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Three-dimensional spatiotemporal nondiffracting parabolic cylinder beams
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In this paper, the propagation characteristics of three-dimensional spatiotemporal nondiffracting parabolic
cylinder beams in free space are studied. From the (3+1)-dimensional paraxial wave equation, we obtain an exact
solution by the method of separating variables. The solution is constructed using parabolic cylinder functions,
described by the three optical mode numbers. The spatiotemporal intensity distribution of the parabolic cylinder
beam at five times Rayleigh range with different mode parameters is presented analytically and simulated
numerically. Our results indicate that the intensity distribution can be well controlled by adjusting the values of
the three mode numbers. They are of great significance for improved understanding of the formation mechanism
of parabolic cylinders and other nondiffracting beams.
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I. INTRODUCTION

A nondiffracting optical beam is a beam whose transverse
intensity distribution will not change in the process of beam
propagation [1]. This kind of beams exhibit some unique
properties, such as high intensity concentration of the light
field, a small central spot, and, when encountering obsta-
cles, the ability to restore the original intensity distribution.
Because of these characteristics, nondiffracting beams have
found applications in many fields, so many scholars continue
to explore their peculiar properties. Due to nondivergence
and high concentration of light intensity, such beams have
been widely used in different fields, for example, in optical
manipulation [2], imaging [3], scanning [4], communications
[5], and so on. Nondiffracting beams often also accelerate [6].

In 1987, Durnin et al. first proposed a nondiffracting Bessel
beam in free space, which is a special solution of scalar
paraxial wave equation in cylindrical coordinates [7]. The
paraxial wave equation can have variables separated in 11
kinds of orthogonal coordinate systems, but only in Cartesian,
cylindrical, elliptic, and parabolic cylindrical coordinates, can
the nondiffracting wave solution be obtained. The solutions
obtained in these four coordinate systems, corresponding to
different Bessel [7], cosine [8], Mathieu [9], and parabolic
beams [10], form a family of nondiffracting beams. In 2000,
Salo et al. [11] put forward a method of representing the wave
field of nondiffracting light, by which any monochromatic
nondiffracting wave can be described as the superposition of
all plane waves whose wave vectors are located on a cone.
Bessel beams have been researched a lot since they were
put forward several decades ago, but the other three kinds
of beams have been studied less. The nondiffracting Mathieu

*zhongwp6@126.com
†caiguofa2006@gdut.edu.cn

beam was reported by Gutierrez-Vega et al. and in the fol-
lowing year, the beam was confirmed by experiment [12]. In
2004, Bandres et al. introduced the parabolic beam [13]. In
2005, López Mariscal et al. [14] observed the parabolic beam
in the laboratory. In recent years, researchers have continued
to explore nondiffracting beams, especially their intensity dis-
tributions. Interestingly, Garcés-Chávez et al. [15] applied a
self-reconstructing beam to multilayer particle micromanipu-
lation, which brought the application of nondiffracting beams
into a new era.

The essential effect in optical wave packet propagation is
beam diffraction, which is one of the most difficult prob-
lems to treat in physical optics. In diffraction theory, due to
mathematical difficulties, there are few exact solutions, and
in most cases, approximate methods must be used. The ex-
ploration of spatiotemporal optical wave packets is obviously
intertwined with the development of materials science needs
and the formation of adequate experimental abilities. In recent
years, in the field of three-dimensional (3D) spatiotemporal
beams, various materials and technologies have been found
to meet these needs. In 2001, Eisenberg et al. [16] studied
the propagation of beams in planar fused silica waveguides.
It was found that the optical pulse underwent spatiotemporal
self-focusing and formed a stable beam; in 2010, Minardi
et al. [17] fabricated a waveguide array using silicon fluoride
glass material. The optical pulses with 0.4 milliwatt (mW)
intensity, 1550 nm wavelength, and 170 fs pulse width were
coupled into a waveguide array, and a three-dimensional spa-
tiotemporal beam was obtained at the output. With the further
development of optical technology and materials, in the near
future it will hopefully be possible to experimentally con-
firm the 3D spatiotemporal nondiffracting parabolic cylinder
beams obtained theoretically in this paper.

Here, the (3+1)-dimensional paraxial wave equation will
be transformed into three independent partial differential
equations in time and space domains, using the separation of
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variables method. By solving three independent partial dif-
ferential equations, we obtain their exact solutions, which are
constructed by the parabolic cylinder functions and described
by three discrete numbers. We denote these three parameters
as the optical mode numbers, in analogy to the usual notation
of wave functions and eigenvalues in the Schrödinger equation
of quantum mechanics. When different mode numbers are
selected, the intensity of the nondiffracting beam acquires
different spatiotemporal distributions. In order to prove the
validity and stability of the analytical solution, we take a
specific analytical solution as an initial condition and use
the split-step beam propagation method to numerically simu-
late its evolution according to the (3+1)-dimensional paraxial
wave equation. The results show that the analytical solution is
consistent with the numerical calculation.

II. OUR MODEL AND ITS EXACT SOLUTION

When a three-dimensional (3D) spatiotemporal non-
diffracting beam propagates in free space, its light field
u(z, x, y, τ ) along the propagation z direction satisfies the fol-
lowing normalized (3+1)D paraxial wave equation [18–20],

i
∂u

∂z
+ 1

2

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂τ 2

)
= 0, (1)

where x and y are the transverse rectangular coordinates, and τ

represents the retarded time in the frame of reference moving
with the optical pulse [18–20]. Since Eq. (1) involves three
spatial and one temporal domain, we denote it as a (3+1)D
spatiotemporal wave equation. To obtain an exact beam solu-
tion of Eq. (1), we assume that the trial solution is of the form

u(z, x, y, τ ) = q0A3(z)
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× e
i x2+y2+τ2

2

[
1

q(z) + 1
2χ2 (z)

]
, (2)

where X (z, x), Y (z, y), and T (z, τ ) are components in the x, y,
and τ directions, respectively; A(z) is a physical quantity in-
troduced to normalize the wave function; q(z) = z−izR, q0 =
q(z = 0) = −izR with zR being the Rayleigh range of a beam,
which is also the basic unit used to measure the length along
the propagation direction z of the parabolic cylinder beam;
χ (z) is the z-dependent scaling factor, to be determined. To
find the parabolic cylinder nondiffracting solution of Eq. (1),
we resort to the separation of variables method. By directly
substituting Eq. (2) into Eq. (1), one gets three independent
equations in the space domain and time. For example, one
discovers an equation for the X (z, x) component of the non-
diffracting beam, from the following three equations obtained
in the substitution,
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where n is a non-negative integer, which we call the mode
number of the beam component in the x direction, and
�(z, x) = x

χ (z) . By solving the first-order partial differential
Eq. (3), one obtains an expression for the scaling fac-
tor in the form χ2 = −q. Substituting this expression into
Eq. (4), we find that the solution of Eq. (4) is A(z) =
A0(zR + iz)−

i
12 (i−3−6n), where A0 = A(z = 0). When the nor-

malized amplitude of the initial condition is assumed as

A(z = 0) = 1, it is easy to get A0 = (zR)
i

12 (i−3−6n). Obviously,
Eq. (5) is the standard Weber differential equation [21], which
explains the choice of the trial solution. The general solution
of Eq. (5) can be written as F (�) = Dn(�), where Dn(�)
is the parabolic cylinder function. Therefore, the component
X (z, x) of the nondiffracting beam in the x direction can be
expressed as

X (z, x) = (zR)
i

12 (i−3−6n)(zR + iz)−
i

12 (i−3−6n)

× Dn

(
x

izR − z

)
ei x2

4(z−izR ) . (6)

One similarly obtains the expressions of nondiffracting
wave packets in the y and τ directions. By substituting these
expressions into Eq. (2), one finds the total light field distribu-
tion,

u(z, x, y, τ ) = knml (z)Dn

(
x

izR − z

)
Dm

(
y

izR − z

)

× Dl

(
τ

izR − z

)
ei x2+y2+τ2

4(z−izR ) , (7)

where

knml (z) = −izR

z−izR
(zR)

i
4 (i−3−2n−2m−2l )(zR+iz)−

i
4 (i−3−2n−2m−2l ).

The parameters m and l are also two non-negative inte-
gers, the mode numbers of the optical wave packet in the
y direction and the τ direction, respectively. Since the wave
function of the light wave packet is constructed by three
parabolic cylinder functions in Eq. (7), the wave packet is
called the nondiffracting parabolic cylinder beam. Equation
(7) describes the parabolic cylinder beam solution in free
space, which is composed of three parabolic cylinder func-
tions of different orders. The light intensity displays different
characteristics in three-dimensional space and time. We dis-
cuss these characteristics in the next section.

III. ANALYSIS AND DISCUSSION

It can be seen from solution (7) that the properties of
the nondiffracting wave packet crucially depend on the three
mode numbers (n, m, l ) and the three parabolic cylinder func-
tions. In this section, we discuss the distribution of light
intensity [I = |u(z, x, y, τ )|2] of various beams in the three-
dimensional space and time. Without loss of generality, the
temporal and spatial distributions of the wave packet at z =
5zR are discussed.

First of all, we take the modes with the same mode numbers
to analyze, that is, the spatiotemporal distributions of the
linear wave packet when n = m = l , at a certain propagation
distance. When n = m = l = 0, the light field is in the ground
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FIG. 1. Spatiotemporal intensity distribution with three identical
mode numbers, at z = 5zR. These numbers are (a) n=m= l =0,
(b) n = m = l = 1, (c) n = m = l = 2, and (d) n = m = l = 3,
respectively.

state and has the lowest energy, displaying a Gaussian spher-
ical packet, as shown in Fig. 1(a). Secondly, we discuss the
spatiotemporal distribution of the intensity of three excited
states still with the same mode numbers and energy larger
than the ground state. When the three mode numbers are even
or odd, the light intensity shows two different distributions
in the three-dimensional space-time. These figures clearly
exhibit the diversity of basic nondiffracting light waves in
this model. It is worth noting that if three identical mode
numbers are even, solution (7) describes a wave with nonzero
light intensity at the central position (x, y, τ ) = (0, 0, 0). We
call it a Gaussian linear wave packet. Figure 1(c) is a typical
example with n = m = l = 2. For higher excited states, the
spatiotemporal distribution of nondiffracting waves is more
complex, which is not shown here. Generally speaking, this
kind of light wave packet has a large cube-shaped structure at
(x, y, τ ) = (0, 0, 0) and several smaller ellipsoids around it;
there exist overall (2n + 1) structures in the packet. On the
other hand, if the three identical mode numbers are selected
as odd, the cubic packet at the central position (x, y, τ ) =
(0, 0, 0) disappears and the light intensity is zero there, which
is shown in Figs. 1(b) and 1(d). The nondiffracting wave
packet consists of 2(n + 1)2 smaller structures in that case.

When one of the three mode numbers is zero and the other
two are the same but nonzero, the beam intensity distribution
displays a planar structure. Figures 2 and 3 show two typical

FIG. 2. Spatiotemporal intensity distributions with a zero mode
number in the τ direction and two identical but nonzero discrete
numbers at z = 5zR. (a) (n, m, l ) = (1, 1, 0), (b) (n, m, l ) = (2, 2, 0),
(c) (n, m, l ) = (3, 3, 0), and (d) (n, m, l ) = (4, 4, 0).

examples. In Fig. 2, the mode number in the τ direction is
zero, and all structures lie in the x-y plane. The nondiffracting
wave packets corresponding to the even numbers with n = m
are the already known Gaussian distributions described above
in Figs. 1(a) and 1(c), as shown now in Figs. 2(b) and 2(d).
In Fig. 2(b), we take mode numbers as (n, m, l ) = (2, 2, 0);
in the middle position, there is a large ellipsoidal pulse dis-
tributed along the τ axis, which is symmetrically surrounded
by four similar small ellipsoids. Further, if we increase
the mode numbers from (n, m, l ) = (2, 2, 0) to (n, m, l ) =
(4, 4, 0), these ellipsoids display a new arrangement, which
is shown in Fig. 2(d). It is seen that the nondiffracting beam
is composed as a two-dimensional (2D) layer of three kinds
of ellipsoids, distributed along the τ direction. One ellipsoid
in the middle position carries the largest amount of energy,
surrounded by eight smaller ellipsoids with less energy, and
the outermost layer is composed of four ellipsoids with the
smallest energy. We can simply describe this kind of non-
diffracting beam, as composed of (n−1) kinds of ellipsoids,
with the total number (4n−3) of ellipsoids in the x-y plane.

To analyze the nondiffracting structures with odd mode
numbers for n = m, solution (7) displays a different form
from that discussed above. When the mode number l = 0
is chosen, the remaining two identical odd mode numbers
are the parameters that affect the beam, and they play an
important role in the spatiotemporal distribution. In fact, as
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FIG. 3. Spatiotemporal beam patterns with m = 0 and two iden-
tical but nonzero discrete numbers at z = 5zR. (a) (n, m, l ) =
(1, 0, 1), (b) (n, m, l ) = (2, 0, 2), (c) (n, m, l ) = (3, 0, 3), and (d)
(n, m, l ) = (4, 0, 4).

described in the previous paragraph, when n = m = 1, the
four ellipsoids of the beam are distributed in the x-y plane,
as shown in Fig. 2(a). On the other hand, considering a more
complex case such as n = m = 3, the distribution of ellipsoids
is shown in Fig. 2(c). It can be seen in the figure that the
nondiffracting beam consists of two kinds of ellipsoids, the
inner layer containing four ellipsoids with higher energy, and
the outer layer consisting of eight ellipsoids with lower en-
ergy. Generally speaking, this type of beam is constructed by
n types of ellipsoids, and contains 4n ellipsoids overall.

In order to further illustrate the above structures, we select
the mode number with zero (m = 0) in the y direction and
the same nonzero (n = l �= 0) in the other two directions.
Figure 3 shows the resulting distribution. By the way, it
is not difficult to explain why Gaussian and non-Gaussian
distributions are formed the way they are. When the mode
number is zero or even, the value of the parabolic cylinder
function reaches the maximum at the center position, so the
nondiffracting wave packet forms a Gaussian beam [22].
For odd mode numbers, the value of the parabolic cylinder
function at the center position is zero, which results in zero
beam intensity at that position.

Because solution (7) contains three parabolic cylinder
functions which are described by three non-negative integer
mode numbers, the nondiffracting beams show abundant
localized structures. To discuss more complex profiles,

FIG. 4. Intensity profiles with two equal even numbers and one
odd mode number at z = 5zR. The three numbers are (a) (n, m, l ) =
(1, 2, 2), (b) (n, m, l ) = (3, 2, 2), (c) (n, m, l ) = (1, 4, 4), and (d)
(n, m, l ) = (3, 4, 4).

we take two equal even and one odd mode number, as
an example. First, the three mode numbers are chosen as
(n, m, l ) = (1, 2, 2). According to the shape, we call it the
necklace ring structure, with the largest ellipsoid surrounded
by eight adjacent large and small pearls in the vertical plane,
and there are two rings along the x direction, as displayed
in Fig. 4(a). When (n, m, l ) = (3, 2, 2) is selected, a large
ellipsoid is surrounded by four smaller ellipsoids in the
vertical plane, and there exist four rows in the x direction.
The leftmost and rightmost appear as small pearls, which
are shown in Fig. 4(b). Next, we take (n, m, l ) = (1, 4, 4) in
solution (7) to obtain the superposition ellipsoidal structure
shown in Fig. 4(c). As can be seen, there are two rows along
the x direction and three layers in the vertical direction. Three
ellipsoids are superposed along the τ axis, and the outermost
layer is surrounded by the four smallest ellipsoids. Finally,
a more complex case (n, m, l ) = (3, 4, 4) is shown and its
structure exhibited in Fig. 4(d).

IV. COMPARISON WITH NUMERICAL SIMULATION

Finally, it should be stressed that the correctness and
the stability of the analytical solution (7) of the (3+1)-
dimensional paraxial wave equation (1) represent important
problems. They are addressed in this section. To achieve these
goals, we perform a direct numerical simulation of Eq. (1),
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FIG. 5. Comparsion of the analytical solution (7) with the numer-
ical simulation, for mode numbers (n, m, l ) = (4, 0, 0) at z = 5zR.
The left panel is the analytical solution (7) and the right panel is the
numerical simulation of Eq. (1).

with the initial condition at z = 0 chosen from the analytical
solution (7). This is done with the aid of the split-step beam
propagation method [23,24]. An example of such numerical
simulation is displayed in Fig. 5, with the three mode num-
bers chosen as (n, m, l ) = (4, 0, 0). In the figure, the stable
numerical solution at z = 5zR is compared with the analytical
solution. One can see that the numerical simulation (the right
panel) looks very much like the numerical solution (the left
panel). In addition, numerical calculation indicates no col-
lapse, as is expected in this linear problem. Indeed, stable
propagation over five Rayleigh lengths is observed. This ex-
ample also confirms that the analytical solution is consistent
with the numerical calculation. Similar behavior is observed
for other initial conditions.

V. CONCLUSIONS

This paper presents a way of generating three-dimensional
spatiotemporal nondiffracting parabolic cylinder beams. By
using the method of separating variables, we find exact
localized solutions of the (3+1)-dimensional normalized
spatiotemporal paraxial wave equation. These solutions are
constructed by three parabolic cylinder functions and are de-
scribed by three optical mode numbers. Several nondiffracting
local wave patterns are displayed by properly choosing these
numbers. The results show that the beam intensity can be
easily controlled by adjusting the values of the three numbers
and are of great significance for an improved understanding of
the formation mechanism of parabolic cylinder beams. It is a
long-term task for researchers to explore new spatiotemporal
solutions of the paraxial wave equation and construct new
localized excitation structures. At the same time, we also
look forward to the eventual experimental confirmation of the
theoretical predictions made in this paper.
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