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Light beams carrying orbital-angular-momentum (OAM) play an important role in optical manipulation and
communication owing to their unbounded state space. However, it is still challenging to efficiently discriminate
different OAM modes and their superpositions. Here we demonstrate that neural networks can be trained to
recognize OAM modes with different topological charges and unknown superpositions. Using intensity images
of OAM modes generated in simulations and experiments as the input data, we illustrate that our neural
network has the generalization power to recognize OAM modes beyond training areas with high accuracy, whose
topological charges are up to ±8 and 104 for experimental and numerical data, respectively. Moreover, the trained
neural network can correctly classify and predict arbitrary superpositions of two OAM modes with random
topological charges. Our machine learning approach only requires a small portion of experimental samples and
significantly reduces the cost in experiments.
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I. INTRODUCTION

The spatial modes of light, such as the Laguerre-Gaussian
(LG) modes, give access to an, in principle, unbounded state
space for encoding information beyond one bit per photon
[1–20]. LG modes carry well-defined �h̄ quanta of orbital-
angular momentum (OAM), with the arbitrary integer � as
the topological charge. Owing to the infinite dimension of the
space spanned by OAM states of the arbitrary �, OAM beams
offer an ideal source both in classical and quantum optics
with various applications, such as optical manipulation [1–6],
communications [7–11], high-dimensional quantum informa-
tion [12–18], and so on. In these applications, generating
and sorting the OAM eigenstates play an important role, but
are challenging. Several techniques have been developed to
overcome this difficulty, such as sophisticated hologram de-
signs [21,22], log-polar coordinate transformation methods
[23,24], utilizing an optical resonantor [25] or a photodetector
with carefully fabricated electrode geometries [26], and us-
ing complex amplitude shaping or plates strategies [27–29].
Remarkably, the technique of spiral phase mirrors has been
used to generate photons with very high OAMs (of |�| up to
300 and 10 010), and the quantum entanglement between two
such photons has been experimentally demonstrated [19,20].
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Recently, owing to the ability to classify, identify, and in-
terpret massive data, machine learning (ML) has been applied
in different areas of physics [30]. The ML methods based
on neural networks are emerging as a versatile toolbox to
tackle a variety of hard tasks arising in experimental plat-
forms [31–41]. Remarkably, the convolutional neural network
(CNN) schemes have been proposed to detect non-OAM and
misaligned (distorted) OAM beams [42–44] and to demulti-
plex OAM modes under turbulence [45]. Recent applications
of CNNs have focused on distinguishing OAM modes with
fractional topological charges [46,47] and classifying and ex-
tracting the coefficients of given OAM superpositions [48,49],
wherein a few of low OAM modes (of topological charges
|�| � 5) and given superposition states are recognized.
Hitherto, due to the fact that only OAM modes with small
or given � are experimentally generated and used for CNNs
[46–49], the power of ML in efficient sorting of OAM modes
with different topological charges and unknown superposi-
tions has not yet been demonstrated in laboratory.

In this article, we demonstrate that the CNN can be trained
to efficiently recognize OAM modes with different topolog-
ical charges and their unknown superpositions, even with a
small portion of the experimentally generated data. Using
intensity profiles of OAM modes generated in simulations
and experiments as the input data, based on the regression
and classification analysis, we illustrate that our neural net-
work has the generalization power to recognize OAM modes
of different topological charges (with � up to ±8 and 104
for experimental and numerical data, respectively) beyond
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FIG. 1. Schematic of the experimental setup and the ML workflow. The linearly polarized laser beam of 780-nm wavelength goes through
a nonpolarizing beam splitter (BS) and is divided into two parts. The Gaussian modes change into the LG modes with OAMs. One of the OAM
beams is propagated through a lens and its wave front transforms into a spherical wave. The vortex phase plates (VPPs) are added to create
tunable OAMs. Then two OAM modes are combined together using another BS, and the interference pattern is recorded by a CCD camera.
The measured and simulated intensity profiles are input to the CNN. The CNN consists of several blocks including the convolutional layer,
the nonlinear activation function, the max-pooling layer, and the fully connected layer (see the Appendix A), where the number and the size
of each part are indicated. For Task 1, the CNN is trained to predict the topological charge of a LG mode as a regression analysis. For Tasks 2
and 3, the CNN are trained to predict the topological charges of superpositions of two LG modes as a classification analysis.

training areas with nearly 100% accuracy. Remarkably, our
trained CNN can correctly classify and predict distinct and
arbitrary superpositions of two OAM modes with random
topological charges. Since our approach only requires a small
portion of experimental samples, it significantly reduces the
cost of experiments. Our results showcase the potential of the
ML approach to further study the OAM lights.

The rest of this paper is organized as follows. Section II
is devoted to introducing the generation of OAM modes in
our experiments. In Sec. III, we show that the trained CNN
can retrieve the topological charges of the OAM modes. In
Sec. IV, we demonstrate this ML approach can be used to
classify and predict superpositions of two OAM modes with
random topological charges. Finally, some discussions on the
versatility of the CNN (for high OAM modes and arbitrary
superpositions) and a brief conclusion are given in Sec. V.

II. GENERATION OF OAM MODES

LG modes are the solutions of the free space Maxwell’s
equations within the paraxial approximation. For a beam prop-
agating along the z axis, the LG modes can be described by the
LG functions in cylindric coordinates:
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√
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Here � is the topological charge of the OAM modes; p is the
radial mode number; L|�|

p are the Laguerre polynomials; the

beam parameter wz = w0

√
1 + ( z

zR
)2 denote the beam waist,

with w0 being the waist at the focus and zR = πw2
0

λ
being the

Rayleigh range; Rz = z[1 + ( z
zR

)2] is the radius of curvature,

k = 2π
λ

is the wave number, with λ being the wavelength;
and φg = arctan ( z

zR
) denotes the Gouy phase and is multiplied

with the mode order m = (2p + |�| + 1).
Hereafter we focus on the topological charge � and ignore

the radial number by setting p = 0 for the purpose of this
work. Then the LG functions can be rewritten as LG�,0

.= LG�

for simplicity. We consider a single LG mode and superpo-
sitions of two OAM modes, which are denoted by |ψ�〉 =
|LG�〉 and |ψ�1,�2〉 = cos θ

2 |LG�1〉 + eiφ sin θ
2 |LG�2〉), respec-

tively, with φ ∈ [0, 2π ] and θ ∈ (0, π ). The corresponding
intensity distributions (images) in the x-y place (perpendicu-
lar to the propagating direction) I� = |〈ψ� |ψ�〉 |2 and I�1,�2 =
|〈ψ�1,�2 |ψ�1,�2〉 |2 are taken as the input data for training and
testing the CNNs, which are both generated in numerical
simulations and experiments. As shown in Fig. 1, in the first
task, we aim to sort and predict the large topological charges
� of the LG mode |ψ�〉 after training the CNN. In the second
and third tasks, we intend to classify the superposition of the
two OAM modes |ψ�1,�2〉 and predict the unknown (random)
topological charges �1 and �2. We use images with different
φ, concentrate on the equivalent superposition with θ = 0.5π

first, and finally generalize our results to arbitrary super-
positions with various θ . Thus, our ML approach not only
recognizes OAM modes with different superposition coeffi-
cients [48,49] but also simultaneously predicts their random
and large topological charges.

The experimental setup for generating OAM modes is
shown in Fig. 1. The linearly polarized laser beam of wave-
length 780 nm goes through a nonpolarizing beam splitter
and then is divided into two beams. The vortex phase
plates are applied to create the LG modes with tunable
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FIG. 2. (a) Theoretical (left) and experimental (right) images
show the intensity distributions of |ψ�〉. The number of spiral fringes
is equal to the topological charge |�|, and the spiral direction is
clockwise if � > 0 or counterclockwise otherwise. (b) The average
accuracy A for two test sets against the fraction of experimental
images Nexpt/Ntheor. (c) The predicted topological charge �̃ for ex-
perimental data (images) of true l ∈ {±1, ±2, ±3, ±6, ±7, ±8} and
l ∈ {±4, ±5} in the two test sets. The ratio between experimental
and theoretical images Nexpt/Ntheor = 0.08 and the unseen intervals
{±4,±5} during the training are labeled.

topological charges |�1〉 and |�2〉 of the spherical and plane-
wave OAMs [50], with |�1,2〉 up to 8 accessible in our
experiments. One beam propagates through a lens ( f =
300 mm) and its wave front transforms as a spherical wave.
Then the two OAM beams are combined together using the
second beam splitter, which leads to the superposition state
|ψ�1,�2〉. The interference pattern is finally recorded by a CCD
camera (1294 × 960 pixels, 3.75 μm × 3.75 μm per pixel)
and down sampled to 128 × 128 pixels as the input data for
the CNN. By setting �2 = 0 and �1 = � through the vortex
phase plates, we obtain the intensity pattern of the LG mode
|ψ�〉 in this case. For given � or �1,2, we experimentally create
hundreds of intensity images with different (rotation or φ)
phases.

III. RECOGNIZING MULTI-OAM MODES

We first demonstrate that the trained CNN can retrieve
the topological charges of OAM beams in Task 1, as shown
in Fig. 1. In this case, we do the training as a regression
analysis, which endows the CNN to recognize the unseen data
areas. We consider the OAM modes |ψ�〉 with true topolog-
ical charges � ∈ {±1,±2,±3, . . . ,±8}, with several typical
intensity images shown in Fig. 2(a). The intensity images
consist of spiral fringes, which arise from the combination
of the radial phase variation due to wave-front curvature and
the tangential phase variation due to the azimuthal phase de-
pendence. The number of spiral fringes is equal to |�|, and
the spiral direction is clockwise if � > 0 or counterclockwise
otherwise.

The architecture of our CNN is shown in Fig. 1. We define
a block including the convolutional layer, the rectified linear
unit as the nonlinear activation function, the and max-pooling
layer. The CNN has three blocks. We use max-pooling layers
with the kernel size of 2 × 2 with 2 strides for all blocks. The
convolutional layers of 3 blocks have 32 kernels of size 5 × 5
with 3 strides, 64 kernels of size 3 × 3 with 2 strides, and
128 kernels of size 3 × 3 with 2 strides, respectively, followed
by a fully connected layer with 32 neurons before the output
layer. The CNN is first trained with numerically generated
data [e.g., the intensity images of the left row of Fig. 2(a)] for
the true topological charge � ∈ {±1,±2,±3,±6,±7,±8}.
For each �, we generate 400 images with different rotation
phases, which can meanwhile improve the rotary robustness
of our CNN. Thus, the entire training set contains Ntotal =
4800 images labeled by 12 different �’s. Then we incremen-
tally add experimentally generated data [e.g., the intensity
images of the right row of Fig. 2(a)] with the number Nexpt,
while maintaining the data set size Ntotal = Nexpt + Ntheor =
4800, with Ntheor being the number of theoretical images. The
weight parameters of the CNN are trained by using the Adam
optimizer with batch size 128 for 100 epochs, the initial learn-
ing rate is set to be 0.01, and a L2 regularization is used with
a weight decay of 0.0001 to prevent overfitting [51–53]. The
output of the trained CNN is a real number �̃, which is close to
an integer and can be interpreted as the predicted topological
charge. We determine the percentage of the correct predictions
as the accuracy A by comparing the predicted topological
charge �̃ with the true value �. See Appendix A for more
details of the CNN and the training.

After the training, we test the CNN with two test sets
with 100 experimental images per topological charge class
for the following: (i) � ∈ {±1,±2,±3,±6,±7,±8} as Test
set I; and (ii) � ∈ {±4,±5} as Test set II unseen by the CNN
during training. The test results are presented in Figs. 2(b)
and 2(c). Figure 2(b) shows the average accuracy A of two
test sets against the fraction of experimental images added to
the training set Nexpt/Ntheor. Note that the added experimental
images are synthesized with avoiding intervals � ∈ {±4,±5}.
We obtain two interesting results: (i) The accuracy for both
Test sets I and II increases as the experimental data added to
the training data set. The mean values of predicted �̃ are closer
to true � and their standard deviations decrease with increasing
of Nexpt/Ntheor (see Fig. 8 in Appendix B). This is due to the
fact that the addition of experimental images to the training
set improves the capability of the CNN when taking into
account deviations of the experimental data. Notably, a high
accuracy A > 0.95 is already obtained when the small frac-
tion of the training set is composed of experimental images
Nexpt/Ntheor = 6%. (ii) We find that due to the generality of the
trained CNN, it is capable of predicting the unseen intervals
with a high accuracy. The predicted topological charges �̃ for
the two test sets when Nexpt/Ntheor = 8% are given in Fig. 2(c),
showing the distribution of �̃’s close to the true values of �’s.

IV. CLASSIFYING UNKNOWN SUPERPOSITIONS
OF OAM MODES

We now consider another two tasks to obtain the topologi-
cal charges of superpositions of two OAM modes |ψ�1,�2〉, as
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FIG. 3. The confusion matrix (accuracy A) predicted by the
CNN trained with the simulated data for all the 64 classes of su-
perpositions with the topological charges �1,2 ∈ {1, 2, . . . , 8}.

shown in Fig. 1. We first test the performance of the CNN
by using the simulated data for the general 64 classes of su-
perpositions with the topological charges �1,2 ∈ {1, 2, . . . , 8}
(with the same results for cases of negative values of �1,2).
We numerically generate 400 intensity images for each super-
position class. The ratios of the training, validation, and test
sets are given by 0.7, 0.1, and 0.2, respectively. The results
of the performance of the trained CNN are plotted in Fig. 3,
which shows that the perfect accuracy A = 100% for all the
test set among all the 64 classes (with 80 images for each
class). Below we study two typical tasks (Task 2 and Task
3 as shown in Fig. 1) of classifying unknown superpositions
of OAM modes with the experimentally generated data.

In Task 2, we consider the superpositions of a random
OAM mode with �1 ∈ {±1,±2,±3,±4,±5,±6} and a fixed
OAM mode with �2 = 1, which are denoted by |ψ�1,1〉. Sev-
eral intensity images in this task are shown in Fig. 4(a). The
architecture of the CNN is based on previous regression anal-
ysis, but the output layer is replaced by 12 neurons here as
a classification analysis. The output of the CNN is the nor-
malized probabilities corresponding to 12 classes of different
values of true topological charges �1. The predicted topologi-
cal charge �̃1 is interpreted as the class that has the maximum
probability. The accuracy A in this task refers to the fraction
of correctly classified images. The size of the training set is
400 images per class. We collect 100 experimental images per
class as the test set. The training procedure is the same as that
for Task 1. After the training, we use the test set to evaluate the
performance of the CNN. The average accuracy of the test set
increases significantly with increasing the fraction of experi-
mental images added to the training set, as shown in Fig. 4(b).
Remarkably, the trained CNN can successfully identify all
random superposition states |ψ�1,1〉 and predict the topological
charges �1, with a very high accuracy of A ≈ 99% even under
a small portion of the experimental data Nexpt/Ntheor = 4%, as
shown in the inset of Fig. 4(b).

FIG. 4. (a) Theoretical and experimental images show the in-
tensity distributions of the superposition states |ψ�1,1〉. (b) Average
accuracy A of the test set against the fraction of experimental images
Nexpt/Ntheor. The inset shows the confusion matrix predicted by the
CNN trained at Nexpt/Ntheor = 0.04.

We consider the superpositions of two random OAM
modes |ψ�1,�2〉 as a more general situation in Task 3. For
the visualized presentation (but without loss of general-
ity), we select and generate the following six classes in
experiments {|ψ2,6〉 , |ψ3,7〉 , |ψ4,7〉 , |ψ5,8〉 , |ψ6,7〉 , |ψ6,8〉}, as
shown in Fig. 5(a). Note that the spiral number and direction
of |ψ2,6〉 (|ψ4,7〉) are the same as those of |ψ3,7〉 (|ψ5,8〉).
Their intensity distributions are just slightly different in the
radial direction, which is hard to discriminate for human eyes.
Extraordinarily, we show that the CNN can precisely detect
these small differences. The workflow in this task is similar
to that in the previous cases, except that the output layer
of the CNN now has six neurons. The average accuracy of
the test set against the fraction of experimental images added
to the training set is shown in Fig. 5(b). We obtain two inter-
esting results: (i) The accuracy of the trained CNN increases
as the experimental data added to the training data set. No-
tably, we only need almost 4% of the training set composed
of experimental images, and then CNN can perform great
on experimental cases (with a probability of 99%). (ii) The
CNN can discriminate between the superposition states |ψ2,6〉
(|ψ4,7〉) and |ψ3,7〉 (|ψ5,8〉) with high accuracy, as shown in the
inset of Fig. 5(b).

V. DISCUSSION AND CONCLUSION

Our results have explicitly showcased the exceptional
power of ML in the experimental recognition of OAM modes
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FIG. 5. (a) Theoretical and experimental images show the in-
tensity distributions of the superposition states |ψ�1,�2 〉. (b) Average
accuracy A against the fraction Nexpt/Ntheor. The inset shows the
confusion matrix predicted by the CNN trained at Nexpt/Ntheor = 0.04.

with different topological charges �. To further demonstrate
the versatility of the CNN, we revisit Task 1 and harness its
generalization power to recognize larger � beyond training in-
tervals. We consider training intervals � ∈ {±1,±2, . . . ,±8}
and � ∈ {±1,±2, . . . ,±15}, which are accessible in our
experiments and simulations, respectively. We test the extrap-
olation ability of the trained CNN by feeding 400 images
with different rotation phases for each �. The accuracy for the
simulated data set against |�| is shown in Fig. 6(a). Remark-
ably, we find that the trained CNN can precisely predict the
topological charges beyond training intervals up to |�| = 15
and |�| = 25 in the two cases, respectively. We consider the
numerically generated plane-wave OAMs with larger topolog-
ical charges � ∈ {90, 91, . . . , 104} as the training and testing
data, with the training intervals (� ∈ {90, 91, . . . , 99}) and a
typical intensity image (� = 100) shown in Fig. 6(b). By using
the same training and evaluation workflow, the performance
of the trained CNN in this case is shown in Fig. 6(b). One
can find the high accuracy in the training intervals and the
extrapolation ability in the unseen intervals. These results
indicate the potential of our ML approach for recognizing high
OAM modes.

Furthermore, we show that our ML approach is feasible
to classify arbitrary superpositions of two OAM modes
|ψ�1,�2〉 = cos θ

2 |LG�1〉 + eiφ sin θ
2 |LG�2〉) with various co-

efficients θ (and φ) by training few samples. We revisit
Task 2 and Task 3 and numerically generate 300 images
with φ ∈ [0, 2π ] per class for θ/π = {0.1, 0.5, 0.9} and
{0.1, 0.5, 0.7, 0.9} as the training set, respectively. The test

FIG. 6. Average accuracy A against (a) |�| (with two cases of
|�| � 16 and |�| � 27) and (b) � (with 90 � � � 104) beyond train-
ing areas for Task 1; and (c) θ for arbitrary superpositions of two
OAM modes in Task 2 and Task 3.

sets consist of 100 images with φ ∈ [0, 2π ] for each class
θ/π = {0.1, 0.2, . . . , 0.9}, which excludes the data in the
training set. After training, we use the test sets to evaluate
the performance of the CNN in Task 2 and Task 3. The
average accuracy A against θ for the two tasks is shown in
Fig. 6(c), which indicates the trained CNN can predict the
random topological charges of arbitrary superpositions of two
OAM modes with A > 98%.

In summary, we have trained the neural network to rec-
ognize OAM modes using their intensity images generated
in simulations and experiments as the input data. We have
illustrated that the trained CNN has the generalization power
to recognize OAM modes of different topological charges
beyond training intervals with nearly 100% accuracy. We
have shown that the CNN can classify arbitrary superpositions
of two OAM modes with random topological charges. Our
results demonstrate the experimental feasibility of the ML
approach to study the OAM lights.
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FIG. 7. The mechanism of the convolutional layer and the pooling layer. A convolutional layer operates convolution operations on input
X . The resulting feature map Y is applied to obtain Ỹ . Finally, a max-pooling layer downsamples the redundant information by choosing the
maximum value in a sliding window.
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APPENDIX A: DETAILS OF THE CNN AND TRAINING

We present more details of the CNN structure and the
training details. Here the CNNs are a specific type of
neural network that are generally composed of convolutional,
pooling, and fully connected layers. Convolutional layers take
advantage of the hierarchical pattern in data and extract fea-
tures from data efficiently by applying the parameter-sharing
technique. Pooling layers reduce the redundant information
by coarse graining the inputs and thus are useful to extract
spatially invariant features and reduce the weight parameters.
Fully connected layers are used after convolutional and pool-
ing layers to do classification or regression analysis [52].

Figure 7 shows the mechanism of a convolutional layer
and a pooling layer. A convolutional layer uses filters that
perform convolution operations as they are scanning the input
X with respect to its dimensions. Indeed, convolutional layers
typically use many filters to extract different features from
data. The resulting output Y is called a feature map. Then a
nonlinear function is applied elementwise to the Y . A common
choice for the nonlinearity is called the rectified linear unit,
which is defined as x → max (x, 0). The output of the nth
convolutional layer can be expressed by

Ỹn = f (Wn ∗ X ), (A1)

where f denotes the nonlinear activation function, X is the
input image or feature map, Wn is the set of filters in the
nth convolutional layer, and ∗ is the convolution operation.
The pooling layer is a downsampling operation, typically
applied after a convolution layer. Pooling layers coarse grain
their inputs by partitioning the images into windows of size

k × k and mapping each such window into a single numerical
output. A common choice is called max-pooling where the
maximum value within the window is taken. The output of
the nth max-pooling layer can be expressed by

Zn,i j = max
l,m∈Ri j

Ỹn,lm, (A2)

where l and m are the locations inside the reception area Ri, j .
Finally, fully connected layers operate on flattened features
extracted by the convolutional layers and used for classifica-
tion or regression analysis, depending on the task at hand.

To construct and train the neural network, we use the
deep learning framework PYTORCH [51]. We start with a com-
plex multilayer convolutional network, with a fully connected
layer before the output layer. Then we continue to reduce
the complexity of the neural network, e.g., the number of
convolutional filters, the number of layers, and the number of
neurons in each layer, as long as it still has good performance.
The resulting neural network is reported in the main text. To
train the CNNs, for regression (Task 1), we chose the mean
square error as the objective function, which is given by

Lreg = 1

N

N∑
i=1

(
�̃(i) − �(i)

)2
, (A3)

where �(i) (�̃(i)) denotes the true (predicted) topological charge
of the ith image and N is the total number of training data
sets. For classification analysis (Tasks 2 and 3), the objec-
tive function is the categorical cross-entropy loss, which is
defined as

Lcla = − 1

N

[
N∑

i=1

nc∑
j=1

1
(
l ( j) = l̃ ( j)

)
log2(Pj )

]
, (A4)

where l ( j) (l̃ ( j)) is the true (predicted) label of the jth im-
age, Pj denotes the output probabilities of the jth class, the
expression 1(l ( j) = l̃ ( j) ) means that it will take the value 1
when the condition l ( j) = l̃ ( j) is satisfied and the value 0 in
the opposite case, and nc is the number of the class. nc = 12
and 6 for Tasks 2 and 3, respectively. The weight parameters
of CNN will be updated in the training process by minimizing
Eq. (A3) or Eq. (A4), depending on the task at hand. In
addition to the training scheme mentioned in the main text,
we also use data augmentation by adding slightly modified
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FIG. 8. (a)–(c) The distribution of output �̃ of CNN when different fractions of experimental images are added in the training set for
Nexpt/Ntheor = 0.01, 0.04, and 0.06, respectively. (d) Mean values and error bars of predicted �̃ for different Nexpt/Ntheor.

copies of data during the training to reduce overfitting. Ge-
ometric transformations, cropping, rotation, noise injection,
and random erasing are used to augment image [53].

APPENDIX B: RESULTS OF DIFFERENT FRACTIONS
OF EXPERIMENTAL IMAGES

In Figs. 8(a)–8(c), we qualitatively show the distribution of
output �̃ of the CNN when different fractions of experimental

images are added to the training set. Clearly, with increasing
experimental images added to the training set, the predicted
topological charge �̃ is more concentrated on the true value
�. Furthermore, we quantitatively show the error bars of pre-
dicted topological charges for different fractions Nexpt/Ntheor.
The mean values of the predicted �̃ are closer to the true
� and their standard deviations decrease with increasing of
Nexpt/Ntheor.
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