlike, for instance, the Gaussian beam, for which
they assume a spiral character. This pattern with growing r
was due to the presence of the r-dependent factor eikr2/R(z)

(see for instance [22]) which does not emerge in the case of γ

beams. The additional helical twist produced by the interplay
of z and ϕ, typical for any vortexlike beam, appears when
moving along the propagation axis and does not manifest itself
in any individual plane.
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FIG. 4. The normalized value of |�|2 [in units (2π/λ)2] for n =
3 plotted as a function of the radial distance r at z = 0 (solid line),
z = zR (dashed line), and z = 2zR (dotted line).

In Fig. 5, the phases of the Gaussian beam (upper plots) and
of the γ beam (lower plots) are compared in two planes: z = 0
and 2.24 zR. This latter value is chosen, since it corresponds to
zRγ for n = 3.

In the lower, right diagram, the mentioned effects can be
observed. Asymptotically, the curve of constant phase tends
really to a straight line (white dashed line), directed radially.
One can estimate its rotation angle relative to the direction of
the tangent line close to the origin (black dashed line). From
the asymptotic behavior discussed earlier, it is evident that the

FIG. 5. The phases of (a) the Gaussian beam and (b) the γ beam,
for n = 3, depicted in two planes: z = 0 and 2.24 zR. The value of
the phase, modulo 2π , is represented continuously by means of the
grayscale from −π (black color) to π (white color). The dashed
semilines show the directions of the tangent line at the origin (black
line) and that at infinity (white line). It is seen that �β � π .

FIG. 6. The intersection of wavefronts of two γ beams with
the axial plane xz for n = 3 (left plot) and n = 4 (right plot). The
wavefront surfaces are drawn for integer values of π .

additional phase factor reads

e−i�β := e−in arctan z
zR = e−inψG(z), (55)

where ψG(z) stands for the so-called Gouy phase of a Gaus-
sian beam with Rayleigh distance zR [22]. By substituting
z/zR = 2.24 and n = 3, this angle becomes −3.45 rad. This
value is close to π , so the semilines in the figure point in
almost opposite directions.

In Fig. 6 the intersection of the surfaces “phase = 0” and
“phase = π” with the axial plane y = 0 is presented for n = 3
and 4. The typical situation for odd values of n is shown
in the left diagram. The rotation around the z axis generates
the phase factor which is a multiplicity of 2π plus additional
π . Consequently the contours are discontinuous (the true
three-dimensional surfaces of constant phase are of course
continuous). In contrast, the second plot (for even n) does not
show any discontinuities since the rotation about the z axis
generates the additional phase factor of einπ which equals 1
for even n.

V. SUMMARY

A family of cylindrical paraxial beams, called in this paper
“γ beams,” has been constructed in an analytical way, by a
direct solution of the scalar paraxial equation. An independent
method of obtaining the analytical expression, developed in
[34], is based on the Hankel transform. These modes are
endowed with vorticity n, with n � 2. For n = 0 or 1 such
beams cannot be constructed, because they would carry an
infinite amount of energy. The spatial profile is described by
an incomplete gamma function, hence the name “γ beam.”
From the asymptotic properties of this function, it follows
that at distances of the order of few w0 such a beam is
not Gaussian in nature, but falls off in a power-law fashion
as 1/rn. From the derivation it follows that the γ beams
constitute a sort of parent beam for Gaussian and elegant
Laguerre-Gauss beams, which may, thereby, be referred to as
“daughter” beams. The formulas for the parameters describing
this kind of a beam cannot be read off from the Gaussian
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factor, which is not present. Therefore, they have been defined
and obtained independently. The intensity distribution of the
wave and its phase in the transverse plane have been analyzed
and illustrated in the figures. The intensity profile shows a
single annular maximum with a z-dependent radius corre-
sponding to the theoretically derived beam’s size wγ (z). The
wave phase exhibits a different spatial character than that of

generic Gaussian beams, for which the lines of constant phase
in a plane perpendicular to the propagation direction have a
spiral pattern. In contrast, in a γ beam these lines tend to
radial asymptotes. As to the practical realization, it seems that
the most direct method of generating γ beams might be the
use of a computer-generated hologram or computer-controlled
spatial light modulator.
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