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Control and measurement of electric dipole moments in levitated optomechanics
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Levitated optomechanical systems are rapidly becoming leading tools for precision sensing, enabling a
high level of control over the sensor’s center-of-mass motion, rotation, and electric charge state. Higher-order
multipole moments in the charge distribution, however, remain a major source of backgrounds. By applying
controlled precessive torques to the dipole moment of a levitated microsphere in vacuum, we demonstrate
cancellation of dipole-induced backgrounds by 2 orders of magnitude. We measure the dipole moments of
nanogram-mass spheres and determine their scaling with sphere size, finding that the dominant torques arise
from induced dipole moments related to dielectric-loss properties of the SiO2 spheres. Control of multipole
moments in the charge distribution of levitated sensors is a key requirement to sufficiently reduce background
sources in future applications.
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I. INTRODUCTION

Precision measurements utilizing the high sensitivity of
optomechanical systems have become an important ex-
perimental tool over the past years. They have enabled
groundbreaking tests of some of the most fundamental con-
cepts in physics, such as the nature of gravity [1–4] and
electromagnetism [5,6], and have opened up new parameter
space in the search for dark matter [7–9]. Such systems are
also at the forefront of exploring quantum mechanics at the
macroscopic scale [10–12].

Key factors in the ability to achieve high force and accel-
eration sensitivities [13,14] and low temperatures [11,12,15]
are the thermal and mechanical isolation and control over
the center-of-mass motion, the rotational dynamics, and the
electrical charge state of optically and magnetically trapped
levitated objects in a high-vacuum environment. Typically, a
feedback system is used to manipulate the mechanical degrees
of freedom, whereas an electrical [16] or optical [17–19]
control scheme is utilized to control the rotational degrees of
freedom [20].

Controlling the electrical charge state of levitated objects is
essential for many applications, since significant background
forces can arise from coupling of the net charge of the sphere
(or higher-order multipole moments in its distribution) to stray
electric fields. Previous work has demonstrated control over
the net charge of levitated objects using a variety of techniques
[15,21–24]. These techniques allow electrons to be selec-
tively ejected either from the object itself or from neighboring
surfaces (to be eventually captured onto the object). By simul-
taneously measuring the motion of the object in an electric
field, the net charge can be controlled with single-electron
precision.

Nullifying the net charge of the trapped object (i.e., elim-
inating its electric monopole) reduces the most significant

coupling to external electric fields. However, no technique
demonstrated thus far has been capable of eliminating back-
grounds related to higher multipole moments in the charge
distribution. In the absence of net charge, the electric dipole
moment typically provides the largest coupling to external
electric fields and gradients, and is the leading contribution to
the background for experiments such as the search for charge
quantization and millicharged particles using levitated op-
tomechanical sensors [6,21] and searches for new short-range
interactions [4,25]. For ambitious future proposals employ-
ing levitated optomechanical sensors such as those aimed
at detecting entanglement of two micron-sized masses using
their mutual gravitational interaction [26,27], dipole-induced
forces can be many orders-of-magnitude larger than the forces
of interest. As an example, for two levitated nanogram-mass
spheres with a separation even as large as 100 μm [26,27],
dipole-dipole interactions from a permanent dipole moment
typical of existing measurements (≈100 e μm per sphere)
[16,25] would induce a force 6 orders of magnitude larger
than the desired gravitational interaction. The introduction of
a conducting shield between the masses would be technically
challenging and would not necessarily eliminate such forces
due to the dipole-shield interaction [28]. Thus, techniques to
measure, control, and ultimately eliminate backgrounds re-
lated to multipole moments in the electric charge distribution
of levitated objects are likely required if such applications are
to be realized.

In this paper, we implement a method reminiscent of that
used for many years in the fields of NMR [29] and ultra-
cold atoms [30] to mitigate decoherence due to coupling to
stray fields using controlled rotations of the spin state. In
this fully classical implementation, we apply electric fields
and optical torques on a levitated sphere’s dipole moment to
induce controlled spatial rotations. We show that the sphere’s
center-of-mass response to an externally applied electric field
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FIG. 1. Experimental setup and dipole control. (a) Ten-, 15-, and
20-μm-diameter SiO2 microspheres are optically levitated between
a pair of parallel electrodes, one of which is segmented to enable
application of arbitrary electric fields and gradients. The spheres
can be spun optically, using a circularly polarized trapping beam,
or electrically by coupling their electric dipole moment to a rotating
electric field. (b) Once the sphere reaches high angular frequencies a
DC electric field can be applied to precess it, coupling to the remain-
ing component of the dipole moment. One example is performing a
sequence of “π pulses,” inverting the direction of the dipole vector
and canceling dipole-related backgrounds. The pulse length is given
by tπ = π/�p [Eq. (1)].

gradient flips phase as the sphere precesses around, revers-
ing the effect of related background forces. We further show
that a sphere that is optically rotated at a high angular ve-
locity will undergo oscillations in its angular acceleration
as it decelerates and accelerates according to the direction
of the precession. Additionally, measurements of the dipole
moments for levitated SiO2 spheres have thus far only been
reported for � 5 μm-diameter spheres (with a mass of ∼100
pg) [16]. Here we utilize our system’s unique capability to
levitate larger, 1–to 10-ng-mass, spheres and show that the
permanent component of the dipole is roughly mass indepen-
dent, whereas the induced term has a strong mass dependence,
related to the dielectric-loss properties of the spheres.

II. SETUP

In the experiment [Fig. 1(a)], a vertically oriented, 1064-
nm laser beam is used to trap SiO2 spheres of diameters 10,
15, and 20 μm between a set of parallel electrodes 25.4 mm
in diameter [31]. The spheres are actively stabilized in high
vacuum and have typical trapping frequencies of ∼100 Hz
[15]. One of the electrodes [left in Fig. 1(a)] is divided into
four separately biased segments. The location of the sphere
is calibrated by introducing onto it a net charge of ∼100 e
and recording its center-of-mass response in the x, y, and z
directions to a small oscillating electric field of ∼1 V/mm
applied separately to each of the four electrodes. The ratio
between these responses for a given axis is then compared to
a COMSOL simulation of the trap geometry, and the position

in space for which the correct response is obtained for all
three axes is determined to be (x, y, z) = (−0.1 ± 0.1, 0.38 ±
0.02,−0.14 ± 0.05) mm with respect to the center of the
quadrant electrode (in y and z) and half the distance between
the opposite electrodes (in x). This position calibration allows
calculation, for each electrode segment j, of the voltage Vj (t )
required for the generation of a rotating electric field in the
x-y plane at the location of the sphere. The sphere can then be
rotated either optically, via absorption and residual birefrin-
gence using a circularly polarized trapping laser [17–19,32],
or using the coupling of the rotating electric field to its dipole
moment [16]. Rotations are measured using a polarization-
sensitive detection scheme similar to the one described in
Ref. [17].

The force and torque on an electric dipole �p in an electric
field �E are given, respectively, by �p · ∇ �E and �p × �E . The
total dipole moment �p = �p0 + α �E can have a permanent com-
ponent, �p0, and an induced component, α �E , brought about
by the external electric field. Consider a spherical particle
in vacuum, with radius r and permittivity εs, in an electric
field, �E = �E0eiωt , oscillating at angular frequency ω. The
polarizability can then be written as α = 4πε0Kr3, where
ε0 is the vacuum permittivity. K = (ε∗

s − ε0)/(ε∗
s + 2ε0) is

the Clausius-Mossotti factor for complex permitivitty ε∗
s =

εs + σs/(iω) and sphere conductivity σs [33]. For a lossy
dielectric (with finite, but nonzero, conductivity), K is, in
general, complex. The induced dipole moment can then lag
after the field, generating induced torques that would vanish
for either perfect conductors or ideal dielectrics. An aspherical
particle will also have induced dipole moments that are not
fully aligned with the applied field direction [33].

III. PRECESSIVE CONTROL AND BACKGROUND
CANCELLATION

Once the sphere is optically spun to a rotational speed,
�s, that is larger than other typical frequencies in the system,
the components of the permanent dipole moment that are
orthogonal to the spin axis are effectively averaged out. A DC
electric field E in the x direction precesses the sphere about
the field direction at a frequency of

�p = pE

I�s
. (1)

Here p = pz is the component left after averaging out over
the fast rotation. Cancellation of a background force arising
from the coupling of the net dipole moment to external field
gradients can be achieved by performing a measurement while
the DC field is on and the sphere precesses continuously,
or alternatively by applying a set of “π pulses” of duration
tπ = π/�p [Fig. 1(b)] to invert the direction of the resultant
force between measurements, as long as the timescale for the
change of the background force is slow compared to the pre-
cession time. Dominant backgrounds in existing experiments
are typically slow (e.g., static stray fields) and attempting to
mitigate those using static fields might result in elimination of
a true signal. This is circumvented by controlling the align-
ment of the dipole itself, thus eliminating the need to know
the details of the background field gradients. Furthermore,
increasing the amplitude of the driving DC electric field will
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FIG. 2. Cancellation of backgrounds arising from dipole cou-
pling to an externally applied electric field gradient. (a) Precession
causes sinusoidal oscillations (blue circles, sine fit in the solid red
line) in the angular acceleration of the sphere, as the axis of �s flips
with respect to the constant optical torque. (b) The phase delay of the
response of the sphere to a 2π × 99 Hz oscillating ∂Ex/∂z gradient
(blue squares) exhibits a flip from in-phase to a π -phase lag, syn-
chronous with the precession angle θ obtained from residual signal
in the y center-of-mass sensor (red circles). (c), (d) The force acting
on the sphere in the x direction, sampled at two opposing points in
the precession [purple (dark) and yellow (light), corresponding to
the dash-dotted lines in panel (b)], bandpass-filtered to 10 Hz around
the drive frequency. Over the 100-ms window, the sum of the two
[magenta line surrounded by dash-dotted rectangle, zoomed-in in
panel (d)] demonstrates cancellation by a factor of ∼120.

linearly increase the precession frequency and enable a faster
pulse train.

Figure 2 demonstrates this effect. A 15-μm-diameter
sphere is pumped down to the ∼10−7 mbar base pressure of
the system and optically spun up to �s = 2π × 1 MHz and
a 40 V/mm DC electric field is applied in the x direction,
generating a precession about the x axis. Figure 2(a) shows
this precession, measured via the change in the magnitude
of the sphere’s angular velocity over time. These data are
obtained by tracking the peak of the rotational spectrum over
∼1-s increments and taking a numerical derivative. Since the
optically induced torque is always parallel to the +z direction,
manipulating the sign of �s with respect to the z axis results
in the sphere’s rotational velocity oscillating between slowing
down and speeding up. An overall decelerating torque that is

independent of the sphere orientation is also present, which
may arise, e.g., from drag from the background gas [17] or
torques on the induced dipole from the applied electric field
[33]. Fitting these oscillations to a sine wave gives a preces-
sion frequency, according to Eq. (1), of 2π × (19.7 ± 0.1)
mHz.

The quadrant electrodes are then utilized, together with
the simulated electric fields and gradients, to apply an AC
electric field gradient at the location of the sphere, ∂Ex/∂z =
100 V/mm2. Constraints set by Maxwell’s equations reduce
the number of independent gradient components to 5. Since
the quadrant electrode provides only four controllable degrees
of freedom, we optimize the drive to reduce the magnitude
of the next largest parasitic gradient of ∂Ey/∂z ≈ 60 V/mm2

(generating a force in the y direction which couples into the
x axis measurement with a negligible crosstalk of <10%)
and make all other independent components negligible. The
sphere is electrically neutralized and, hence, residual forces
due to the <0.1 V/mm electric fields (such as forces coupling
to the dipole through geometrical gradients [6]) are negligible
as well. The applied gradient couples to the z component of
the dipole to generate an oscillating force at the frequency of
the drive, set to �g = 2π × 99 Hz such that �p � �g � �s.

The phase of the force acting on the sphere relative to the
applied gradient is shown as blue squares in Fig. 2(b) as a
function of time, as the sphere precesses under the influence
of the DC field and in the presence of the oscillating gradient.
The phase flips sharply between a value of ∼0 (in-phase with
the drive) and ∼π (out of phase with the drive). The deviation
of the phase dynamics from a perfect step function can arise
from other, subdominant precessive components in the motion
of the sphere. The phase flip is synchronous with the angle θ

between the angular momentum vector (which coincides with
the effective dipole) and the z axis. This angle is extracted
from the center-of-mass sensors which are also sensitive to the
double-frequency component of the angular motion due to the
sphere’s � 1% inherent asphericity. This double-frequency
sensitivity explains the factor of 2 difference in the measured
precession frequency in Fig. 2(b) compared to Fig. 2(a). For
two points in the process, corresponding to the sphere pointing
at ±ẑ labeled by the yellow and purple dash-dotted lines in
Fig. 2(b), we show in Figs. 2(c) and 2(d) a section of the
x force sensed by the sphere, bandpass-filtered to a 10-Hz
band around the frequency of the drive to avoid harmonics
and other noise lines. The magnitude of the force is consistent
with a ∼100 e μm permanent dipole or a ∼1% asphericity-
induced dipole in the applied field gradient. The sum of the
forces measured over the chosen 100-ms integration window
in these two points of the precessive motion is lower than the
measured force by a factor of 120. This result demonstrates
that, e.g., a measurement protocol employing the π -pulse
sequence described above would allow substantial mitigation
of dipole-induced forces acting on the sphere by averaging out
asymmetries in the charge distribution of the sphere during the
measurement time.

IV. MEASUREMENT OF THE DIPOLE MOMENT

Dipole moments are measured using three different tech-
niques, previously demonstrated in Ref. [16] for smaller,
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∼100-pg, spheres. The first technique relies on measuring
the harmonic librational motion about the axis of a rotating
electric field of amplitude E . At the base pressure of our
vacuum system, ∼1 × 10−7 mbar, phase lags resulting from
damping by surrounding gas molecules are negligible, and the
librational frequency �L of a sphere with moment of inertia I
is given by

�L =
√

pE/I. (2)

The second technique employed to measure the dipole
moment is via the precessive motion at a constant spin speed
similar to that described in Eq. (1), with �s � �p,�L. For
precession about the rotating electric field, the expected pre-
cession frequency is �p/2, where the factor of 1/2 arises from
the average torque over a full rotation of the microsphere
[16]. Lastly, at high pressures of �10−2 mbar, substantial
phase lags between the dipole vector and the electric field can
occur due to drag from the residual gas. When the phase lag
becomes greater than π/2, the sphere will lose lock from the
field and rapidly spin down. This occurs at a pressure, Pl , and
a rotation frequency, �l , related by

�l = pE

βκ0Pl
, (3)

where κ0 ≈ 3.5 × 10−23 m3 s for a 15-μm-diameter sphere
(and scales with the fourth power of the diameter) is the
proportionality constant relating the drag coefficient and the
pressure [34,35] and β is a dimensionless quantity parametriz-
ing the deviation of the actual drag from the theoretical value.
Recent data from spheres with diameters � 5 μm have mea-
sured β ≈ 1, in agreement with its theoretical value [16],
whereas measurements of larger spheres, such as the ones
used here, have obtained β values of between 2 and 10, related
to the surface quality of the spheres [17].

Figure 3 presents a measurement of the electric dipole mo-
ment for a typical 15-μm sphere. For these measurements, the
sphere is electrically spun at a constant of �s = 2π × 10 kHz.
The power spectral density of the signal recorded by the
rotation sensor has two distinct sets of peaks. The first set,
appearing predominantly as sidebands around the 2�s peak,
corresponds to the librational motion of Eq. (2) [Fig. 3(a)]
[16]. The other set, at lower frequencies, corresponds to the
precessive motion of Eq. (1) [Fig. 3(b)]. Figure 3(c) shows
the frequency values of the peaks from Fig. 3(a) in blue
circles and Fig. 3(b) in red squares, rescaled to units of torque
according to the appropriate equation. The overlap of the two
data sets indicates the agreement between the methods. The
yellow diamonds in Fig. 3(c) are the result of the lock-loss
measurement at high pressure. Each data point is obtained,
for a given pressure and rotating field amplitude, by scanning
the rotation frequency of the field and monitoring the response
of the sphere. The loss frequency is defined as that at which
the sphere spins rapidly down to zero. The results are rescaled
using Eq. (3) and β is allowed to float in the fit. The black line
represents the best fit to the collapsed data obtained through
a combined χ2 analysis of all three data sets after profiling
over the value of β as a nuisance parameter [36]. The fit
gives β = 6.97 ± 0.07 for this sphere and the resultant 1σ

and 2σ confidence intervals on the fitted parameters p0 and α

(a)

(b)

(c)

FIG. 3. Measurement of the dipole moment using the precession
and libration methods of Eqs. (1) and (2). The sphere’s rotation
is measured in response to an electric field of varying amplitude
(color bar), rotating at a frequency of �s = 2π × 10 kHz. (a) Li-
bration is observed as sidebands around the second harmonic 2�s.
(b) Precession is observed at lower frequencies. (c) Data from
panels (a) and (b) are rescaled according to Eq. (2) (blue circles)
and Eq. (1) (red squares), respectively. Yellow diamonds represent
high-pressure lock-loss measurements rescaled according to Eq. (3)
with β = 6.97 ± 0.07. The inset shows the anticorrelated 1σ and 2σ

confidence interval contours.

are shown in the inset. The tilted confidence interval contour
ellipse indicates that the parameters are anticorrelated. This is
due to the fact that the total torque is the sum of the two, and
the fit cannot completely differentiate between the permanent
and the induced components. Projecting the 1σ ellipse onto
the respective axes gives the results p0 = (−200 ± 360) e μm
and α = 401 ± 8 e μm/(V/mm).

The primarily quadratic dependence of the torque on the
electric field indicates that the dominant dipole moment is
induced by the electric field. As described above, such in-
duced torques can arise for lossy dielectrics for which the
imaginary part of the Clausius-Mossotti factor is significant.
Asphericity is substantially smaller than would be required to
explain the magnitude of the observed torques. The expected
volume conductivity of pure SiO2 is too small to explain
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FIG. 4. Scaling of the dipole moment with sphere mass. Ten-,
15-, and 20-μm-diameter spheres are tested to compare the perma-
nent (a) and induced (b) components of the total dipole. The dashed
black line in panel (b) indicates the expected magnitude of α for a
perfectly conducting sphere.

the observed effect, although surface conductivity or lossy
properties of the sol-gel SiO2 spheres used here may account
for the larger conductivity required to account for the observed
torques.

To study the dependence of the measured torques on
sphere size, we apply the methods described above for spheres
of several different diameters (3 × 10 μm, 3 × 15 μm, and
1 × 20 μm diameter spheres). Figure 4 shows the permanent
[panel (a)] and the induced [panel (b)] terms, extracted using
a similar combined χ2 fit for libration and lock-loss data
sets. Errors in |p0| and α come from the combined χ2 fit
discussed in the text. Errors on mass result from a 10% radius
uncertainty. The permanent term, for which our measurement
is less sensitive given the almost purely quadratic dependence
of the total dipole on the electric field magnitude for the
applied fields, does not exhibit significant mass dependence.
The induced term, however, scales with the sphere volume.

For comparison, the dashed black line shows the value of
α calculated for a perfectly conductive sphere of the same
density as the examined spheres.

V. SUMMARY AND OUTLOOK

In conclusion, we have shown that controlled rotation and
precession of an optically trapped object can substantially
assist in mitigating dipole-induced backgrounds. Combined
with existing methods to control the net charge, the tech-
niques presented here, classically analogous to the canonical
spin-echo and dynamic decoupling methods used in the fields
of NMR and ultracold atoms, can enable control over back-
grounds related to dipole or higher-order multipole moments
in the charge distribution of a trapped object.

We have demonstrated that, in the objects studied here,
significant torques arise from induced dipole moments which
scale with the volume of the object and appear to arise from
the lossy dielectric materials from which the SiO2 spheres
typically employed in levitated optomechanics are fabricated.
Control of higher-order multipole moments in the charge
distribution of trapped particles may be required to reach
sufficiently low environmental coupling in future applications
of levitated optomechanical systems, such as searches for dark
matter and new forces, hybrid and multiparticle systems, or
attempts to witness gravitational entanglement between two
levitated test masses.

ACKNOWLEDGMENTS

The authors would like to thank Charles Blakemore and
the Gratta group (Stanford) and Nir Davidson (Weizmann
Institute) for discussions related to this work. This work is
supported, in part, by ONR Grant No. N00014-18-1-2409,
the Heising-Simons Foundation, and NSF Grant No. PHY-
1653232.

[1] B. P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese,
K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari
(LIGO Scientific Collaboration and Virgo Collaboration) et al.,
Phys. Rev. Lett. 116, 061102 (2016).

[2] N. Aggarwal, O. Aguiar, A. Bauswein, G. Cella, S. Clesse,
A. Cruise, V. Domcke, D. Figueroa, A. Geraci, M. Goryachev
et al., arXiv:2011.12414.

[3] T. Westphal, H. Hepach, J. Pfaff, and M. Aspelmeyer, Nature
(London) 591, 225 (2021).

[4] C. P. Blakemore, A. Fieguth, A. Kawasaki, N. Priel, D. Martin,
A. D. Rider, Q. Wang, and G. Gratta, Phys. Rev. D 104, 061101
(2021).

[5] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, Science
360, 191 (2018).

[6] G. Afek, F. Monteiro, J. Wang, B. Siegel, S. Ghosh, and D. C.
Moore, Phys. Rev. D 104, 012004 (2021).

[7] C. Solaro, S. Meyer, K. Fisher, J. C. Berengut, E. Fuchs, and
M. Drewsen, Phys. Rev. Lett. 125, 123003 (2020).

[8] I. Counts, J. Hur, D. P. L. Aude Craik, H. Jeon, C. Leung, J. C.
Berengut, A. Geddes, A. Kawasaki, W. Jhe, and V. Vuletić,
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