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We theoretically propose a method to generate tripartite entanglement of three mechanical oscillators in an
optomechanical array. We consider a system comprised of three bichromatically driven optomechanical systems
which are coupled to each other via Coulomb interaction of the mechanical oscillators. We show that, for
small Coulomb coupling strength, steady tripartite entanglement of the three mechanical oscillators with time
periodicity can be generated due to the combined effect of the two-tone drivings and the Coulomb coupling.
At large Coulomb coupling strength, the tripartite entanglement exhibits steady entanglement sudden death and
revival. The duration of entanglement death during one period can be controlled by the Coulomb coupling
strength. The tripartite entanglement is robust against the mechanical thermal noise. Our paper provides us a route
for exploring and exploiting controllable and robust multipartite entanglement among macroscopic mechanical
oscillators.
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I. INTRODUCTION

Quantum entanglement [1] is one of the most fascinating
features of quantum physics and has attracted considerable
attention in quantum technologies due to its numerous fu-
turistic potential applications in quantum communication and
quantum networks [2–5], quantum metrology [6–9], and
fundamental tests of quantum mechanics [10–13]. To date
quantum entanglement has been demonstrated in a vari-
ety of quantum systems, including superconducting circuits
[14–17], atomic ensembles [18,19], and quantum optical se-
tups [20–23]. Cavity optomechanical systems [24], where
mechanical modes interact with electromagnetic modes via
radiation pressure, could be an alternative platform to re-
alize continuous variable entanglement. Due to the generic
radiation-pressure coupling, many proposals have been put
forward to generate photon-phonon entanglement [25–29] and
photon-photon entanglement [30–32]. The generation of tri-
partite entanglement has also been investigated in multimode
optomechanical systems [33–36] and hybrid optomechanical
systems [37,38].

Furthermore, macroscopic mechanical entanglement,
which is helpful for clarifying the boundary between the
classical world and the quantum world [39] and sensing
forces with ultrahigh precision [40], can also be achieved
via cavity optomechanical systems. Many different methods
have been proposed to entangle two mechanical oscillators,
e.g., light-to-matter entanglement transfer [41,42], using
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time-modulated pump or coupling [43–45], exploiting optical
measurement [46–49], and the reservoir engineering based
schemes [50–52]. However, these methods mainly focus on
bipartite entanglement between two mechanical oscillators;
the quantum multipartite entanglement in more complex
systems consisting of three or more mechanical oscillators,
which has potential applications in multimode quantum
information processes [53–58] and investigating quantum
many-body phenomena of macroscopic elements [59–63], is
barely investigated.

Recently, the authors in Ref. [64] have proposed a method
to generate tripartite photonic entanglement by injecting a
coupled waveguide array with single-mode squeezed light.
Then, one may ask whether this method can be implemented
to mechanical oscillators to generate genuine tripartite en-
tanglement of mechanical oscillators. However, injection of
a single-mode squeezed state for mechanical oscillators is
very difficult. So, we put this question another way, i.e.,
whether genuine tripartite entanglement of mechanical os-
cillators can be generated by coupling three independently
squeezed mechanical oscillators. The answer is yes. In this
paper, we investigate the tripartite entanglement of three
mechanical oscillators which are coupled to each other via
Coulomb interaction. In order to squeeze each mechanical
oscillator independently, we adopt the mechanical squeezing
scheme proposed in Ref. [65], i.e., coupling each mechanical
oscillator to an optical cavity which is driven bichromatically.
We model the dynamics of the system by exploiting the stan-
dard Langevin formalism, simulate the linearized dynamics
exactly, and investigate the asymptotic dynamics of entangle-
ment for the mechanical modes. In addition to the tripartite
entanglement, we also investigate bipartite entanglement be-
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FIG. 1. Schematic diagram of the optomechanical system. It
includes three identical optical cavities and three mechanical oscilla-
tors. There is no interaction among the cavities. The jth mechanical
oscillator (MO j with j = 1, 2, 3) couples to the jth cavity by radia-
tion pressure. The jth mechanical oscillator is charged by a bias gate
with voltage Vj and capacitance Cj . The three mechanical oscillators
couple to each other through Coulomb interaction.

tween any two mechanical oscillators and find that bipartite
and tripartite entanglement can occur simultaneously among
the three mechanical oscillators. In contrast to the situation
of mechanical squeezing where counter-rotating, off-resonant
terms associated with the two-tone optical driving fields can
be neglected, both the off-resonant terms associated with the
bichromatic optical driving and the mechanical Coulomb cou-
pling cannot be ignored in order to achieve large bipartite
and tripartite entanglement of the mechanical oscillators. So
the mechanical entanglement generated by our method ex-
hibits steady periodic oscillation in the long-time limit. The
physical mechanism for the generation of bipartite and tri-
partite entanglement is that the optical modes can squeeze
the phononic supermodes formed by the Coulomb coupling
and the squeezed state of the three phononic supermodes is
a genuine tripartite entangled state for the three mechanical
oscillators. Besides the periodic asymptotic oscillation of me-
chanical entanglement, when the Coulomb coupling strength
crosses a critical value both the bipartite and tripartite entan-
glement can exhibit stable periodic sudden death and revival,
which is of general interest in quantum physics [66,67]. The
tripartite entanglement generated in our model can be an order
of magnitude larger than that of Ref. [38].

The remainder is organized as follows. In Sec. II, we give
the physical model considered in this paper and derive the
differential equation satisfied by the covariance matrix of the
system. By simulating the differential equation correspond-
ing to the covariance matrix, the asymptotic dynamics of the
mechanical entanglement for the three mechanical oscillators
is investigated in Sec. III. The dependence of the generated
mechanical entanglement on the squeezing parameter and
Coulomb coupling strength is also studied in this section.
Section V summarizes our results.

II. THEORETICAL MODEL

As depicted in Fig. 1, the system under consideration is
comprised of three identical optical cavities, each with one
mechanical oscillator. Each optical cavity is driven bichro-
matically and the mechanical oscillators are coupled through
Coulomb interaction. There is no direct interaction among the

cavities. The full Hamiltonian of the system is given by

Ĥ =
3∑

j=1

(Ĥom, j + Ĥdr, j ) + Ĥc,

Ĥom, j = h̄ωcâ†
j â j + h̄ωmb̂†

j b̂ j − h̄g0â†
j â j (b̂

†
j + b̂ j ),

Ĥdr, j = h̄
(
ε+e−iω+t + ε−e−iω−t

)
â†

j + H.c.,

Ĥc = h̄(λ12q̂1q̂2 + h̄λ13q̂1q̂3 + h̄λ23q̂2q̂3), (1)

where â j and b̂ j are the annihilation operators of the optical
mode and mechanical mode in the jth cavity, respectively. ωc

is the optical frequency of the three optical cavities. For sim-
plicity, we have assumed that the three mechanical oscillators
are identical so that they have the same effective mass m and
the same frequency ωm. Each mechanical oscillator couples to
its own cavity by radiation pressure with the same coupling
strength g0 = ωc/L. L is the length of the cavities. Every
cavity is bichromatically driven by two lasers with frequency
ω± = ωl ± ωm and driving amplitude ε±. q̂ j = (b̂ j + b̂†

j )/
√

2
is the dimensionless position operator of the jth mechanical
oscillator. Ĥc represents the Coulomb coupling of the three
mechanical oscillators. Under the condition that the distance
between the mechanical oscillators is much larger than the
displacement of each mechanical oscillator, the Coulomb cou-
pling strengths can be written as [68–70]

λ12

q2
zpf

= Q1Q2

2πε0r3
0

,
λ23

q2
zpf

= Q2Q3

2πε0r3
0

,
λ13

q2
zpf

= Q1Q3

16πε0r3
0

,

where r0 is the equilibrium distance between adjacent me-
chanical oscillators and qzpf = √

h̄/2mωm is the zero-point
fluctuation of the mechanical oscillators. The charge taken by
each mechanical oscillator can be adjusted by an external bias
voltage at an electrode on each mechanical oscillator [71]. The
charge taken by the jth mechanical oscillator is Qj = CjVj ,
where Vj and Cj are the voltage and the capacitance of the bias
gate, respectively. As the charges taken by each mechanical
oscillator can be tuned independently, we assume the three
Coulomb coupling strengths are the same, i.e., λ12 = λ13 =
λ23 = λ. This can be achieved by setting Q1 = Q3 = 8Q2.
The Langevin equations of the system in the frame rotating
with the frequency ωl is given by

˙̂a j = −
{κ

2
+ i[�c − g0(b̂†

j + b̂ j )]
}

â j

− i(ε j+e−iωmt + ε j−eiωmt ) + √
κ â j,in,

˙̂b j = −
[γ

2
+ iωm

]
b̂ j + ig0â†

j â j − i
λ

2

∑
k �= j

(b̂†
k + b̂k )

+√
γ b̂ j,in, (2)

where j = 1, 2, 3 and �c = ωc − ωl . The notation
∑

k �= j de-
notes that k goes from 1 to 3 except the value of j. In addition,
κ and γ characterize the decay rates of the optical cavities and
the mechanical oscillators, respectively. The zero-mean-value
noise operators â j,in and b̂ j,in that describe, respectively, the
quantum vacuum noise of the jth cavity and the thermal
noise of the jth mechanical oscillator satisfy the commutation
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relations [72]

[â j,in(t ), â†
j′,in(t ′)] = [b̂ j,in(t ), b̂†

j′,in(t ′)] = δ j j′δ(t − t ′)

and nonzero correlation functions

〈â j,in(t )â†
j′,in(t ′)〉 = δ j j′δ(t − t ′),

〈b̂†
j,in(t )b̂ j′,in(t ′)〉 = nthδ j j′δ(t − t ′), (3)

where nth = {exp[h̄ωm/(kBT )] − 1}−1 is the mean thermal
phonon number of the mechanical oscillators at temperature
T with kB being the Boltzmann constant. This means that
all the mechanical oscillators stay at the same environmental
temperature. The environmental temperatures of the opti-
cal modes are zero. In the limit of large driving fields, the
quantum dynamics of the system can be efficiently studied
by linearizing the Langevin equations. In this case, the aver-
age field amplitudes for both the cavities and the mechanical
oscillators are large and the field operators â j and b̂ j can be
decomposed as [73–75]

â j (t ) = α j (t ) + δâ j,

b̂ j (t ) = β j (t ) + δb̂ j, (4)

where α j (t ) = 〈â j〉 and β j (t ) = 〈b̂ j〉. δâ j and δb̂ j are the
quantum fluctuation operators of the jth optical mode and
jth mechanical mode, respectively. We can get the dynamical
equations for α j (t ) and β j (t ) by taking the average over the
quantum Langevin equations (2). Under the mean-field ap-
proximation, the classical equations for α j (t ) and β j (t ) can
be written as

α̇ j = −
[κ

2
+ i�c, j

]
α j − i(ε j+e−iωmt + ε j−eiωmt ),

β̇ j = −
[γ

2
+ iωm

]
β j + ig0|α j |2 − i

λ

2

∑
k �= j

(
β∗

k + βk
)
, (5)

with �c, j = �c − g0(β∗
j + β j ). By substituting Eq. (4) into

the Langevin equations and using Eq. (5), the linearized

Langevin equations of the system, in the interaction pic-
ture with respect to the Hamiltonian Ĥ0 = ∑3

j=1 ωmb̂†
j b̂ j , are

given by

δ ˙̂a j = −
[κ

2
+ i�c, j (t )

]
δâ j + √

κ â j,in

+ ig0α j (t )(δb̂†
je

iωmt + δb̂ je
−iωmt ),

δ ˙̂b j = −γ

2
δb̂ j + ig0[α∗

j (t )δâ j + α j (t )δâ†
j ]e

iωmt

− i
λ

2

∑
k �= j

(
δb̂†

ke2iωmt + δb̂k
) + √

γ b̂ j,in. (6)

In order to quantify the entanglement of the mechanical
oscillators, we first introduce the standard definition of
the optical and mechanical mode quadratures x̂ j = (δâ†

j +
δâ j )/

√
2, ŷ j = i(δâ†

j − δâ j )/
√

2, q̂ j = (δb̂†
j + δb̂ j )/

√
2, and

p̂ j = i(δb̂†
j − δb̂ j )/

√
2. The linearized Langevin equations (6)

can be expressed in the following compact matrix form:

u̇(t ) = M(t )u(t ) + n(t ), (7)

where we have defined the vector of quadrature op-
erators u = [v1, v2, v3]T with v j = [x̂ j, ŷ j, q̂ j, p̂ j]. n(t ) =
[v1,in, v2,in, v3,in]T is the corresponding vector of the noise
quadratures with v j,in = [

√
κ x̂ j,in,

√
κ ŷ j,in,

√
γ q̂ j,in,

√
γ p̂ j,in].

The noise quadratures are x̂ j,in = (â†
j,in + â j,in )/

√
2, ŷ j,in =

i(â†
j,in − â j,in )/

√
2, q̂ j,in = (b̂†

j,in + b̂ j,in )/
√

2, and p̂ j,in =
i(b̂†

j,in − b̂ j,in )/
√

2. The drift matrix can be written as

M(t ) =
⎛
⎝B1 C C

C B2 C
C C B3

⎞
⎠.

The blocks B j ( j = 1, 2, 3) and C are

B j =

⎛
⎜⎜⎝

− κ
2 �c, j −2g0Im[α j] cos(ωmt ) −2g0Im[α j] sin(ωmt )

−�c, j − κ
2 2g0Re[α j] cos(ωmt ) 2g0Re[α j] sin(ωmt )

−2g0Re[α j] sin(ωmt ) −2g0Im[α1] sin(ωmt ) − γ

2 0
2g0Re[α j] cos(ωmt ) 2g0Im[α j] cos(ωmt ) 0 − γ

2

⎞
⎟⎟⎠,

C =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 λ

2 sin(2ωmt ) λ
2 [1 − cos(2ωmt )]

0 0 − λ
2 [1 + cos(2ωmt )] − λ

2 sin(2ωmt )

⎞
⎟⎟⎠.

Re[·] and Im[·] denote the real and imaginary part, respec-
tively. Due to the linearization of the Langevin equations
and the Gaussian nature of the quantum noises, the Gaussian
nature of the system can be well preserved if the initial state of
the system is Gaussian. This means that the quantum dynam-
ics of the system can be completely determined by its 12 × 12
covariance matrix V(t ), with the matrix elements given by

Vk,l (t ) = 〈ukul + uluk〉/2. (8)

From Eq. (7) and Eq. (8), the linear differential equation
satisfied by V(t ) can be written as

V̇(t ) = M(t )V(t ) + V(t )MT (t ) + D, (9)

where the diagonal matrix D is defined as Dk,lδ(t − t ′) =
〈nknl + nlnk〉/2. Using Eq. (3), the matrix D is D =
diag[N, N, N] with N = [κ/2, κ/2, γ (2nth + 1)/2, γ (2nth +
1)/2]. In the following, we investigate the exact dynamics
of the entanglement among the mechanical oscillators by
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simulating Eq. (9) numerically. The numerical method we
use combines two steps: (1) we get the classical dynam-
ics of α j (t ) and β j (t ) by simulating Eq. (5) numerically
with the initial condition α j (0) = β j (0) = 0 ( j = 1, 2, 3) and
(2) in determining the dynamics of the covariance matrix,
we plug the numerical result of α j (t ) and β j (t ) into the
drift matrix and simulate Eq. (9). With the exact time evo-
lution of the covariance matrix, we can get the dynamics
of the entanglement among the mechanical oscillators. In
order to make the following results experimentally achiev-
able, we choose the following set of parameters, which
are accessible experimentally, for our numerical simulations
[68]: ωc = 2.82 × 105 GHz, ωm = 2π × 947 × 103 Hz, κ =
2π × 215 × 103 Hz, the quality factor Q = ωm

γ
= 6700, m =

145 ng, and L = 25 mm.

III. DYNAMICAL ENTANGLEMENT OF THE
MECHANICAL OSCILLATORS

As the driving terms in Eq. (5) are periodic, the asymptotic
solutions α j (t → ∞) = α j,st(t ) and β j (t → ∞) = β j,st(t ) are
periodic. In order to get more insight of the generation

of mechanical entanglement, we solve Eq. (5) approxi-
mately to get the asymptotic solutions of α j (t ) and β j (t ).
The asymptotic solutions can be calculated by expanding
α j (t ) and β j (t ) in powers of g0. Under the condition that
g0|α j,st(t )|, g0|β j,st(t )|, κ, λ 
 ωm, the expansion can be
safely kept to the first order in g0 and the asymptotic solutions
α j,st(t ) and β j,st(t ) can be approximately written as

α j,st(t ) = α+e−iωmt + α−eiωmt ,

β j,st(t ) = βdc + β+e−2iωmt + β−e2iωmt , (10)

where the formulas of α±, βdc, and β± are given in
Appendix A 1. As the driving amplitudes of the three cavities
are the same, the asymptotic solutions α j,st(t ) and β j,st(t ) are
independent of j. The details for the derivation of Eq. (10)
are left to Appendix A 1. As the phase of α± can be tuned
freely through the phase of ε±, we assume that α± are
real. The physical mechanism for the generation of the me-
chanical entanglement can be understood from the linearized
Hamiltonian of the system. By using Eq. (10), the linearized
Hamiltonian of the system can be written as

Ĥlin =
[

λ

2

(
δb̂†

1δb̂2 + δb̂†
1δb̂3 + δb̂†

2δb̂3
) −

3∑
j=1

(
G+δb̂ j + G−δb̂†

j

)
δâ j + H.c.

]

+
[

λ

2

(
δb̂1δb̂2 + δb̂1δb̂3 + δb̂2δb̂3

)
e−2iωmt −

3∑
j=1

(
G+δb̂†

je
2iωmt + G−δb̂ je

−2iωmt
)
δâ j + H.c.

]
. (11)

The many-photon optomechanical couplings are G± = g0α±.
In Eq. (6), the effective cavity detuning �c, j = �c −
g0[β∗

j (t ) + β j (t )] is time periodic in the long-time limit. How-
ever, the oscillation amplitude of �c, j is much smaller than
ωm. For the parameters considered in this work, the oscillation
amplitude is about 10−3ωm. This means that we can omit the
oscillation of β j,st(t ). So the effective cavity detuning can be
approximated as �̃c = �c − 2g0Re[βdc]. As �c can be turned
freely, we set �̃c = 0 for all the simulations in this paper for
simplification. The terms in the first line represent the resonant
term and the terms in the second line describe the off-resonant
term. By setting λ = 0, the above Hamiltonian reduces to the
Hamiltonian in Ref. [65], i.e., each cavity squeezes its own
mechanical oscillator. In order to see how the entanglement
is generated by the resonant term, we define three phononic
supermodes and three photonic supermodes, i.e.,

d̂1 = 1√
3

(
δb̂1 + δb̂2 + δb̂3

)
,

d̂2 = 1√
2

(
δb̂3 − δb̂1

)
, d̂3 = 1√

2

(
δb̂2 − δb̂1

)
,

ĉ1 = 1√
3

(δâ1 + δâ2 + δâ3),

ĉ2 = 1√
2

(δâ3 − δâ1), ĉ3 = 1√
2

(δâ2 − δâ1).

It should be noted that, although the three cavities do not
couple to each other, we can still define three photonic super-
modes, following the definition of the phononic supermodes,
to diagonalize the resonant term into three uncoupled parts.
In terms of ĉ j and d̂ j , the resonant term of the linearized
Hamiltonian can be written as

ĤR =
3∑

j=1

ω j d̂
†
j d̂ j −

3∑
j=1

[(
G+d̂ j + G−d̂†

j

)
ĉ j + H.c.

]
, (12)

with ω1 = λ and ω2 = ω3 = −λ/2. By setting G+ =
G sinh(r) and G− = G cosh(r), the interaction term be-
tween the phononic and photonic supermodes becomes
G

∑3
j=1(ζ̂ †

j ĉ j + H.c.) with the Bogoliubov modes ζ̂ j =
d̂ j cosh(r) + d̂†

j sinh(r). This means that ĉ j can cool the

Bogoliubov mode ζ̂ j to vacuum state, which is the squeezed
state of d̂ j . G characterizes the cooling rate at which the
photonic supermodes cool the Bogoliubov modes and r is
the squeezing parameter of the three phononic supermodes.
The squeezed state of d̂ j is the entangled state of the three
mechanical oscillators. So the physical mechanism of our
method is that the Coulomb coupling induces three phononic
supermodes for the three mechanical oscillators and the op-
tical cavities squeeze the three phononic supermodes. The
combined effect of Coulomb coupling and squeezing leads
to the large bipartite and tripartite entanglement of the three
mechanical oscillators. Under the condition G±, λ 
 ωm,
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e.g., G±, λ ∼ 10−2ωm, the off-resonant term can be neglected
and the system can get a steady-state entanglement of the
mechanical oscillators. However, the mechanical entangle-
ment generated in this regime is very small. So we have
to increase the values of G± and λ, e.g., G±, λ ∼ 0.1ωm,
to get large entanglement. In this regime, the approximate
solution Eq. (10) is still valid, but the off-resonant term
cannot be neglected to get the exact time evolution of the
mechanical entanglement. The off-resonant term consists of
two parts. The first term in the second line of Eq. (11)
comes from the counter-rotating term of the Coulomb cou-
pling. Although this term can generate entanglement of the
three mechanical oscillators, the entanglement generated by
this term is very small due to λ 
 ωm. The main influ-
ence of this term is to make the mechanical entanglement
oscillate around the value generated by the resonant term. The
other off-resonant term originates from the two-tone optical
driving. When G± ∼ 0.1ωm, this term cannot only induce the
mechanical entanglement to oscillate, but also weaken the
entanglement generated by the resonant term.

By substituting Eq. (10) into the drift matrix M(t ), the drift
matrix can be decomposed as M(t ) = Ms + Mo(t ) with

Ms =
⎛
⎝Bs Cs Cs

Cs Bs Cs

Cs Cs Bs

⎞
⎠, Mo(t ) =

⎛
⎝Bo Co Co

Co Bo Co

Co Co Bo

⎞
⎠.

The blocks B j and C j ( j = s, o) are

Bs =

⎛
⎜⎝

−κ/2 0 0 G−
0 −κ/2 G+ 0
0 G− −γ /2 0
G+ 0 0 −γ /2

⎞
⎟⎠,

Bo =
(

0 Bc,o

Bm,o 0

)
,

Cs =
(

0 0
0 Cλ,s

)
, Co =

(
0 0
0 Cλ,o

)
,

with

Cλ,s =
(

0 λ/2
−λ/2 0

)
,

Bc,o =
(
G− sin(2ωmt ) −G− cos(2ωmt )
G+ cos(2ωmt ) G+ sin(2ωmt )

)
,

Bm,o =
(−G+ sin(2ωmt ) −G− cos(2ωmt )
G+ cos(2ωmt ) −G− sin(2ωmt )

)
,

Cλ,o = λ

2

(
sin(2ωmt ) − cos(2ωmt )

− cos(2ωmt ) − sin(2ωmt )

)
.

The parameters G± are G± = G+ ± G− and the effective cav-
ity detuning has been set to zero. 0 is 2 × 2 zero matrix, all
the elements of which are zero. The terms Ms and Mo(t )
result from the resonant part and the off-resonant part of
Eq. (11), respectively. From the formula of Mo(t ), we can
see that, in the asymptotic regime, the drift matrix oscillates
periodically with frequency 2ωm. Hence, in long-time limit,
the mechanical entanglement generated by the method also
exhibits periodic behavior with period π/ωm.

To investigate bipartite entanglement of the three mechan-
ical oscillators, we adopt the logarithmic negativity [76–78],

which can be readily computed from the reduced covariance
matrix of the two mechanical oscillators under considera-
tion. Due to the symmetry of the Hamiltonian Eq. (1), i.e.,
invariance of the Hamiltonian under any exchange of the
subscript j, the bipartite entanglement of any two mechanical
oscillators are the same. So we only consider the bipartite
entanglement of the first two mechanical oscillators in this
work. Consider the following reduced covariance matrix of
the two mechanical modes:

Vm =
(

V1 Vc

VT
c V2

)
,

where V1, V2, and Vc are 2 × 2 matrices. V1 and V2 repre-
sent the local properties of the first and second mechanical
oscillator, respectively, while Vc accounts for the intermode
correlations. Then, the logarithmic negativity is given by

EN = max{0,− ln 2η},
with

η = 2−1/2
√

�(Vm) −
√

�(Vm)2 − 4 det(Vm),

�(Vm) = det(V1) + det(V2) − 2 det(Vc).

For the study of tripartite entanglement of the mechanical
oscillators, we adopt quantitative measures of the residual
contangle Rτ [79], i.e.,

Rbi|b j bk
τ = Cbi|b j bk − Cbi|b j − Cbi|bk , (13)

with i, j, k = 1, 2, 3. Cμ|ν is the contangle of subsystems μ

and ν and is defined as the squared logarithmic negativity. It
should be noted that the subsystem ν can contain one or two
modes. The contangle Cμ|ν is the continuous variable analog
of the tangle for qubit systems. It has been proved that, for
all three-mode Gaussian states, the residual contangle satisfies
the monogamy inequality of quantum entanglement [79–81],
Rbi|b j bk

τ � 0, i.e.,

Cbi|b j bk � Cbi|b j + Cbi|bk , (14)

which is analogous to the Coffman-Kundu-Wootters
monogamy inequality for systems of three qubits [82]. If
all the three residual contangles of a three-mode Gaussian
state are nonzero, the Gaussian state is fully inseparable and
possesses genuine tripartite entanglement. The monogamy
inequality Eq. (14) for continuous variable systems leads
naturally to the minimum residual contangle as a bona fide
quantification of tripartite entanglement [38,80–82], i.e.,

Rmin
τ ≡ min

[
Rb1|b2b3

τ ,Rb2|b1b3
τ ,Rb3|b1b2

τ

]
, (15)

which ensures that Rmin
τ is monotone under local operations

and classical communication. More details of calculating
Eq. (15) could be found in Appendix A 2. A nonzero mini-
mum residual contangle indicates the appearance of genuine
tripartite entanglement among the three mechanical oscil-
lators. So both the dynamics of the bipartite and tripartite
entanglement can be investigated via simulating the dynamics
of the covariance matrix of the system.

In Figs. 2(a) and 2(b), we plot the asymptotic dynamics
of EN and Rmin

τ evaluated with different drift matrix M(t ).
From this figure, we can see that the result evaluated with
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FIG. 2. (a),(b) Comparison of the asymptotic dynamics of EN and Rmin
τ evaluated with different drift matrix M(t ). The blue solid lines

are evaluated with M(t ) calculated by exactly simulating Eq. (5). The black dash-dotted lines are evaluated with M(t ) = Ms + Mo(t ). The
red dashed lines are evaluated with M(t ) = Ms. (c),(d) Time evolution of EN and Rmin

τ in the long-time limit with M(t ) calculated by exactly
simulating Eq. (5) for different λ. In (a) and (b), the Coulomb coupling strength is λ = 10λ0. Other parameters are G = 0.1ωm, r = 0.4, nth =
0.5, and λ0 = λ̃0q2

zpf = 0.0082ωm with λ̃0 = 8 × 1035 Hz/m2.

exactly simulated M(t ) and the result evaluated with M(t ) =
Ms + Mo(t ) fit well. These two results oscillate around the
result obtained with M = Ms. The oscillation period of EN

and Rmin
τ is π/ωm because the oscillation frequency of

Mo(t ) is 2ωm. This means that the entanglement is gener-
ated mainly by Ms. The term Mo(t ) induces the oscillation
of EN and Rmin

τ and can impair the entanglement gener-
ated by Ms. This confirms the previous discussion. From
this figure, we can also see that the bipartite and tripar-
tite entanglement are maximized at the same moments in
time. This is in contrast with the monogamy for system
of three qubits, the bipartite and tripartite entanglement
of which cannot be maximized simultaneously. The reason
for this variance is due to the fact that the Hamiltonian
Eq. (1) of the system is invariant under any exchange of the
subscript j and the reduced state of the three mechanical
oscillators is a fully symmetric three-mode Gaussian state
which is invariant under the exchange of any two mechanical
modes. It has been proved that maximum of the genuine
tripartite entanglement and the bipartite entanglement can be
achieved simultaneously in fully symmetric three-mode Gaus-
sian states [79]. This phenomenon, which has no counterpart
in discrete variable systems, is named as promiscuous sharing
of continuous variable entanglement [81]. Figures 2(c) and
2(d) show the exact asymptotic time evolution of EN and
Rmin

τ , respectively, with different λ. From this figure, we can
see that, for large λ, both EN and Rmin

τ can exhibit periodic
vanishing, which is known as entanglement sudden death and
revival [66,67,74,83]. The reason for this phenomenon is that,
when λ is large, the off-resonant term associated with the
Coulomb coupling can induce large oscillation amplitude for
EN and Rmin

τ . When the oscillation amplitude of EN (Rmin
τ ) is

equal to the central value of EN (Rmin
τ ), periodic sudden death

of bipartite (tripartite) entanglement appears. From these fig-
ures, we can also see that the duration of entanglement death
in one period increases and the maximum values of the bi-
partite and tripartite entanglement oscillation decrease as λ

increases. When the duration of entanglement death in one
period is equal to the oscillation period of the mechanical
entanglement, i.e., π/ωm, the mechanical entanglement of
the three mechanical oscillators disappears. This means that
the duration of entanglement death can be controlled by the
Coulomb coupling strength.

As both the bipartite and tripartite entanglement are pe-
riodic in the long-time limit, we identify the degree of
the mechanical entanglement with the maximum over one
oscillation period, i.e.,

EN,max = max
t∈[T ,T +π/ωm]

{EN (t )},

Rmin
τ,max = max

t∈[T ,T +π/ωm]
{Rmin

τ (t )},

with T � 1/κ, 1/γ . In Fig. 3(a), we plot Rmin
τ,max and EN,max

as a function of the squeezing parameter r. From this fig-
ure, we can see that EN,max and Rmin

τ,max go up first and then
go down as r increases. This is because, for small r, the
squeezing effect of the cavities on the phononic supermodes,
i.e., the resonant terms, is dominant and large bipartite and
tripartite entanglement of the mechanical oscillators can be
generated. In this regime, the detrimental effect of Mo(t ) is
weak and the cavities can squeeze the three phononic su-
permodes efficiently. For large r, the detrimental effect of
Mo(t ) is so strong that it can weaken the squeezing effect
of the photonic supermodes. Hence the mechanical entan-
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FIG. 3. (a) Rmin
τ,max (blue solid line) and EN,max (red dash-dotted line) as a function of the squeezing parameter r with λ = 6λ0. (b) Rmin

τ,max

and Eτ,max as a function of the Coulomb coupling strength λ with r = 0.6. (c) Rmin
τ,max and EN,max as a function of the mechanical mean thermal

phonon number nth. In (c), the Coulomb coupling strength and the squeezing parameter are λ = 6λ0 and r = 0.6, respectively. Other parameters
are the same as Fig. 2.

glement decreases for large r. Figure 3(a) also shows that,
when r crosses a critical value, Rmin

τ,max and EN,max drop to
zero abruptly. This is because, in this regime, the cavities drive
the mechanical oscillators into self-sustained oscillation [84]
and the asymptotic solution Eq. (10) breaks down. Hence,
in this regime, the cavities cannot squeeze the phononic su-
permodes and both the bipartite and tripartite entanglement
of the mechanical oscillators disappear. From this figure, we
can also see that, when r is small (large), the bipartite entan-
glement is larger (smaller) than the tripartite entanglement.
Whether the tripartite entanglement is smaller or larger than
the bipartite entanglement depends on how the entanglement
is distributed among the three mechanical oscillators. From
the definition of residual contangle Eq. (13), the residual con-
tangle, e.g., Rbi|b j bk

τ , contains two parts. One is Cbi|b j bk , which
represents the entanglement of the (1 + 2)-mode Gaussian
state of the (1 × 2)-mode partition for the state of the three
mechanical oscillators. The other one is Cbi|b j (Cbi|bk ), which
represents the bipartite entanglement of the reduced two-mode
state of the mechanical modes bi and b j (bk). If the entan-
glement of the system is mainly couplewise entanglement
between any pair of modes, Cbi|b j bk is not much larger than
Cbi|b j + Cbi|bk . In this situation, the tripartite entanglement is
smaller than the bipartite entanglement. However, if the en-
tanglement of the (1 + 2)-mode Gaussian state of the (1 × 2)-
mode partition dominates, Cbj |b j bk is much larger than Cbi|b j +
Cbi|bk and the tripartite entanglement is larger than the bipartite
entanglement.

We plot Rmin
τ,max and EN,max as a function of λ in Fig. 3(b).

From this figure, we can see that both Rmin
τ,max and EN,max

increase first and then decrease as λ increases. This is because
the Coulomb coupling induces a frequency shift for the three
phononic supermodes; see Eq. (12). When λ/2 
 G±, the in-
teraction term in Eq. (12) can be seen as near resonant and the
photonic supermodes can squeeze the phononic supermodes
efficiently. When λ ∼ G±, the interaction between the pho-
tonic and phononic supermodes in Eq. (12) is largely detuned.
In this case, the squeezing effect of the optical modes on
the phononic supermodes is weakened and the entanglement
of the three mechanical oscillators decreases. As λ increases
further, both the bipartite and tripartite entanglement decrease
to zero. The dependence of Rmin

τ,max and EN,max on the mechan-
ical mean thermal phonon number is exhibited in Fig. 3(c).
Although Rmin

τ,max and EN,max decrease monotonically with the
increase of nth, both the bipartite and tripartite entanglement
can survive up to large nth. The robustness of the bipartite

and tripartite entanglement is due to the cooling effect of
the optical modes on the Bogoliubov modes formed by the
three phononic modes. Even though the temperature of the
mechanical oscillators is high, the optical modes can still cool
the Bogoliubov modes into a low temperature and squeez-
ing of the three phononic supermodes can be formed. Hence
bipartite and tripartite entanglement of the three mechanical
oscillators can be generated for large nth.

IV. EXPERIMENTAL FEASIBILITY

The key of our protocol is to realize the Coulomb
interaction of the mechanical oscillators. Coulomb cou-
pling of mechanical oscillators can be achieved in par-
allel suspended nanomechanical electrodes [70,71]. The
Coulomb coupling strength of the nanomechanical elec-
trodes can be controlled by the bias voltages on the
nanomechanical electrodes. In addition, position-position
coupling between mechanical oscillators can also be achieved
in GaAs-based mechanical oscillators by piezoelectrically
induced parametric mode mixing [85]. So, our model
can be achieved by putting three nanomechanical elec-
trodes or GaAs-based mechanical oscillators in three optical
cavities.

V. CONCLUSION

We have studied the bipartite and tripartite entanglement
of three mechanical oscillators in an optomechanical array
consisting of three bichromatically driven optomechanical
systems. Different sites are coupled through Coulomb cou-
pling between the mechanical oscillators at each site. Due
to the combined effect of the two-tone driving fields and
the Coulomb coupling, large mechanical bipartite and tri-
partite entanglement can be generated with experimentally
reachable parameters. The asymptotic dynamics of the me-
chanical entanglement exhibit steady periodic oscillation for
small Coulomb coupling strength and show periodic sudden
vanishing for large Coulomb coupling strength. The dura-
tion of entanglement death during one oscillation period can
be controlled by mediating the Coulomb coupling strength.
Both the bipartite and tripartite entanglement increase first
and then decrease as r increases. The reason is that, for
large r, the heating effect of the off-resonant term associated
with the bichromatic driving becomes dominant and impairs
the entanglement generated by the resonant term. The me-
chanical entanglement also increases first and then decreases
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as λ increases. This is because, for large λ, the Coulomb
coupling induces a frequency shift for the three phononic
supermodes and the resonant term, which is used to squeeze
the phononic supermodes, becomes largely detuned. Hence
the optical modes cannot squeeze the three phononic super-
modes efficiently in the regime of large λ. Both the bipartite
and tripartite entanglement generated by our scheme is robust
against the mechanical thermal noise. Our scheme provides
a tool to explore and exploit robust tripartite entanglement
of three mechanical oscillators and can be easily extended
to generate multipartite entanglement with more mechanical
modes.
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APPENDIX

1. Approximate solutions of α j (t ) and β j (t )

In order to get the approximate solutions of Eq. (5), we
expand α j (t ) and β j (t ) in powers of the small parameter g0,
i.e.,

α j (t ) =
∞∑

n=0

gn
0α

(n)
j (t ), β j (t ) =

∞∑
n=0

gn
0β

(n)
j (t ). (A1)

By plugging the equations into Eq. (5), we can get the
equations for α

(n)
j (t ) and β

(n)
j (t ). As the asymptotic solutions

are independent of the initial conditions, so we assume initial
condition α j (0) = β j (0) = 0 ( j = 1, 2, 3). The equations for
each component of the expansions can be written as

α̇
(n)
j = −

[κ

2
+ i�c

]
α

(n)
j + i

n−1∑
l=0

(
β

(l )∗
j + β

(l )
j

)
α

(n−l−1)
j

+ε(n),

β̇
(n)
j = −

[γ

2
+ iωm

]
β

(n)
j + i

n−1∑
l=0

α
(l )∗
j α

(n−l−1)
j

−i
λ

2

∑
k �= j

β
(n)
k ,

where ε(0) = −i(ε+e−iωmt + ε−eiωmt ) and ε(n) with n �= 0 is
zero. In the above equations, we have done rotating-wave
approximation to the Coulomb interaction as λ 
 ωm. The
solutions of the above equations can be computed iteratively.
After tedious and straightforward calculations, the expres-
sions for the zero-order and first-order coefficients, in the
long-time limit, are given by

α
(0)
j,st(t ) = α+e−iωmt + α−eiωmt ,

β
(0)
j,st(t ) = α

(1)
j,st(t ) = 0,

β
(1)
j,st(t ) = i(|α+|2 + |α−|2)

γ

2 + i(ωm + λ)
+ iα∗

−α+
γ

2 − i(ωm − λ)
e−2iωmt

+ iα∗
+α−

γ

2 + i(3ωm + λ)
e2iωmt ,

where

α+ = −iε+
κ
2 + i(�c − ωm)

,

α− = −iε−
κ
2 + i(�c + ωm)

. (A2)

Under the condition g0|α±|, κ, λ 
 ωm, the asymptotic solu-
tions of α j (t ) and β j (t ) can be safely expanded at the lowest
order in g0. So the asymptotic solutions of α j (t ) and β j (t ) can
be approximated as

α j,st(t ) = α+e−iωmt + α−eiωmt ,

β j,st(t ) = βdc + β+e−2iωmt + β−e2iωmt ,

where

βdc = ig0(|α+|2 + |α−|2)
γ

2 + i(ωm + λ)
,

β+ = ig0α
∗
−α+

γ

2 − i(ωm − λ)
,

β− = ig0α
∗
+α−

γ

2 + i(3ωm + λ)
.

2. Calculation of Rmin
τ

The value of Rbi|b j bk
τ can be calculated as follows. The

formula of Rbi|b j bk
τ is

Rbi|b j bk
τ ≡ Cbi|b j bk − Cbi|b j − Cbi|bk ,

where Cμ|ν = E2
μ|ν (ν contains one or two modes). Eμ|ν is the

logarithmic negativity between subsystems μ and ν. The one-
mode-vs-one-mode logarithmic negativity Ebi|b j is defined as

Ebi|b j ≡ max [0,− ln(2ν̃−)],

where ν̃− = min[eig(|i�2Ṽ(i j)
m |)] is the minimum symplec-

tic eigenvalue of the covariance matrix Ṽ(i j)
m = Pi| jV

(i j)
m Pi| j

with the symplectic matrix �2 = ⊕2
j=1iσy (σy is the

y-Pauli matrix). V(i j)
m is the reduced covariance matrix of

the ith and jth mechanical oscillators and can be ob-
tained by removing in Vm (the reduced covariance matrix
of the three mechanical oscillators) the rows and columns
of the uninteresting mode. The matrix Pi| j , that real-
izes partial transposition at the level of the covariance
matrix [86], is Pi| j = diag(1,−1, 1, 1) for i < j and Pi| j =
diag(1, 1, 1,−1) for i > j. The calculation of the one-mode-
vs-two-modes logarithmic negativity Ebi|b j bk is the same as
the calculation of Ebi|b j . To calculate Ebi|b j bk , one only needs

to replace �2 = ⊕2
j=1iσy with �3 = ⊕3

j=1iσy and Ṽ(i j)
m =

Pi| jV
(i j)
m Pi| j with Ṽm = Pi| jkVmPi| jk , where the partial trans-

position matrices are P1|23 = diag(1,−1, 1, 1, 1, 1),P2|13 =
diag(1, 1, 1,−1, 1, 1), and P3|12 = diag(1, 1, 1, 1, 1,−1).
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