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Quantum spin squeezing is an important resource for quantum information processing, but its squeezing
degree is not easy to preserve in an open system with decoherence. Here, we propose a scheme to implement
single-photon-triggered spin squeezing with decoherence reduction in an open system. In our system, a Dicke
model (DM) with an added quadratic optomechanical coupling is considered, which can be equivalent to an
effective DM manipulated by the photon number. Besides, the phonon mode of the optomechanical coupling
is coupled to a squeezed-vacuum reservoir with a phase matching, resulting in that its thermal noise can be
suppressed completely. We show that squeezing of the phonon mode triggered by a single photon can be
transferred to the spin ensemble totally, and pairwise entanglement of the spin ensemble can be realized if
and only if there is spin squeezing. Importantly, when considering the impact of the environment, our system
can obtain a squeezing degree better than that of the optimal squeezing that can be achieved in the traditional
DM. Meanwhile, the spin squeezing generated in our system is immune to the thermal noise. This work offers
an effective way to generate spin squeezing with a single photon and to reduce decoherence in an open system,
which will have promising applications in quantum information processing.
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I. INTRODUCTION

The spin-squeezed states are states with reduced quantum
fluctuations in one of the collective spin components, which
arise from quantum correlation between spins [1–4]. Due to
the reduced quantum fluctuations, the spin-squeezed states
have wide applications in the field of precision measurements,
e.g., Ramsey spectroscopy [1,3,5], atomic clocks [6–8], and
gravitational wave interferometers [9–11]. Besides, the spin
squeezing can also be used as an entanglement witness to
detect quantum entanglement [12–14]. Therefore, many ef-
forts have been made to produce the squeezed states of spin
systems. Specifically, the methods for generating spin squeez-
ing are mainly divided into two categories: atom-photon
interactions [3,15–17] and nonlinear atom-atom interactions
[18–27]. The most popular criteria of spin squeezing were
proposed by Kitagawa and Ueda [2] and by Wineland et al.
[3]; i.e., for a system with N spins represented by the collec-
tive operators Jα (α ∈ x, y, z), the spin-squeezing parameters
are

ξ 2
s = 4min(�J�n⊥ )2

N
(1)

*xgwang1208@zju.edu.cn

and

ξ 2
R = Nmin(�J�n⊥ )2

|〈 �J〉|2 , (2)

respectively, where �n⊥ represents an axis perpendicular to the
mean spin 〈 �J〉 and the minimum of variance (�J )2 can be
obtained. ξ 2

s < 1 or ξ 2
R < 1 indicates that the spin system is

in a squeezed state. Due to the decoherence caused by the
interaction between system and environment, the squeezing
of spin systems is not easy to preserve. Thus, improving the
degree of squeezing and reducing the decoherence in an open
system are the focus of much research.

Cavity optomechanics is a hot research field that explores
the interaction between the electromagnetic field and the me-
chanical motion, involving optical and microwave domains
[28]. With this powerful platform, many theoretical and exper-
imental advances have been made, such as optomechanically
induced transparency [29–32], ground-state cooling of me-
chanical oscillators [33–36], quantum entanglement [37–40],
precision measurements [41–45], squeezing effects of optical
and mechanical modes [46–51], and applications in creating
phonon lasers [52], quantum states [53,54], and ultrapreci-
sion force sensing [44], and so on. In particular, to enhance
atom-phonon coupling, the linear optomechanical interaction
combined with cavity QED was investigated [55]. Besides,
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the quadratic optomechanical coupling was also introduced
into cavity QED to explore the superradiant quantum phase
transition [56,57] and the statistical properties of phonons
[58]. Cavity optomechanics combined with cavity QED will
obtain more abundant physical phenomena and substantially
advance the field of cavity optomechanics.

In this paper, we propose a scheme for enhancing spin
squeezing and reducing decoherence in a hybrid quantum
model including optomechanics and cavity QED. In our sys-
tem, a Dicke model (DM) is introduced into the quadratic
optomechanics, which can be equivalent to an effective DM
manipulated by the photon number. Besides, the phonon
mode of the optomechanical system is coupled to a squeezed-
vacuum reservoir with a phase matching, resulting in that the
thermal noise caused by the interaction between the phonon
mode and the environment can be suppressed completely. Due
to the quadratic optomechanical coupling, we show that the
squeezing of the phonon mode triggered by a single photon
can be transferred to the spin ensemble totally, and pairwise
entanglement of the spin ensemble can be realized if and only
if there is spin squeezing. Importantly, compared with the spin
squeezing transferred from the bosonic field in the traditional
DM, our system can achieve a better squeezing degree and be
immune to the thermal noise, which is important and valuable
to enhance the squeezing degree and reduce the decoherence
in an open system.

This paper is organized as follows. In Sec. II, we first intro-
duce the hybrid quantum model and analyze its experimental
feasibility, and then we derive its Hamiltonian. In Sec. III, we
give the expressions of the optimal squeezing parameters for
the spin ensemble and the phonon mode, and then we analyze
the evolution of the squeezing parameters with time in an
open system, as well as compare the spin squeezing in our
system with the one in a traditional DM. In Sec. IV, we verify
some approximations used in our derivations and discuss the
physical realization for our scheme. Finally, we summarize
our conclusions in Sec. V.

II. MODEL AND HAMILTONIAN

In our system, the quantum model considered here is a
cavity QED model with an added quadratic optomechanical
coupling, as shown in Fig. 1. Specifically, a normal DM is
introduced into the optomechanical system, where a spin en-
semble or superconducting qubits are coupled with a resonator
to form the DM [59,60], and the optomechanical system is
implemented by a superconducting circuit that has the ability
to simulate the quadratic optomechanical coupling [61]. By
optimizing the coupling capacitance, the bias flux, and the
geometrical arrangement of the circuit, a stronger coupling
strength can be realized compared with the one achieved
in membrane-in-the-middle cavity optomechanical systems
[61,62]. The Hamiltonian of the system can be written as two
parts (h̄ = 1),

H = Hom + Hdm, (3)

with

Hom = ωaa†a − ga†a(b + b†)2, (4a)

Hdm = �Jz + ωbb†b + G(b + b†)Jx, (4b)

FIG. 1. Schematic diagram of the system. A Dicke model [i.e.,
N two-level systems σ− (e.g., a spin ensemble [59] or supercon-
ducting qubits [60]) coupled with resonator B] is introduced into a
superconducting circuit that has the ability to simulate the quadratic
optomechanical coupling [56,61]. In the superconducting circuit, the
photon and phonon modes are provided by resonator A and resonator
B, respectively, and the antisymmetric current distribution in res-
onator B ensures the opposite flux variations ±δ	. By optimizing the
coupling capacitance C, the bias flux, and the geometrical arrange-
ment of the circuit, the circuit analog of quadratic optomechanics
can achieve a stronger coupling compared with the version in the
membrane-in-the-middle cavity optomechanical system [62].

where Hom describes the Hamiltonian for the cavity field
and the quadratic optomechanical coupling with a (a†) and
b (b†) representing the annihilation (creation) operators of the
photon and phonon modes, respectively. ωa and g are the
resonance frequency of the cavity field and the quadratic op-
tomechanical coupling strength. Hdm is the Hamiltonian of the
DM with � and ωb being the transition frequency of the spin
ensemble and the resonance frequency of the phonon mode. G
is the collective coupling strength between the spin ensemble
and the phonon mode.

The term of quadratic optomechanical coupling in Eq. (4a)
can be diagonalized with a squeezing transformation, and then
an effective Hamiltonian can be derived by transforming H
with the squeeze operator S(ζ ) = exp[(ζ ∗b2 − ζb†2)/2], tak-
ing a fixed photon number n for the cavity field and dropping
constant terms (see Appendix A for details), i.e.,

Heff = �Jz + ωnb†b + Gn(b + b†)Jx, (5)

where the squeeze parameter ζ = rneiθ with squeeze ampli-
tude rn = ( − 1/4) ln[1 − 4ng/ωb] and squeeze angle θ = π .
ωn = exp(−2rn)ωb and Gn = exp(rn)G are the transformed
mechanical frequency and the coupling between the spin
ensemble and the phonon mode. In the above squeezing trans-
formation, the photon mode is assumed to be prepared into
the Fock state |n〉a, resulting in that the number operator a†a
can be seen as an algebraic number n. One can find that
the effective Hamiltonian is just the DM but manipulated by
photons. Compared with the original DM in Ref. [60] and
others, the coupling strength Gn in our effective DM can
be exponentially enhanced by the number of photons. The
enhanced coupling strength is very important for the open
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system. Under the rotating-wave approximation (RWA) with
the conditions ωn ≈ � and ωn 	 Gn, the effective Hamilto-
nian can be reduced as

Heff = �Jz + ωnb†b + Gn

2
(bJ+ + b†J−), (6)

which is a Tavis-Cummings model manipulated by photons,
and J± are raising and lowering spin operators. Please note
that the condition of the RWA implies that exp(3rn) 
 ωb/G,
so Gn/G 
 3

√
ωb/G. In our following numerical simulation,

the parameters we take satisfy the condition of the RWA.

III. SQUEEZING PARAMETERS
AND THEIR EVOLUTIONS

We assume that the spin ensemble and the phonon mode
are both prepared into their lower energy state at t = 0, and
then the initial state of the system is

|ψ (0)〉 = (S(ζ )|0〉b) ⊗ |J,−J〉, (7)

where S(ζ )|0〉b is just a squeezed vacuum state of the phonon
mode when the photon number is not zero, and in the Fock
state, it can be expanded as

∑
k ck|k〉 with [63]

c0 = 1√
cosh (rn)

, (8a)

ck = (−1)k/2

√
cosh (rn)

[
1

2
eiθ tanh(rn)

]k/2 √
k!

(k/2)!
for k even, (8b)

ck = 0 for k odd. (8c)

Due to the fact that the phonon mode b only contains even
expansion coefficients in its initial state, it is natural to real-
ize that we have the following expectation values under our
system Hamiltonian:

〈b〉 = 〈
b†

〉 = 0, (9)

〈J−〉 = 〈J+〉 = 0. (10)

Then, the squeezing parameters with optimal squeezing for
the phonon mode and the spin ensemble can be derived as
(see Appendix B for details) [4,21]

ξ 2
b = 1 + 2[〈b†b〉 − |〈b2〉|], (11)

ξ 2
s = 1

N
[〈J+J− + J−J+〉 −

√
〈J2+ + J2−〉2 − 〈J2+ − J2−〉2],

(12)

respectively.
In our system, the phonon mode is assumed to be coupled

to a squeezed-vacuum reservoir with a squeezing amplitude,
re, and a reference phase, φe; and for the spins, the sponta-
neous emission is considered. Considering the system-bath
interaction, the system dynamics can be described by the
following master equation [63],

ρ̇s = i
[
ρs,�Jz + ωnb†b + Gn

2
(bJ+ + b†J−)

]

+ κ

2
[2J−ρsJ+ − J+J−ρs − ρsJ+J−]

+ γ

2
Ns[2b†ρsb − bb†ρs − ρsbb†]

+ γ

2
(Ns + 1)[2bρsb

† − b†bρs − ρsb
†b]

− γ

2
M∗

s [2b†ρsb
† − b†b†ρs − ρsb

†b†]

− γ

2
Ms[2bρsb − bbρs − ρsbb], (13)

with

Ns = sinh2(re) cosh2(rn) + cosh2(re) sinh2(rn)

+ 1
2 sinh(2rn) sinh(2re) cos(φe), (14a)

Ms = {sinh(rn) cosh(re) + e−iφe cosh(rn) sinh(re)}
× {cosh(rn) cosh(re) + eiφe sinh(rn) sinh(re)} (14b)

being the effective thermal noise and the two-phonon corre-
lation strength, respectively. ρs = S†(ζ )ρS(ζ ) is the density
operator of the system under the squeezing transformation. κ

and γ are the decay rates of the spin ensemble and the phonon
mode, respectively. In principle, the squeezed-vacuum reser-
voir can be generated by introducing an ancillary cavity mode
that is linearly coupled to the phonon mode and driven by a
broadband-squeezed vacuum field [64–67]. From Eqs. (14a)
and (14b), one can find that there is a phase-matching re-
lationship between the squeezed-vacuum reservoir and the
system, i.e., φe = θ (θ = π ). When this condition is satisfied,
the effective thermal noise and the two-phonon correlation
strength can be reduced as

Ns = sinh2(R), (15a)

Ms = cosh(R) sinh(R), (15b)

respectively, with R = rn − re. When R = 0, i.e., the phonon
mode is coupled to a squeezed-vacuum reservoir with re = rn,
one can find that the effective thermal noise and the two-
phonon correlation strength can be suppressed completely
if the phonon mode couples to a squeezed-vacuum reser-
voir with a specific phase and amplitude. That is to say,
the squeezed-vacuum reservoir becomes an effective vacuum
reservoir in our system. If R = rn, i.e., the phonon mode is
coupled to a vacuum reservoir, Ns and Ms will not equal to
zero,; instead, the quadratic optomechanical interaction will
amplify them significantly because rn is proportional to the
photon number n. Thus, a squeezed-vacuum reservoir with
appropriate phase and amplitude is necessary for suppressing
the thermal noise in our system. With the enhanced coupling
strength [see Eq. (5)] as well as the completely suppressed
thermal noise, our system will have obvious advantages com-
pared with the traditional DM, as shown in the following
sections.

A. Squeezing of the phonon mode

We first focus on the squeezing properties of the phonon
mode under the quadratic optomechanical coupling. From
Eq. (7), one can find that when the photon number is not zero,
the squeeze operator S(ζ ) 
= 1. Obviously, we can make the
phonon mode in a squeezed state by manipulating the photon
number. As shown in Fig. 2(a), we numerically simulate the
Wigner function Wb of the phonon mode at t = 0 when there
are zero (|0〉a) photons and one (|1〉a) photon. We can visually
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FIG. 2. (a) Wigner function Wb of the phonon mode when there
are zero photons and one photon, where the quadrature variables
are defined as P = −i(b − b†) and Q = (b + b†). (b) Evolution of
the squeezing parameter ξ 2

b (t ) of the phonon mode with time t . The
parameters we take for the spin ensemble are spin number N = 100
and the transition frequency � = 200G; for the phonon mode, the
resonance frequency ωb = 2300G; for the quadratic optomechanical
coupling, strength g = 0.2481ωb; and for the system with decays,
γ = G and κ = 0.01G.

see that the phonon mode is squeezed on the momentum P at
the expense of expanding in its amplitude Q direction when
|0〉a → |1〉a. Moreover, according to the squeezing parameter
of the phonon mode in Eq. (11), we plot the evolution of the
squeezing parameter ξ 2

b (t ) of the phonon mode with time t
in closed and open systems, as shown in Fig. 2(b). We can
intuitively see that when there the photon number is zero,
the squeezing parameter ξ 2

b (t ) = 1, and when there is a sin-
gle photon, the squeezing parameter will oscillate back and
forth with an approximate periodicity over time. Furthermore,
one can find that the minimum of the squeezing parameter
ξ 2

b (t ) is just the variance of the momentum P at t = 0, i.e.,
(�P)2|t=0 = exp(−2rn).

B. Squeezing and entanglement of the spin ensemble

As discussed above, we can get a squeezed phonon mode
in our effective DM via manipulating the photon number. In
this section, we analyze the evolution of squeezing for the spin
ensemble in our effective DM with system decays and study
the relationship between spin-spin entanglement and spin
squeezing. As shown in Figs. 3(a)–3(c), we numerically sim-
ulate the evolutions of the spin Wigner function Ws on the
Bloch sphere with spin number N = 10 and a single photon.
One can vividly observe that with the evolution, the spin
Wigner function changes from isotropic distribution to being
squeezed in one direction. Importantly, with the deepening of

the squeezing effect, light and dark interference fringes appear
symmetrically in the image, and the value of the negative
Wigner function appears and increases with the squeezing ef-
fect. This shows that by manipulating the photon number, the
spin ensemble in our effective DM can be in a squeezed state,
and the spin ensemble is also in a nonclassical state. To under-
stand this phenomenon more quantitatively, we numerically
simulate the evolutions of squeezing for the spin ensemble
and the phonon mode with different spin numbers and without
considering system decays, as shown in Figs. 3(d)–3(f). One
can find that the value of the spin squeezing ξ 2

s tends to
approach the initial value of the squeezing parameter ξ 2

b of the
phonon mode with the increase of the spin numbers, and when
the spin number N ≈ 100, squeezing transfer between the
spin ensemble and the phonon mode can be observed in our
system. Obviously, we can get a squeezed phonon mode via
manipulating the photon number, and its optimal squeezing
degree can be transferred to the spin ensemble totally when
the spin number is large enough.

From the above discussion, we can make the spin ensemble
in a squeezed state in our system by manipulating the photon
number. Meanwhile the value of the negative Wigner function
implies that the spin ensemble is also in a nonclassical state.
In fact, the relationship between the spin squeezing and the
entanglement of spins has been deeply revealed in Ref. [21].
From Ref. [21], we know that if the squeezing parameter
ξ 2

s � 1, there is a quantitative relation between the squeezing
parameter ξ 2

s and the concurrence C, i.e.,

ξ 2
s = 1 − (N − 1)C. (16)

That is to say, the spin squeezing implies pairwise entan-
glement between spins. We analyze whether the spin-spin
entanglement can be generated in our system by manipulating
the photon number and also verify the relationship in Eq. (16).
As shown in Figs. 3(h) and 3(i), we plot the evolutions of
the concurrence C(t ) according to its original definition [68],
as well as the spin squeezing ξ 2

s (t ) from Eq. (12), with spin
numbers N = 2 and N = 4, respectively. One can find from
the cures that pairwise entanglement of the spin ensemble can
be realized in our system if and only if there is spin squeezing.
Moreover, from the dashed green curves in Figs. 3(h) and
3(i), which are defined as ξ 2

s + (N − 1)C, one can see that the
quantitative relation between the squeezing parameter ξ 2

s and
the concurrence C revealed in Ref. [21] is fully established
in our system. Please note that the concurrence C � 0 in its
original definition, so the dashed green curves coincide with
ξ 2

s (t ) in the region where ξ 2
s (t ) > 1. Thus, in our effective

DM, by manipulating the photon number, we can make the
spin ensemble in a squeezed state and an entanglement state.

Physically, with the increase of the spin number N , the spin
ensemble will remain polarized in the negative z direction. As
shown in Fig. 4, we plot the evolution of the expectation value
〈Jz〉 of the collective operator Jz with different spin numbers.
From the curves, one can clearly see that the evolution of
the expectation value 〈Jz〉 tends to be stable with time when
the spin number increases. In other words, the spin ensemble
seems to be frozen in its −z direction. So it would be safe to
replace 〈Jz〉 with a constant, i.e, −J , and then the squeezing
parameter proposed by Kitagawa and Ueda [2] would be
approximately equal to the one by Wineland et al. [3] for
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FIG. 3. Panels (a)–(c): Evolutions of the spin Wigner function Ws on the Bloch sphere with spin number N = 10 and a single photon when
Gt = 0 (a), 0.2 (b), and 0.28 (c). Panels (d)–(g): Evolutions of squeezing for the spin ensemble and the phonon mode with different spin
numbers (N = 2, 10, and 100) and without considering system decays, where panels (d)–(f) are the numerical results and (g) is the analytic
result. Panels (h) and (i): Evolutions of the spin squeezing and the spin-spin entanglement (i.e., concurrence) with different spin numbers
(N = 2 and 4), where the dashed green curves represent the quantity ξ 2

s + (N − 1)C. Other parameters are the same as those in Fig. 2.

this special case, i.e., ξ 2
s ≈ ξ 2

R . In this way, we give a math-
ematical explanation for the squeezing transfer between the
spin ensemble and the phonon mode to better understand this
interesting phenomenon. Based on the above master equation
[see Eq. (13)], we derive the differential equations of motion
of the open system under the limit of a large spin number, i.e.,

d

dt
A = MA + �, (17)

where

A(t ) = (〈J+J−〉, 〈J+J+〉, 〈J−J+〉, 〈J−J−〉, 〈J+b〉,
×〈J+b†〉, 〈J−b〉, 〈J−b†〉, 〈bb〉, 〈b†b〉, 〈b†b†〉)T

, (18a)

� = (0, 0, 0, 0, 0, 0, 0, 0, γ M∗
s , γ Ns, γ M )T

. (18b)

The expression of the matrix M and the derivation pro-
cess of the differential equations of motion can be found in
Appendix C.

The results of the above differential equations are very
lengthy, so we do not write them here, but one can get the

corresponding analytic results of the closed system from our
differential equations. Then, the squeezing parameters for the
spin ensemble and the phonon mode under the limit of a large
spin number can be reduced as

ξ 2
s (t ) = cos2

[√
NGn

2
t

]
+ ξ 2

b (0) sin2

[√
NGn

2
t

]
, (19a)

ξ 2
b (t ) = ξ 2

b (0) cos2

[√
NGn

2
t

]
+ sin2

[√
NGn

2
t

]
, (19b)

where ξ 2
b (0) = exp(−2rn) is the initial value of the squeezing

parameter of the phonon mode. In a system with a large spin
number and considering system decays, one can find that the
numerical calculation of the master equation [i.e., Eq. (13)]
will greatly consume the running memory of computer. How-
ever, the above differential equations with its initial conditions
do not have this problem. From the analytic results in Eq. (19),
one can see that the initial squeezing value ξ 2

b (0) of the
phonon mode can be transferred to the spin ensemble totally
when

√
NGnt/2 = mπ/2, with m being an odd number, and

at this time, there is not any squeezing in the phonon mode.
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FIG. 4. Evolution of the expectation value 〈Jz〉 of the collective
operator Jz with different spin numbers (N = 2, 10, and 100). Other
parameters are the same as those in Fig. 2.

In Fig. 3(g), we plot the evolutions of squeezing for the spin
ensemble and the phonon mode with the analytic results.
Comparing with Fig. 3(f), one can find that the analytic results
can fit the numerical results very well even if there is a little
deviation between them in the long-time evolution. Besides,
with the differential equations [i.e., Eq. (17)], we study the
evolution of the squeezing parameter ξ 2

s in our effective DM
with decays, as shown in Fig. 5(a). From the curves, one
can see that the periodicity of the evolution of the squeezing
parameter will be destroyed in the system with decays, and the
squeezing degree will gradually decrease to zero with time.
However, in the short-term evolution process, the spin ensem-
ble still has a considerable squeezing degree in our system.
Moreover, we plot the minimum of the spin squeezing that
can be reached in our system with decays when the parame-
ters deviate from the optimal squeezing phase and squeezing
amplitude, as shown in Figs. 5(b) and 5(c). From the curves,
one can clearly find that when the parameters deviate from the
ideal parameter regime, the spin squeezing will be destroyed
and be more sensitive to the phase deviation. Therefore, the
phase-matching condition must be satisfied for a squeezed-
vacuum reservoir with a certain squeezing amplitude. This is
because when the ideal parameter regime is not satisfied, the
quadratic optomechanical interaction will amplify the thermal
noise and destroy the spin squeezing. However, the optimal
spin squeezing can be obtained in the vicinity of the ideal
parameter, and importantly, it is immune to the thermal noise.

In Ref. [3], squeezing transfer between the spin ensem-
ble and the squeezed optical field has been confirmed in
a traditional and closed DM. By squeezing transfer from
the bosonic field of DM, the decoherence caused by the
environment is a crucial factor for the spin squeezing. In
our effective DM, the thermal noise in our system can be
suppressed completely. Moreover, the interaction strength be-
tween the phonon mode and the spin ensemble is enhanced
exponentially by the quadratic optomechanical coupling, i.e.,
Gn = exp(rn)G. These are very important for increasing and
protecting the spin squeezing in an open system. As shown
in Fig. 5(d), we plot the evolutions of the spin squeezing in
the open environment with our system and a traditional DM,
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FIG. 5. (a) Evolution of the squeezing parameter ξ 2
s in the system

with decays; (b) and (c) minimum (ξ 2
s )min of the spin squeezing in

the system where the parameters deviate from the optimal squeezing
phase and squeezing amplitude; (d) evolution of the spin squeezing
in the open system (γ = G and κ = 0.01G), where the solid curve
represents our system. Besides, the dashed, dotted, and dot-dashed
curves represent a traditional Dicke model (DM) in a squeezed-
vacuum reservoir (SR) that is the same as ours, a traditional DM
in a thermal reservoir (TR) with thermal phonon number 1, and a
traditional DM in a vacuum reservoir (VR), respectively. The initial
squeezing degree of the phonon mode in the traditional DM is as-
sumed to be the same as ours, i.e., exp(−2rn). Other parameters are
the same as those in Fig. 2.

where the phonon mode in the traditional DM is assumed to
have the same initial squeezing degree as that in our system.
Besides, the traditional DM is in a squeezed-vacuum reservoir
(SR) that is the same as ours, a thermal reservoir (TR) with
thermal phonon number 1, and a vacuum reservoir (VR),
respectively. From the curves, one can clearly see that due
to the destructive effect of the thermal noise, the squeezing
degree in the traditional DM will be destroyed severely. In
our system, however, due to the combined effect from the
enhanced phonon-spins coupling and the suppressed thermal
noise, we can obtain a squeezing degree better than that of the
optimal squeezing that can be achieved in the traditional DM.

IV. DISCUSSIONS

In Eq. (5) onward, the photon number operator a†a is
treated as a classical parameter rather than a dynamical
variable, without considering the loss of the photon number
during the cavity. From Fig. 5(a), one can find that the
spin squeezing can get its optimal value when Gt ≈ 0.1.
It is worth mentioning that the collective coupling strength
G in the superconducting circuit can reach the order of
10 MHz [60]. That is to say, the photon lifetime in our system
should be longer than 10−8 s, which can be satisfied in the
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superconducting circuit [28]. Besides, during the derivation
of the system Hamiltonian, the RWA has been used [see
Eq. (6)]. In Fig. 5(a), we also verify this approximation based
on the differential equations of motion of the open system
with the Hamiltonian without the RWA (see Appendix C for
details). One can clearly observe that the squeezing parameter
without the RWA will oscillate slightly around the one with
the RWA. Thus, the RWA is acceptable in the derivation of
the Hamiltonian.

In our system parameters, a relatively large quadratic op-
tomechanical coupling g has been used. In principle, our
theoretical scheme could be realized with a membrane-in-the-
middle cavity optomechanical system [62] when the quadratic
optomechanical coupling in this system is enhanced dramati-
cally, and there are many proposals to enhance the quadratic
coupling, such as a fiber-based cavity [69] and a near-field
optomechanical system [70]. To obtain a stronger quadratic
optomechanical coupling, however, the good candidate for
implementing our scheme is the superconducting circuit that
has the ability to simulate the quadratic optomechanical
coupling [61], as shown in Fig. 1. It has been found that the su-
perconducting circuit can realize a stronger coupling strength
compared with the one achieved in the membrane-in-the-
middle cavity optomechanical system by optimizing the cou-
pling capacitance, the bias flux, and the geometrical arrange-
ment of the circuit [61], so that the quadratic optomechanical
effect would be appreciable for a single photon in future
experiments. Besides, the single-photon technology has been
achieved in the superconducting circuit [71] and in other phys-
ical systems including cold atoms [72], diamond color centers
[73], and quantum dots [74]. With the superconducting circuit
and the single-photon technology, our scheme can provide an
effective way to manipulate spin squeezing and entanglement
and to reduce decoherence in an open system, as well as
contribute to engineering new single-photon quantum devices.

V. CONCLUSIONS

In conclusion, we propose a single-photon-triggered spin
squeezing and entanglement in a hybrid quantum model in-
cluding cavity QED and optomechanics. We show that in our
system the phonon-spins coupling can be enhanced exponen-
tially; meanwhile, the thermal noise of the phonon mode can
be suppressed completely. Specifically, the squeezing of the
phonon mode triggered by a single photon can be transferred
to the spin ensemble totally. Moreover, we also find that
pairwise entanglement of the spin ensemble in our system can
be realized if and only if there is spin squeezing. This work
presents an effective way to enhance squeezing degree and
reduce the decoherence in an open system, which can play an
important role in the field of precision measurements and the
design of new single-photon quantum devices.
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APPENDIX A: DERIVATION PROCESS OF
THE EFFECTIVE SYSTEM HAMILTONIAN

Because the photon mode is prepared in the Fock state, the
system Hamiltonian can be rewritten as

H = �Jz + (ωb − 2gn)b†b + G(b + b†)Jx − gn(b2 + b†2),
(A1)

where the corresponding constant terms have been neglected.
The last term can be diagonalized with a squeezing transfor-
mation that has the following relation,

S†(ζ )bS(ζ ) = b cosh (rn) − b†eiθ sinh (rn), (A2)

with the squeeze operator S(ζ ) = exp[(ζ ∗b2 − ζb†2)/2]. The
squeeze parameter ζ = rneiθ , where the squeeze angle θ =
π , and the squeeze amplitude can be solved as rn =
(−1/4) ln[1 − 4ng/ωb] by setting the coefficients of these
terms containing bb and b†b† to zero. Then we can derive the
effective Hamiltonian, i.e., Eq. (5).

APPENDIX B: SQUEEZING PARAMETERS
WITH OPTIMAL SQUEEZING FOR THE PHONON

MODE AND THE SPIN ENSEMBLE

For the phonon mode, the position and momentum ampli-
tudes can be defined as

Q ≡ b + b†, P ≡ −i(b − b†). (B1)

The phonon mode will be in a squeezed state when the
variance in any direction on the Q-P plane is less than 1.
Then, the quadrature squeezing of the phonon mode can be
characterized by the parameter

ξ 2
b = min

φb∈[0,2π )
(�Qφb )2, (B2)

with Qφb = be−iφb + b†eiφb . From the definition of the opera-
tors Q and P, the squeezing parameter with optimal squeezing
for the phonon mode can be derived as [4]

ξ 2
b = 1 + 2(〈b†b〉 − |〈b〉|2) − 2|〈b2〉 − 〈b〉2|. (B3)

Due to 〈b〉 = 0 in our system, we can get the expression of
Eq. (11).

For the spin ensemble, due to 〈J−〉 = 〈J+〉 = 0 in our sys-
tem, the mean spin is along the z direction. Thus, the operator
J�n⊥ can be written as

Jφs = cos(φs)Jx + sin(φs)Jy, (B4)

with φs ∈ [0, 2π ). Then the squeezing parameter with optimal
squeezing for the spin ensemble can be derived as [21]

ξ 2
s = 2

N

[〈
J2

x + J2
y

〉 −
√〈

J2
x − J2

y

〉2 + 〈{Jx, Jy}〉2
]
, (B5)

where {Jx, Jy} = JxJy + JyJx is the anticommutator for op-
erators Jx and Jy, and with J± = Jx ± iJy, we can get the
expression of Eq. (12).
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APPENDIX C: DIFFERENTIAL EQUATIONS
OF MOTION IN AN OPEN SYSTEM

In the Schrödinger picture, the evolution of the expectation
value for an arbitrary operator O can be written as

d

dt
〈O〉 = Tr(ρ̇sO). (C1)

Then based on the master equation in our system [i.e.,
Eq. (13)], the evolution of A(t ) can be solved after some
tedious calculations, i.e.,

d

dt
A = MA + �, (C2)

where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κN 0 0 0 −i GnN
2 0 0 i GnN

2 0 0 0
0 �1 0 0 0 iGnN 0 0 0 0 0

−κN 0 0 0 −i GnN
2 0 0 i GnN

2 0 0 0
0 0 0 �2 0 0 −iGnN 0 0 0 0

−i Gn
2 0 0 0 �3 0 0 0 0 i GnN

2 0
0 i Gn

2 0 0 0 �4 0 0 0 0 i GnN
2

0 0 0 −i Gn
2 0 0 �5 0 −i GnN

2 0 0
i Gn

2 0 0 0 0 0 0 �6 0 −i GnN
2 0

0 0 0 0 0 0 −iGn 0 �7 0 0
0 0 0 0 i Gn

2 0 0 −i Gn
2 0 −γ 0

0 0 0 0 0 iGn 0 0 0 0 �8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C3a)

A(t ) = (〈J+J−〉, 〈J+J+〉, 〈J−J+〉, 〈J−J−〉, 〈J+b〉, 〈J+b†〉, 〈J−b〉, 〈J−b†〉, 〈bb〉, 〈b†b〉, 〈b†b†〉)T, (C3b)

� = (0, 0, 0, 0, 0, 0, 0, 0, γ M∗
s , γ Ns, γ Ms)T

, (C3c)

and �1 = 2i� − κN , �2 = −2i� − κN , �3 = i(� − ωn) − N
2 κ − γ

2 , �4 = i(� + ωn) − N
2 κ − γ

2 , �5 = −i(� + ωn) − N
2 κ −

γ

2 , �6 = −i(� − ωn) − N
2 κ − γ

2 , �7 = −2iωn − γ , and �8 = 2iωn − γ , with the following initial condition,

A(0) = [0, 0, N, 0, 0, 0, 0, 0, − cosh (rn) sinh (rn), sinh2 (rn), − cosh (rn) sinh (rn)]T. (C4)

Besides, we also derive the differential equations of motion based on the master equation but using the Hamiltonian without
the RWA, i.e., Eq. (5). The difference from the above differential equations is that the expression of M should be changed as
follows:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κN 0 0 0 −i GnN
2 −i GnN

2 i GnN
2 i GnN

2 0 0 0
0 �1 0 0 iGnN iGnN 0 0 0 0 0

−κN 0 0 0 −i GnN
2 −i GnN

2 i GnN
2 i GnN

2 0 0 0
0 0 0 �2 0 0 −iGnN −iGnN 0 0 0

−i Gn
2 −i Gn

2 0 0 �3 0 0 0 i GnN
2 i GnN

2 0

0 i Gn
2 i Gn

2 0 0 �4 0 0 0 i GnN
2 i GnN

2

0 0 −i Gn
2 −i Gn

2 0 0 �5 0 −i GnN
2 −i GnN

2 0

i Gn
2 0 0 i Gn

2 0 0 0 �6 0 −i GnN
2 −i GnN

2

0 0 0 0 −iGn 0 −iGn 0 �7 0 0

0 0 0 0 i Gn
2 −i Gn

2 i Gn
2 −i Gn

2 0 −γ 0
0 0 0 0 0 iGn 0 iGn 0 0 �8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C5)

Then with the above differential equations of motion, we can obtain the evolution of the spin squeezing without considering the
RWA, as shown in Fig. 5(a).
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