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Complete characterization of attosecond photoelectron wave packets
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Development of attosecond laser technology allows us to measure electron dynamics such as photoionization
delays between different species or electronic states. In general, the measured photoionization phase is a mixture
of the spectral phase of the extreme ultraviolet (XUV) pulse and the atomic phases inherent to the optical
transitions. Hence, it is difficult to disentangle these phases independently. Here we separate these phases by
using an XUV attosecond pulse train containing both even and odd harmonic orders, generated by an 800-
and 400 nm laser pulse, in the presence of the infrared 800-nm pulse. We measure the photoelectron angular
distributions as a function of two independently controlled delays, the XUV-IR and the 800–400 nm delays,
with attosecond time resolution. We analyze the photoelectron angular distributions to determine the relative
amplitudes and phases of each angular momentum component. Using an in situ technique, we determine the
phases of the harmonic orders and thereby completely determine the atomic phases. Using the obtained atomic
phases and amplitudes, we reconstruct the real and imaginary parts of the continuum wave functions associated
with three individual photoionization pathways.
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I. INTRODUCTION

An optical transition is characterized by the complex tran-
sition probability amplitude d . In the dipole approximation
and the length gauge, d is represented as the product of the
electronic field and the transition dipole moment [1]. The
transition dipole moment is given by the integral of the elec-
tron position and the electronic wave functions of initial and
final states. If several final states are populated simultaneously
due to selection rules, the individual transition probability
amplitudes contribute on the total amplitude. In general, since
photoelectron spectroscopy measures a quantity proportional
to the square of the probability amplitude |d|2, it is difficult
to measure the complex value of d directly. Furthermore,
decomposing the phase of d into the phase of the electric field
and the phases of the individual transition dipole moments is
challenging.

Recent advances in attosecond technology have paved the
way to retrieve the phase information of a transition prob-
ability amplitude [2–13]. High harmonic generation is the
mechanism by which attosecond pulses in the extreme ultra-
violet (XUV) region are produced. A single attosecond pulse
has a broad spectrum [3], whereas an attosecond pulse train
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has a spectrum composed of peaks at odd multiples of the
driving laser frequency. A method referred to as RABBIT
measures kinetic energy spectra or momentum distributions
of photoelectrons ionized by the attosecond pulse train in
the presence of an IR laser field as a function of the XUV
and IR delay [4–8]. The intensity of the photoelectron sig-
nal is modulated as the delay varies. The relative phase of
the intensity modulation carries information on the following
two components. One is the harmonic phase, which comes
from the fact that each harmonic in the XUV pulse has a
different spectral phase. The other is the atomic phase, which
consists of the phase of the transition dipole moments associ-
ated with different transition pathways. Using the RABBIT
experiments alone and without calculations [4,5] or refer-
ence atoms [9], it is difficult to disentangle the harmonic
phase from the atomic phase as well as further decompos-
ing the atomic phase into the phases of individual transition
moments.

Another approach for attosecond dynamics and pulse mea-
surements utilizes the electron recollision process which is
the mechanism underlying attosecond XUV pulse generation
[10]. The phase, amplitude, and polarization of the attosec-
ond XUV pulse generated from a sample material contain
information about molecular orbital structure, electron and
molecular dynamics, and band structure of solid materials
[11–13]. In a method referred to as in situ measurement, one
generates an XUV pulse which has both even and odd har-
monics by focusing a fundamental pulse (ω) combined with
its second harmonic (2ω) to a sample gas or a solid material.
The high-harmonic spectra are measured as a function of
the ω-2ω delay. From the modulation of the even harmonic
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FIG. 1. Experimental setup. The main panel shows the view from
top. Side panel (a) shows how to generate the second harmonic and
make two delays. The side panel (b) shows how to isolate the XUV
pulse from the copropagating IR pulse and adjust the delay between
the XUV and IR pulses.

spectral intensity, the spectral phase of the XUV pulse can be
retrieved [12].

Here we combine these two attosecond approaches to
determine both the harmonic phase and atomic phases of
all angular momentum components in a photoelectron wave
packet without the need for calculations or reference atoms.
We generate attosecond pulse trains which consist of both
even and odd harmonic orders by focusing ω and 2ω pulses
into an argon gas jet [7,14–16]. We ionize neon gas using
the XUV pulse in the presence of an IR pulse and record the
velocity map images (VMIs) of photoelectrons as a function
of two delays, ω-2ω delay T2ω and the XUV-IR delay TXUV.
Since these two delays are controlled independently, this is a
two-dimensional (2D) attosecond experiment. Distinct from
a conventional RABBIT experiment which utilizes two-path
interference in the photoionization process [4–6], our method
employs three-path interference to resolve the phases of par-
tial wave components in the photoelectron wave packets [7].
At each value of T2ω, we analyze the photoelectron angular
distributions measured as a function of TXUV to obtain the
phases and amplitudes of the angular momentum components
in three different transition pathways. From the variation of
the measured phases with T2ω, we retrieve how the spectral
phase of the even harmonics changes as a function of T2ω

and find a characteristic π phase jump. Next, by measuring
the high-harmonic spectra as a function of T2ω with the in
situ method, we disentangle the atomic phase of each angular
momentum component from the harmonic phase. Using the
obtained atomic phases and amplitudes, we reconstruct the
complex electron wave packets associated with three transi-
tion pathways in momentum space.

II. EXPERIMENTAL SETUP

Figure 1 schematically shows the experimental setup that
was developed and constructed at Waseda University. The
experiment is based on an earlier one [7] in which neon was

photoionized by both even and odd harmonics in the presence
of an IR laser field. A dual-stage, Ti:sapphire laser ampli-
fier (Komodo-Dragon, KMLabs) generates an 1 kHz, 35 fs,
800-nm laser pulse as a fundamental pulse (IR, ω). The
estimated IR intensity for generation of high-harmonics is
1.2 × 1014 W/cm2. The side view (a) shows the optical design
before the HHG gas jet. After adjusting the polarization with
a λ/2 plate, we form two temporally separated beams by
inserting a half-moon shaped, 1-mm thickness fused silica
plate α to the beam path. The intensity ratio of the upper part,
referred to as beam A, is larger than that of the lower part,
beam B. Beam A is used to generate the XUV pulse, and beam
B is used as a dressing IR laser pulse. Both beams pass through
a β-BBO crystal to generate the second harmonic (SHG, 2ω).
The intensity of the 2ω field is less than 1% of the ω field, so
that the odd harmonic intensity is not strongly modulated [12].
The calcite plate adjusts the group delay between the ω and
2ω pulses so that the two pulses are temporally overlapped at
the position where the XUV pulses are generated. The dual
waveplate rotates the polarization of the ω pulse to make
it parallel to that of the 2ω. These beams are focused into
an argon pulsed gas jet in a vacuum chamber to generate
the XUV pulse in which odd and even harmonic orders of
the fundamental frequency are produced. Rotating the calcite
plate makes a phase delay between the ω and 2ω, T2ω.

The side view (b) shows the optical design in the vacuum
chamber schematically. The XUV and IR pulses are reflected
off two silicon mirrors. The upper part of the silicon mirror
surface is coated by silver while the lower part is uncoated.
The intensity of the IR in the beam A are reduced by reflection
from the lower part of the silicon mirror set at Brewster angle.
Since the SHG intensity is sufficiently low, the residual SHG
intensity after the mirrors can be low in spite of the slightly
different Brewster angle. Beam B is reflected on the silver
coated part of the mirror while almost keeping the intensity. A
1-mm thickness fused silica plate β removes the XUV pulse
and temporally isolates the SHG pulse from the IR pulse.
The XUV and IR pulses are focused by a 270-mm focal
length, gold coated toroidal mirror (ARW Optical Corpora-
tion) into an ionization region in the velocity map imaging
spectrometer. The fused silica plate β adjusts the group delay
between the XUV and IR pulses. By rotating the plate to
increase the optical path length for the IR pulse relative to
the XUV pulse, we make a delay between the XUV and IR
pulses TXUV. The IR intensity is estimated to approximately
4 × 1012 W/cm2. We set the VMI spectrometer so that the
electrons are accelerated in the direction perpendicular to the
laser propagation direction and the polarization directions of
the XUV and IR pulses. The VMI spectrometer is a standard
design. The VMI images are recorded on a 2D microchannel
plate with a phosphor screen and measured by a CCD camera.
We measure the spectra of the XUV pulse by using a flat-field
grating (Hitachi) and a microchannel plate.

III. EXPERIMENTAL RESULTS

A. Three-path quantum interference in XUV-IR photoionization

Figure 2(a) illustrates the ionization scheme for neon
to produce photoelectron wave packets by three ionization
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FIG. 2. Three-path quantum interferences. (a) Illustration of an
energy diagram for three-path interferences in the photoionization
process caused by an XUV and a dressing IR pulse. Two color
transitions by harmonic 13 plus one IR photon (H13+IR) and har-
monic 15 minus one IR photon (H15-IR) generates a photoelectron
wave with p- or f- angular component in the ionization continuum.
One-photon ionization by harmonic 14 (H14) generates a s- or d-
photoelectron wave. By tuning the photon energy of the XUV pulse
and the intensity of the dressing IR pulse, we selectively ionize the
magnetic quantum number m = 0. (b) An example of a measured
VMI image that is produced by the two-photon ionization processes,
H15+IR and H13-IR. (c) and (d) Examples of VMI images when
one-photon ionization by H14 is added to the two-photon ionization
process. The images are taken at two different XUV-IR delays (TXUV)
separated by 1.33 fs. Because of the three-path interference, the
angular distribution varies with TXUV. The polarization direction of
both XUV and IR pulses is indicated by the black arrow.

pathways. An excitation from the 2p ground state of neon with
harmonic order H13, through the resonant 3d bound state,
followed by one photon absorption of an IR pulse (H13 +
IR) generates an electron wave packet with � = 1 (p wave)
or � = 3 ( f wave) in the ionization continuum. Likewise,
ionization with H15 followed by emission of an IR photon
(H15 – IR) generates a p wave or f wave. A direct one-photon
ionization with H14 generates a wave packet with � = 0 (s
wave) or � = 2 (d wave). The electron wave packets pro-
duced by these three paths have the same kinetic energy, and
therefore coherently interfere with each other. We adjusted
the IR laser intensity and the XUV photon energy so that
photoelectrons with m = 0 are preferentially produced [17].
In the low kinetic energy region of the VMI images, a char-
acteristic sixfold structure is observed, composed primarily
of an f wave (� = 3, m = 0), as shown in Fig. 2(b). The
intensity of each lobe in the structure varies with both delays,
T2ω and TXUV, due to three-path interference. In Figs. 2(c)
and 2(d), we present examples of VMI images measured at
T2ω = 0.58 f s (see the next section) and at two different TXUV

separated by T0/2 = 1.33 f s, where T0 is the optical period
of the fundamental pulse. The top lobe is strongest in (c),
whereas the bottom lobe is strongest in (d). The pattern moves
up and down as a function of TXUV due to interference between
final-state photoelectron angular distributions that have even
and odd parity.

FIG. 3. In situ measurement of the harmonic phase. (a) The high-
harmonic spectra in argon measured as a function of T2ω, the delay
between the fundamental and second harmonic pulses. The white
dotted lines indicate those delays at which VMI measurements were
made. The time zero is set at the delay when the H14 intensity is
maximized. The red dots mark those times at which the even har-
monic intensity minimizes. (b) The emission times (relative to H14)
obtained from the measurement (data points). The curve shows the
classical calculation of the relative emission time for each harmonic
order in argon at the 800 nm intensity of 1.2 × 1014 W/cm2.

B. In-situ measurement of the harmonic phase

Figure 3(a) shows the measured high-harmonic spectra
generated in argon as a function of the ω-2ω delay T2ω. This is
the XUV spectrum that photoionizes neon atoms in the VMI.
As has been reported elsewhere [12], both odd and even order
harmonics are observed. The intensity of all harmonics modu-
lates with a period of 0.66 f s. We recover the XUV harmonic
phases from these spectra based on the method described in
Ref. [12]. We first determine the values of T2ω at which the
even-order harmonics minimize in intensity and plot them as
red dots in Fig. 3(a). We convert the T2ω into the emission
time, te, relative to that of H14 using 2T2ω = te [18,19]. The
curve in Fig. 3(b) represents a classical calculation of the
relative emission time for each harmonic order, assuming an
800-nm intensity of 1.2 × 1014 W/cm2. The calculation is
consistent with the experimentally observed emission times te
(data points). We obtain the te for H13 and H15 by inter- and
extrapolating the measured emission times with a linear curve.
Then the emission time te of a particular harmonic order n is
converted to the harmonic phase by φh

n = nω0te, where ω0 is
the angular frequency of the fundamental pulse [5]. The rel-
ative harmonic phase is estimated as φh

14 = 0, φh
15 = 1.61 rad

and φh
13 = −1.40 rad. Harmonic 14 is assigned an emission

time and a phase of zero.

C. Measuring amplitudes and phases of photoelectron
angular components

Next, at a set of T2ω, we measure the velocity map images
as a function of TXUV. Note that in the earlier experiment [7],
the measurements were made at a particular T2ω. The values
of T2ω we chose in the present experiments are plotted as
white dotted lines in Fig. 3(a). We set T2ω = 0 as the time
at which the H14 intensity is maximized. The range of T2ω

covers one modulation period in the harmonic spectra. At
each angle from the vertical polarization axis, we integrate the
VMI signal counts along the radial direction in the low kinetic
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FIG. 4. Photoelectron angular distributions as a function of de-
lays. The experimental (left column) and modeled (right column)
photoelectron angular distributions as a function of the XUV-IR
delay (TXUV) at 8 values of the delay between the 800 and 400 nm
driving fields (T2ω). The values of T2ω are shown on the left side in
f s. The derived fitting parameters, amplitudes and phases of angular
momentum components, are listed in Table I.

energy region to obtain the photoelectron angular distribution
(PAD). We plot the PADs versus TXUV at eight values of T2ω

in the left panels of Fig. 4. Here 0◦ corresponds to the upper
lobe in the VMI images, and 180◦ corresponds to the bottom
lobe. As has been reported in Ref. [7], the PADs repeat with
the full period of the fundamental laser pulse, 2.66 fs. It is also
apparent from Fig. 4 that the pattern of PADs as a function of
TXUV varies with T2ω.

Based on the three-path interference model [7], the angular
part of the photoelectron wave packet |ψ (TXUV)|2 for a fixed
T2ω is given by

ψ (θ, TXUV)

= Ase
iφF

s Y00 + Ad eiφF
d Y20

+ (
Ap13eiφF

p13Y10 + A f 13eiφF
f 13Y30

)
eiω0TXUV

+ (
Ap15eiφF

p15Y10 + A f 15eiφF
f 15Y30

)
e−iω0TXUV, (1)

where As, Ad , Ap13, A f 13, Ap15, and A f 15 represent real
amplitudes, φF

s , φF
d , φF

p13, φF
f 13, φF

p15, and φF
f 15 represent

phases for each partial wave component, ω0 is the angular
frequency of the fundamental pulse, TXUV is the XUV-IR de-

TABLE I. Fitted amplitudes and phases of partial waves. Ampli-
tude (AF

i ) and phase (φF
i ) values obtained by a global fitting of the

experimental VMI data at eight values of T2ω. The phase of the s
wave component is set to zero. All phases are modulo 2π .

T2ω delay Ampl. or
(fs) phase (rad) s d p13 p15 f13 f15

0.00 Ampl. 0.89 0.10 0.12 0.12 0.30 0.29
Phase 0.00 1.20 1.96 0.45 5.45 3.73

0.100 Ampl. 0.87 0.12 0.12 0.13 0.31 0.32
Phase 0.00 1.14 1.77 0.52 5.33 3.84

0.264 Ampl. 0.47 0.27 0.38 0.50 0.43 0.36
Phase 0.00 2.61 3.27 0.71 4.60 3.60

0.378 Ampl. 0.83 0.09 0.17 0.13 0.41 0.30
Phase 0.00 0.31 5.70 3.71 2.62 0.35

0.470 Ampl. 0.87 0.07 0.13 0.13 0.33 0.29
Phase 0.00 0.80 5.52 3.53 2.53 0.41

0.585 Ampl. 0.90 0.07 0.11 0.11 0.29 0.27
Phase 0.00 1.17 5.24 3.62 2.36 0.55

0.749 Ampl. 0.90 0.10 0.10 0.11 0.28 0.28
Phase 0.00 5.00 2.58 1.26 5.61 4.04

0.861 Ampl. 0.90 0.07 0.07 0.15 0.26 0.31
Phase 0.00 1.16 0 3.02 2.33 0.61

lay time, Ylm(θ, ϕ) are spherical harmonics, and θ is the polar
angle from the polarization axis of the laser pulses, and ϕ is
the azimuthal angle. As shown in Ref. [17], the experiment
was able to isolate the magnetic quantum number m = 0 and
hence Ylm depends on only θ . Note that the amplitudes and
phases are a function of T2ω.

We use the same analysis as reported in Ref. [7] to
determine the phase and amplitude for each partial wave.
Independently for each T2ω, using amplitudes Ai and phases
φF

i (where i denotes s, d , p13, f13, p15 or f15) in Eq. (1)
as fitting parameters, we calculate the PADs as a function
of TXUV and compare to the experimentally observed PADs
versus TXUV. Using a particle swarm optimization procedure
[20], these parameters are globally determined for each value
of T2ω. The optimized fitting parameters are summarized in
Table I. Because the global phase cannot be determined, the
phase of the s wave φF

s is set to zero for all T2ω, and the other
phases are relative to that of the s wave. Note that the s and d
waves are produced by only the XUV pulse, and so both φF

s
and φF

d are independent of the delay between the XUV and IR,
TXUV; these provide the stationary references for the p- and f
-wave components that vary with TXUV. In the right panels
of Fig. 4, we plot the calculated PADs as a function of TXUV

using Eq. (1) with the fitted parameters shown in Table I. The
calculated patterns of PADs versus TXUV are consistent with
the measured distributions for all T2ω.

The fitted phases in Table I at T2ω = 0.749 f s are signif-
icantly different from the phases of neighboring data points
for all angular momentum components. Since the measured
angular distribution pattern observed at 0.749 f s is compara-
ble with those at 0.58 f s (see Fig. 4), the discrepancy might
be caused by a failure in the global fitting process. We note
that adding π to the phases at 0.749 f s causes all of the points
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to line up with the other curves. This suggests that the fitting
algorithm inverted the phase of the s-wave component. For the
following analysis, we ignore the data points at 0.749 f s.

IV. ANALYSIS

A. Disentangling the atomic phase from the harmonic phase

Now we disentangle the atomic phase from the harmonic
phase. The atomic phases are relevant to the transition dipole
moment and are independent of T2ω, while the harmonic
phases of H13, H14, and H15 depend on T2ω. The experimen-
tally fitted phases φF

i shown in Table I can be written as a sum
of these two components

φF
s (T2ω ) = φH

14(T2ω ) + φA
s ,

φF
d (T2ω ) = φH

14(T2ω ) + φA
d ,

φF
p13(T2ω ) = φH

13(T2ω ) + φA
p13,

(2)
φF

f 13(T2ω ) = φH
13(T2ω ) + φA

f 13,

φF
p15(T2ω ) = φH

15(T2ω ) + φA
p15,

φF
f 15(T2ω ) = φH

15(T2ω ) + φA
f 15,

where the φH
n represent the spectral phases of the correspond-

ing harmonic orders, and the φA
i represent the atomic phases.

After substituting the phases defined in Eqs. (2) into Eq. (1)
and dividing by eiφH

14 , we can relate the phases shown in Table I
with the atomic and harmonic phases,

φF
s = φA

s ,

φF
d = φA

d ,

φF
p13(T2ω ) = φH

13(T2ω ) − φH
14(T2ω ) + φA

p13,

φF
f 13(T2ω ) = φH

13(T2ω ) − φH
14(T2ω ) + φA

f 13,

φF
p15(T2ω ) = φH

15(T2ω ) − φH
14(T2ω ) + φA

p15,

φF
f 15(T2ω ) = φH

15(T2ω ) − φH
14(T2ω ) + φA

f 15. (3)

Since we know the left-hand sides of Eqs. (3) from Table I,
we can determine the atomic phases if we know the phase
relationship between the harmonics, φH

13(T2ω ) − φH
14(T2ω ) and

φH
15(T2ω ) − φH

14(T2ω ).

B. The harmonic phase as a function of T 2ω

We discuss how the harmonic phases depend on T2ω.
Figure 5(a) plots the experimentally determined phases
φF

p13, φF
f 13, φF

p15, and φF
f 15 as a function of T2ω from Table I.

Since the intrinsic atomic phase φA
i is independent of T2ω, the

phase variation is caused only by the harmonic phases. For all
four channels, a phase jump is seen at T2ω ∼ 0.33 f s when the
intensity of H14 is minimized [see Fig. 3 (a)]. In Fig. 5(b), we
plot the phases averaged over the four channels. The averaged
phase jump is 3.23 ± 0.30 radians, close to π . In Ref. [14],
it was inferred that the even harmonics were π/2 out of phase
with the neighboring odd harmonics [14], but the variation
with the ω-2ω delay was not determined.

The π phase jump can be explained by a simple
analytical model based on the discussion in Refs. [12,18]
and as described in the Appendix. The complex spectral

FIG. 5. Phases of photoelectron angular components as a func-
tion of T2ω. (a) The fitted phases φF

p13, φF
p15, φF

f 13 and φF
f 15 listed in

Table I. The data points at T2ω = 0.749 f s are significantly shifted
from neighboring points due to the fitting procedure (see text). (b)
The phases averaged over φF

p13, φF
p15, φF

f 13 and φF
f 15. The phase at

T2ω = 0 is set to zero. The lengths of the error bars are normalized
so that the error at T2ω = 0 is zero. A π phase jump (3.23 radians) is
seen at T2ω ∼ 0.33 fs. (c) The calculated spectral phases of H14 (red)
and H18 (blue) versus T2ω. The SFA calculation is compared with
the experimental data (square data points). The spectral phases for
H13 (magenta) and H15 (green) are also plotted. (d) The phases after
removing the π phase jump. The dashed lines represent the phases
averaged over T2ω for each partial wave component.

amplitudes of odd and even harmonics are given
by Eodd(ω) = 2 cos ϑ |E0(ω)|exp(iφH

ω ) and Eeven(ω) =
2i sin ϑ |E0(ω)|exp(iφH

ω ) = 2sinϑ |E0(ω)|exp[i(φH
ω + π/2)],

where ϑ is the additional phase that is caused by the weak
second harmonic field, E0(ω) is the XUV field amplitude, and
φH

ω is the spectral phase in the absence of the second harmonic
field. The value of ϑ oscillates near zero as a function of T2ω

when the second harmonic field is sufficiently weak. At those
delays at which ϑ = 0, the even harmonic intensity |Eeven|2
becomes zero. When ϑ changes sign, the phase of Eeven

changes from (φH
ω + π/2) to (φH

ω + π/2 − π ) = (φH
ω − π/2)

or vice versa. Hence, the spectral phase of even harmonics
changes by ±π/2 at those delays at which the even harmonic
intensity is minimized. Thus

φH
14(T2ω ) =

{
φH

14 + π
2 for T2ω < 0.33 f s

φH
14 − π

2 for T2ω > 0.33 f s,
(4)

where φH
14 is the spectral phase of H14 in the absence of the

second harmonic field as determined in Fig. 3.
A calculation based on the strong field approximation

(SFA) [21] supports this conclusion. In Fig. 5(c), we plot the
relative harmonic phases for H14 and H18 as a function of
T2ω. The intensity of the 800-nm field is 1.2 × 1014 W/cm2

and E2ω

Eω
= 0.02. Both curves exhibit a stepwise function with

a step size of π and intersect at the delay when the even
harmonic intensity is maximized, T2ω = 0.66 f s. The calcu-
lation confirms the validity of Eq. (4). As expected from the
simple model, the odd harmonics H13 (red) and H15 (green)
calculated by SFA are almost invariant with T2ω.
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TABLE II. Atomic phases and amplitudes of the partial wave
components. The left side (φF

i ) shows the averaged fitted phases after
removing the ±π/2 phase jump of H14. The right side shows the
atomic phases (φA

i ) and atomic amplitudes (AA
i ). The values of AA

i are
normalized so that the amplitude of s wave is unity.

Partial Phase Std Dev Partial Atomic Std Dev Partial Atomic
wave (rad) (rad) wave phase (rad) (rad) wave amplitude

φF
s 0 0 φA

s 0 0 AA
s 1

φF
d 1.2 0.7 φA

d 1.2 0.7 AA
d 0.10

φF
p13 4.0 0.6 φA

p13 −0.86 0.6 AA
p13 0.12

φF
p15 2.0 0.3 φA

p15 0.39 0.3 AA
p15 0.12

φF
f 13 7.0 0.4 φA

f 13 2.08 0.4 AA
f 13 0.31

φF
f 15 5.2 0.1 φA

f 15 3.63 0.1 AA
f 15 0.29

This is an experimental observation of the ±π/2 (or
π ) phase jump in the even harmonic emission. With this
knowledge, we can remove the harmonic phase dependence
on T2ω. The experimentally determined phases φF

i (T2ω ) in-
clude the ±π/2 phase jump through the φH

14(T2ω ) term. We
remove the ±π/2 phase jump on both sides of Eqs. (3) us-
ing φH

13(T2ω ) − φH
14(T2ω ) = φH

13 − φH
14 ± π/2 and φH

15(T2ω ) −
φH

14(T2ω ) = φH
15−φH

14 ± π/2. We add π/2 for T2ω < 0.33 f s
and −π/2 for T2ω > 0.33 f s to φF

i and plot the results in
Fig. 5(d). The averaged values for φF

i are plotted as dotted
lines and listed in the left panel of Table II.

C. The atomic phases and amplitudes for partial waves

We now have all the ingredients required to determine
the intrinsic atomic phases for each channel. Subtracting the
values of φH

15−φH
14 = 1.61 rad and φH

13−φH
14 = −1.40 rad from

φF
i listed in the left panel of Table II, we obtain the atomic

phases φA
i listed in the right panel of Table II. Next, we dis-

entangle the atomic amplitudes AA
i from the spectral intensity.

At every T2ω except 0.26 f s when the signal intensity is low,
we divide the fitted amplitude listed in Table I by the square
root of the measured spectral intensity of each harmonic.
The values are averaged over T2ω and normalized so that the
amplitude of the s wave is unity. The resulting values of AA

i
are listed in the right panel of Table II as well.

With these atomic phases φA
i and amplitudes AA

i , we recon-
struct the electron wave functions produced in the ionization
continuum by the H13+IR, H14, and H15-IR pathways using
the following equations:

ψH15−IR(k, θ, ϕ)

= [
AA

p15eiφA
p15Y10(θ, ϕ) + AA

f 15eiφA
f 15Y30(θ, ϕ)

]
R(k),

ψH13+IR(k, θ, ϕ)

= [
AA

p13eiφA
p13Y10(θ, ϕ) + AA

f 13eiφA
f 13Y30(θ, ϕ)

]
R(k),

ψH14(k, θ, ϕ) = [
AA

s eiφA
s Y00(θ, ϕ) + AA

d eiφF
d Y20(θ, ϕ)

]
R(k),

(5)

where R(k) is the radial wave function. We assume R(k) to
be shared for all wave functions. The R(k) is obtained by
averaging the observed VMI images over one period of the

FIG. 6. Reconstruction of the photoelectron wave packets. The 3D and 2D re-constructed momentum-space electron wave-packet images
produced by photoionization pathways of (a) H15−IR, (b) H13+IR, and (c) H14. The left panels show the real part and the right panels show
the imaginary part of the wave packet. The 2D images are obtained by cutting the 3D images along the polarization axis, vertical in the figure.
We use the atomic phases and amplitudes for each partial wave given in the right side of Table II.
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TXUV at T2ω = 0.58 fs, followed by integration of the averaged
VMI image over angle and taking a square root of it. We
fit the curve with a double Gaussian distribution and remove
the very low kinetic energy region which potentially includes
the background signals. Figure 6 shows the 3D re-constructed
wave-packet images for the ionization pathways of H15-IR,
H13+IR, and H14. The 2D images cut along the polarization
axis of the 3D images are also shown. The images clearly
show that the photoelectron wave packet generated by H15-IR
differs from that generated by H13+IR. This is due to the fact
that the atomic phase dependence on the photon energy for the
p wave is different from that of the f wave. We discuss this in
the next section.

V. CALCULATIONS OF ATOMIC PHASES

So far, we have obtained the atomic phases for the photo-
electron angular momentum components for three ionization
pathways. In principle, the result allows us to make a com-
parison with the calculation of the dipole moment for the
transition from the ground state to the particular angular mo-
mentum state. We discuss some aspects of the interpretation of
the results, although a detailed theoretical modeling is outside
the scope of this experimental paper. As shown in Fig. 2(a),
there are three pathways that yield the same electron kinetic
energy: H14 directly to s and d waves; H15-IR; and H13+IR.
The latter channel includes a complex mixing of resonant
states around the 3d bound state of neon [17]. The first two
channels are transitions from the initial 2p state directly to
the continuum. Their phases therefore include the phase of
the continuum states, which are scattering states of the ion,
including both short-range and long-range (Coulomb) com-
ponents. To calculate the continuum wave functions, we use a
one-electron effective potential for neon [22],

V (r) = −Zc + a1e−a2r + a3re−a4r + a5e−a6r

r
, (6)

with Zc = 1, ai = [8.069, 2.148, −3.570, 1.986, 0.931,

0.602]. Since the potential is spherically symmetric, the elec-
tronic wave function can be represented as a product of a
radial and an angular part,

ψ (r, θ, ϕ) =
∑
lm

1

r
φl (r)Ylm(θ, ϕ). (7)

Here φl (r) is the reduced radial wave function which satis-
fies the reduced Schrödinger equation with effective potential

Vl (r) = l (l + 1)

2r2
+ V (r). (8)

The solutions φl (r) are determined by integrating the re-
duced Schrödinger equation using the Numerov algorithm
[23]. The wave function is normalized at asymptotically large
distances from the core as described in Ref. [24]. The ra-
dial solutions determine a scattering phase shift ηl = σl + δl ,

where one of the phases, σl , is due to the Coulomb potential,
and the other, δl , is due to the short-range potential specific
to neon. These phase shifts are a function of the asymptotic
kinetic energy of the electron.
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FIG. 7. Scattering phase and continuum-continuum phase. Scat-
tering phases ηl of the continuum electron wave function for each
partial wave component, calculated for neon, as a function of the
photon energy. The first ionization potential of neon is 21.56 eV.
Additional phase shift φcc of the photoelectron wave function due
to continuum-continuum coupling by the infrared field. The phase
diverges quickly as the electron kinetic energy becomes small.

In Fig. 7 we plot the scattering phase shifts correspond-
ing to photoionization of neon as a function of the photon
energy. These phase shifts of the continuum electron are
involved in all three photoionization channels. For the H14
channel, they are the only phase. For the H15-IR channel,
there is an additional phase shift due to continuum-continuum
coupling caused by the infrared field. This coupling results
in the RABBIT sideband at H15-IR, and also sidebands of
higher harmonic orders. This coupling is described in detail
by Dahlstrom et al. [25], and we use their notation below.
Dahlstrom’s Eq. (97) shows the phase of the H15-IR channel.
Note that we have experimentally determined the electromag-
netic phases φ� and φω; the phase of the spherical harmonic
is zero because m = 0. In addition to the scattering phase ηl ,
there is the continuum-continuum phase

φcc(k, κ ) = arg

{
(2κ )iZ/κ

(2k)iZ/k

�
[
2 + iZ

(
1
κ

− 1
k

)]
(κ − k)iZ( 1

κ
− 1

k )

}
. (9)

Here k is the electron momentum of the single-photon
XUV photoionization with H15, and κ is the electron mo-
mentum corresponding to the sideband H15-IR. We plot the
phase φcc as a function of the electron kinetic energy of the
H15 electron in Fig. 7. This is similar to Dahlstrom’s Fig. 15
(blue curve) except that we show lower kinetic energies.

Both of the phases, ηl and φcc shown in Fig. 7, diverge
strongly for small electron kinetic energies. Since the elec-
trons that are detected experimentally by the VMI have kinetic
energy of the order of 0.5 eV, their phases will be strongly
affected. This divergent behavior when the electron kinetic
energy approaches zero means that an accurate calculation
will be challenging.
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VI. CONCLUSION

We have measured the photoelectron angular distributions
using a velocity map imaging spectrometer as a function of
the two independently controlled delays, the XUV-IR delay
TXUV and the ω-2ω delay T2ω. At each T2ω, we determined
the amplitude and phase of each angular momentum compo-
nent. Since we employed the three-path interferences using
the XUV pulse containing both odd and even harmonics and
an IR pulse, the decomposition to each angular momentum
component was possible. We observed a clear π phase jump
of the even harmonics relative to the odd harmonics at the
ω-2ω delay when the even harmonic intensity is minimized.
Although this phase jump is to be expected from symme-
try considerations, the actual shape of the transition has not
been previously measured. Then we determined the harmonic
phases using the in situ method from the high-harmonic spec-
tra measured as a function of ω-2ω delay. We did not need
to use reference atoms or calculations of atomic phases to
determine the harmonic phases. Using these two methods to-
gether, we fully determined the atomic phases and amplitudes
for each angular momentum component.

RABBIT or photoelectron streaking experiments are often
used to study attosecond photoionization delays. We connect
the RABBIT-type experiments with wave-function imaging.
Our method can be a general way to retrieve the atomic phase
and amplitude for each partial wave component. First, we
isolate the m = 0 from m = ±1, otherwise the different m
components are incoherently overlapped. Next, we use three-
path interference. Because one pathway is created by single-
photon ionization, and the others are created by two-photon
ionization, the symmetry of the angular components is differ-
ent. This allows us to decompose the coherently overlapped �

states using the angular distribution as a function of the XUV-
IR delay. Finally, we disentangle the photoionization phase
into atomic phase and harmonic phase. Once all phases and
amplitudes of the partial waves are obtained, then we can re-
construct the continuum wave functions in momentum space.

These experimental results should encourage detailed theo-
retical modeling. These calculations will be very challenging,
because (1) the low kinetic energy of the electrons leads to
very sensitive phase shifts, and (2) one of the channels through
a resonant 3d state has significant coupling to other states.
These experiments give the clearest measurement to date of
photoionization phase shifts for electron wave packets with
very low kinetic energy, and will provide a benchmark for
detailed calculations.
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APPENDIX: ANALYTICAL MODEL FOR
HIGH-HARMONICS GENERATED BY TWO-COLOR

FIELDS

In this Appendix, we describe an analytical model for
the high-harmonic spectra generated by the 800 nm (ω) and
400 nm (2ω) based on the discussion by Dudovich et al.
[12] and Dahlström et al. [18]. Consider the emitted electric
field of a single attosecond pulse created during a half-
cycle of the 800-nm field, e(t ), and its Fourier transform,
E0(ω) = |E0(ω)|eiφH (ω). The spectral phase φH (ω) describes
the relative phase between different spectral components.
We then add a replica of this single attosecond pulse, pro-
duced during the subsequent half-cycle of the 800-nm field,
e(t ) = e0(t )eiϑ + e0(t− T0

2 ) e−iπ e−iϑ . The second pulse is
shifted in time by T0/2, half of the period of the 800-nm
field. In addition, by symmetry the second pulse will have
the opposite sign of the first pulse, described by the factor
e−iπ = −1. We also include an additional phase shift ϑ (T2ω )
describing the perturbation caused by the 400-nm field. This
phase shift acts in opposite directions on the two attosecond
pulses.

The Fourier transform of e(t ) is E (ω) = E0(ω)
[eiϑ + e−iϑ e−iπ ( ω

ω0
+1)]. The final factor comes from the time-

shifting property of the Fourier transform and the relationship
T0
2 = π/ω0. For odd harmonics, ω

ω0
= 2m + 1, and for even

harmonics, ω
ω0

= 2m, and we have separate expressions,
Eodd (ω) = 2 cos ϑE0(ω), Eeven(ω) = 2i sin ϑ E0(ω). The
spectral intensity of the harmonic orders is the square of
these expressions. If there is no 400-nm field, then ϑ = 0
and there are no even harmonic orders, as expected. The
400-nm field produces a small phase shift ϑ (T2ω ) that
unbalances the interferometer that cancels the even harmonic
orders. The even harmonics have an additional ±π/2 phase
shift compared to the odd harmonics due to the imaginary
prefactor. A phase jump in the even harmonics occurs when
sin ϑ changes sign, corresponding to the T2ω at which the
intensity of the even harmonics is zero for a particular
harmonic order. From the periodicity of the 800- and 400-nm
fields, there will be a phase jump every T0/4 in T2ω.
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