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Solitons near avoided mode crossings in χ(2) nanowaveguides
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We present a model for χ (2) waveguides accounting for three modes, two of which make an avoided crossing
at the second harmonic wavelength. We introduce two linearly coupled pure modes and adjust the coupling to
replicate the waveguide dispersion near the avoided crossing. Analysis of the nonlinear system reveals continuous
wave (CW) solutions across much of the parameter space and prevalence of its modulational instability. We also
predict the existence of the avoided-crossing solitons, and study peculiarities of their dynamics and spectral
properties, which include formation of a pedestal in the pulse tails and associated pronounced spectral peaks.
Mapping these solitons onto the linear dispersion diagrams, we make connections between their existence and
CW existence and stability. We also simulate the two-color soliton generation from a single-frequency pump
pulse to back up its formation and stability properties.
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I. INTRODUCTION

Interest in temporal quadratic (χ (2)) solitons has seen
recent resurgence [1–4] thanks to the development of
nanowaveguides over the past decade [5–8]. In particular,
lithium niobate (LiNbO3, LN) nanowaveguides provide the
strong χ (2) response and broadband transparency required for
a range of applications including supercontinuum generation
(SCG) and pulse compression [2,9–15]. These nanostructures,
fabricated from single crystals, allow for compact, low-loss
waveguides with χ (2) nonlinearity that were not previously
feasible [13–15].

Solitons along with their interaction with dispersive waves
have been found to play a significant role in various frequency
conversion processes [3,4,16]. For efficient soliton generation
phase and group velocity matching between the fundamental
and second harmonic wavelengths is required [3]. Quasi-
phase matching (QPM) can be achieved with periodic polling,
a technique which is well understood in LN [5,13,15]. Group
velocity matching (GVM) in LN, however, is more difficult
to achieve. It is well known that bulk LN has the zero of its
group velocity dispersion (GVD) around λ = 1.9μm [10,17],
making GVM between wavelengths in the near-infrared and
visible range impossible. This is where the strong geometric
dispersion of LN nanowaveguides can be used to shift the
zero-GVD point to shorter wavelengths, making GVM pos-
sible between the desired frequencies [18].

Another powerful technique of arranging GVM has been
recently proposed for LN nanostructures [19], which relies on
engineering of an avoided crossing between different guided
modes. Strong modification of dispersion induced by avoided
crossings is known to impact existence and properties of soli-
tons. Solitons spectrally centered near an avoided crossing and
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also the impact of the avoided crossing on the soliton detuned
far away from it have been previously studied in photonic
crystal fibers and microresonators; see, e.g., Refs. [20,21] and
Refs. [22–25], respectively.

Typically, avoided mode crossings occur as the result of
interactions between guided modes supported by different
subcomponents of a complex structure [19,20] or interactions
between forward- and backward-propagating modes induced
by Bragg gratings [20,22]. In microresonators, avoided cross-
ings between different mode families can also be induced
by geometrical imperfections [23]. In our study, we find
avoided crossings between quasi-TE (transverse electric) and
quasi-TM (transverse magnetic) guided optical modes of LN
nanowaveguides. These avoided crossings appear to be in-
duced by high anisotropy: the combined effect of the intrinsic
material anisotropy of LN and structural properties.

Figure 1(a) shows one example of an avoided crossing
between two modes of the LN waveguide structure shown
in Fig. 1(b). Due to the anisotropy, at short wavelengths
higher order quasi-TM modes appear to have higher effective
indices than the fundamental quasi-TE mode. At long wave-
lengths, however, as the modes become less localized and the
anisotropy is effectively suppressed, both fundamental polar-
izations appear to have larger indices than any other higher
order modes. This generally results in avoided crossings be-
tween different pairs of quasi-TM and quasi-TE modes.

The strong induced dispersion at the anticrossings causes
an abrupt change in the group index of each mode, allowing
GVM between different guided modes across the optical oc-
tave (1250–625 nm in our example), as shown in Fig. 1(c).
Assuming in addition a suitable QPM is arranged, we inves-
tigate solitons emerging from nonlinear interactions between
the two avoided-crossing modes in the visible (second har-
monic frequency, SH) and the corresponding phase- and
group velocity matched mode in the infrared (fundamental
frequency, FF).
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FIG. 1. Modeled (a) effective refractive indices (neff ) and (c) group indices ng of three guided modes of (b) LN nanowaveguide structure
(top width 600 nm, ridge height 500 nm, and slab thickness 100 nm, cross-cut LN is considered with the extraordinary axis oriented vertically
on the diagram). Fundamental TM mode shown in red (solid line), with two hybridized modes plotted in blue and green (dotted and dot-dashed
lines) (transverse profiles swap due to hybridization). Black (dashed lines) plot neff produced by our model Eq. (4). Symbols mark the positions
of the corresponding traverse mode profile insets (arrows show dominant polarization).

Previous work has been done in mathematically similar
systems in which Bragg gratings couple forward and back-
ward traveling waves, producing simultaneously gaps in the
linear spectrum of FF and SH fields [26–28]. Slow χ (2) soli-
tons (with group velocities close to zero physical velocity) are
known to exist in such systems. The system we investigate
here is similar in that the avoided-crossing provides a gap in
the linear spectrum of the SH. Notably, the avoided crossing is
produced by two copropagating modes in our case, and there
is only one mode in the FF field. Any solitons will therefore be
fast (close to the speed of light), allowing for potential appli-
cation in fields such as ultrafast all-optical signal processing.

Another important feature of our system is the change
in the transverse profiles of the modes across the avoided
crossing, associated with polarization rotation. The insets in
Fig. 1(a) show how the profiles of the modes swap from
quasi-TM to quasi-TE (or vice versa) on either side of the
avoided crossing. Effective nonlinear interaction between FF
and SH modes depends on the spatial overlap between the
relevant modes [3,19]. We therefore see a dramatic dispersion
of the effective nonlinearity between FF and SH modes, which
plays a significant role in the properties of CW solutions and
solitons.

II. MODEL

We proceed with presenting a model of three interact-
ing modes: a single FF mode centered around a reference
frequency ω f and two SH avoided-crossing modes centered
around the frequency ωs = 2ω f . For the example presented

in Fig. 1, we select λ f = 2πc/ω f = 1250 nm and λs =
2πc/ωs = 625 nm, where c is the speed of light.

A. Linear dispersion

To model dispersion of the FF mode, we fit its propagation
constant using the Taylor expansion

β f (δ) = β
(0)
f + β

(1)
f δ + 1

2β
(2)
f δ2, (1)

where δ = ω − ω f is the frequency detuning centered from
the reference frequency ω f . For our example in Fig. 1,
we find β

(0)
f = 9700 mm−1, β

(1)
f = 8.3 ps/mm, and β

(2)
f =

−3.6 × 10−4 ps2/mm.
For the SH avoided crossing modes, instead of fitting di-

rectly their dispersion, we adapt the well-known linear coupler
model. The advantage of this approach will become apparent
in the following subsection, where we introduce nonlinear
couplings between the modes.

Unlike in many typical avoided-crossing setups such as
evanescently coupled waveguides or Bragg gratings (coupled
forward- and backward-propagating modes), there is no natu-
ral basis of uncoupled modes in our system. We introduce two
artificial “pure” modes, SH1 and SH2, by fitting the dispersion
of the true guided modes away from the avoided crossing re-
gion, which provides propagation constants crossing at around
625 nm:

βsm(δ) = β (0)
s + 2δ

(
β (1)

s + (−1)mβ̄ (1)
s

)
, m = 1, 2. (2)

Here 2δ = ω − ωs with ωs = 2ω f are the SH frequency de-
tunings about the SH frequency. For our example, β (0)

s =

053510-2



SOLITONS NEAR AVOIDED MODE CROSSINGS IN … PHYSICAL REVIEW A 104, 053510 (2021)

2.2 × 104 mm−1, β (1)
s = 8.4 ps/mm and β̄ (1)

s = 0.36 ps/mm
which accounts for the difference in group velocities of the
SH modes.

The avoided-crossing effect is then introduced via a linear
coupling, C, between SH1 and SH2:

− i∂z

[
as1

as2

]
=

[
βs1(ω) C

C βs2(ω)

][
as1

as2

]
. (3)

Diagonalizing this system gives propagation constants for the
avoided crossing modes SH+ and SH− as

βs± = βs1 + βs2

2
±

√
(βs1 − βs2)2

4
+ C2. (4)

The coupling coefficient C can be obtained by fitting the above
propagation constants βs+ and βs− to the actual dispersion
of guided modes in the avoided-crossing region. The inset of
Fig. 1(a) shows the comparison between the actual dispersion
(solid lines) and dispersion provided by the model in Eq. (4)
with C = 34 mm−1. Close to the avoided crossing, GVD and
higher orders of dispersion in the SH+ and SH− modes are
dominated by the mode anticrossing effect, which allows us
to limit terms in Eq. (2) to first order.

B. Nonlinear envelope equations

We complete our model by adding the χ (2) nonlinear
coupling between FF and both SH modes. This gives the
envelopes of the fundamental, Ff , and two second harmonic,
Fs1, Fs2 fields that satisfy

i∂zFf +
(

iβ̄ (1)
f ∂τ − 1

2
β

(2)
f ∂2

τ

)
Ff + γ F ∗

f (Fs1 + αFs2) = 0,

i∂zFs1 + (
κ − iβ̄ (1)

s ∂τ

)
Fs1 + CFs2 + γ

2
F 2

f = 0,

i∂zFs2 + (
κ + iβ̄ (1)

s ∂τ

)
Fs2 + CFs1 + γα

2
F 2

f = 0,

(5)
Here z is the coordinate along the waveguide, τ = t − zβ (1)

s is
the retarded time with t being the physical time and β (1)

s is the
average inverse group velocity of the SH modes [cf. Eq. (2)],
and β̄

(1)
f = β

(1)
f − β (1)

s is the FF inverse group velocity in this

moving frame (β̄ (1)
f = 0.086 ps/mm for our example). The

amplitudes, (Ff , Fs1, and Fs2) are measured in the units of
√

W ,

and the respective electric fields are Ff ei(zβ (0)
f −ω f t ) + c.c. and

Fsmei2(zβ (0)
f −ω f t ) + c.c.

The QPM period, 2π/G, sets the length of LN domains
with alternating opposite crystal orientation [5]. This is as-
sumed to set the phase mismatch between the FF and SH
modes. This makes the phase mismatch parameter κ = β (0)

s −
2β

(0)
f + G which is identical for both SH pure modes as we

set ωs as the frequency at the center of the mode crossing. In
the examples below, we will closely examine the case of exact
phase matching, κ = 0. We retain κ in the model equations to
keep our analysis general.

The nonlinear interaction strength between the FF mode
and each of the pure modes SH1 and SH2 is given by the
coefficients γ and γα, respectively. Without loss of generality
we assume 0 � α � 1. Coefficients γ and α can be estimated
from the modal overlaps using the actual SH guided modes

of the structure away from the avoided crossing region. The
dispersion of nonlinearity associated with the pronounced
reshaping of the modes (polarization rotations) in the avoided-
crossing region is fully incorporated into our model by virtue
of the structure of the eigenvectors of the linear coupler
system in Eq. (3). Thus, in the limit of α = 0 the effective
interaction strength between FF and each SH+ and SH−
mode varies between zero and full strength across the avoided
crossing region. In the opposite limit of α = 1 the interac-
tion remains constant. For the example geometry shown in
Fig. 1(b), we obtain γ = 400 m−1 W−1/2 and α = 0.14.

III. CONTINUOUS WAVE SOLUTIONS

To analyze continuous wave (CW) solutions of Eq. (5), we
make the substitutions

Ff = Ã f eiμcz−iδτ ,

Fsm = Ãsmei2μcz−i2δτ ,
(6)

where m = 1, 2, μc is the propagation constant for CW solu-
tions and Ã f and Ãsm are the CW solution amplitudes for the
FF and SH modes respectively. Taking this ansatz in the low
amplitude limit and linearizing Eq. (5), we obtain propagation
constants for FF and SH modes respectively as

μc → β̄ f = β̄
(1)
f δ + 1

2
β

(2)
f δ2,

2μc → β̄s± = κ

2
±

√
C2

4
+ (

δβ̄
(1)
s

)2
,

(7)

which are the analogues of the linear dispersions in Eqs. (1)
and (4) in the rotating and moving reference frame of our
model in Eq. (5).

We then find nonlinear CW solutions of the form

γ 2|Ã f |2 = (μc − β̄ f )(2μc − β̄s+)(2μc − β̄s−)

(1 + α2)(μc − β̄sin )
, (8)

Ãs1 = γ Ã2
f

2

(
2μc − κ − 2β̄ (1)

s δ
) + αC

(2μc − β̄s+)(2μc − β̄s−)
, (9)

Ãs2 = γ Ã2
f

2

α
(
2μc − κ + 2β̄ (1)

s δ
) + C

(2μc − β̄s+)(2μc − β̄s−)
. (10)

where we have defined the propagation constant at which Ã f

becomes singular as

β̄sin = κ

2
+ β̄ (1)

s δ(1 − α2)

1 + α2
− αC

1 + α2
. (11)

We point out that the requirement of the right-hand side of
Eq. (8) to be non-negative defines the domains of existence
of CW solutions in the μc-δ plane. The lines μc = β̄ f , 2μc =
β̄s±, and μc = β̄sin mark the boundaries of the regions of CW
solution existence, as illustrated in Fig. 2(a).

A. Modulation instability

To analyze modulation instability (MI) of the CW solu-
tions, we update our ansatz in Eq. (6) to

Ff = (Ã f + ε f se
i�τ + ε f ae−i�τ )eiμcz−iδτ ,

Fsm = (Ãsm + εsmse
i2�τ + εsmae−i2�τ )ei2μcz−i2δτ , (12)
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FIG. 2. (a) Linear dispersion of FF and SH modes, μc = β f and μc = β± [thick red (solid) and black (dotted) lines respectively] and line
of μc = β̄sin shown in gray (medium thickness). CW solutions exist in the colored regions and the color scale marks the maximum MI gain.
Soliton solutions have been found with the FF frequencies of their peaks in time in the region hatched by the thin black lines. (b) Full MI gain
spectrum for δ = 8.5 THz as marked by the vertical (dashed) thin line in (a). (c) Spectrum of FF component from simulated propagation of
CW solution of μc = 4.9 mm−1, δ = 8.5 THz. Predicted MI gain plotted in white corresponding to white (dotted) horizontal line in panel (b).
All data for case of exact phase matching (κ = 0).

allowing for small perturbations ε detuned by frequency �.
The final subscripts s and a denote Stokes and anti-Stokes

detuned waves respectively. Keeping terms linear in ε, we
form the matrix equation ∂z�ε = Q�ε, where

�ε = [ε f s, ε
∗
f a, εs1s, ε

∗
s1a, εs2s, ε

∗
s2a]T,

Q = i

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B(−)
f γ (Ãs1 + αÃs2) γ Ã∗

f 0 γαÃ∗
f 0

−γ (Ã∗
s1 + αÃ∗

s2) −B(+)
f 0 −γ Ã f 0 −γαÃ f

γ Ã f 0 B(−)
s 0 C 0

0 −γ Ã∗
f 0 −B(+)

s 0 −C
γαÃ f 0 C 0 B(−)

s 0
0 −γαÃ∗

f 0 −C 0 −B(+)
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

B(±)
f = −μc + β̄

(1)
f (δ ± �) + 1

2
β

(2)
f (δ ± �)2,

B(±)
s = κ − 2μc − 2β̄ (1)

s (δ ± �). (13)

The real parts of the eigenvalues of Q give the MI gain in the
system. Numerically computing the MI gain around the SH
mode anticrossing, we find it is nonzero across most of the
region. The maximum MI gain is plotted in Fig. 2(a) across the
μc-δ plane. The MI gain structure in � was generally found to
have between two and six peaks. Examples of this are shown
in Figs. 2(b) and 2(c). We verified our MI predictions by com-
parison with numeric simulations of CW solution propagation
with the addition of low-level white noise to seed the MI. One

representative example of this is given in Fig. 2(c), where we
can see new frequencies emerging in the simulation in the
regions which coincide with those predicted by our MI gain
analysis.

Some simulations of MI were found to produce solitonic
pulses after sufficient propagation distance; see an example in
Fig. 3. These were easily identified as they did not undergo
dispersion and all three components propagated together, not
at their respective group velocities. This group velocity lock-
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FIG. 3. Propagation simulation of CW solution (μc = 0.35 mm−1, δ = 8.5 THz) undergoing MI and subsequent formation of solitons.
Panels show ln |Fs2|, ln |Fs1|, and ln |Ff | from left to right in the time domain. Data for case of exact phase matching (κ = 0).

ing is a clear signature of sustained nonlinear interactions
between the three components.

IV. SOLITONS

To analyze the existence of solitons in the system, we make
a new substitution into Eqs. (5) to allow for time-dependent

solutions

Ff = A f (η)eiμz,

Fsm = Asm(η)e2iμz,
(14)

where we introduce the reference frame of the soliton with
an inverse velocity ν by defining η = τ − νξ . This gives our
model for soliton envelope functions as

[
−μ + i

(
β̄

(1)
f − ν

)
∂η − 1

2
β

(2)
f ∂2

η

]
A f + γ A∗

f (As1 + αAs2) = 0,

[
κ − 2μ − i

(
β̄ (1)

s + ν
)
∂τ

]
As1 + CAs2 + γ

2
A2

f = 0,

[
κ − 2μ + i

(
β̄ (1)

s − ν
)
∂τ

]
As2 + CAs1 + γα

2
A2

f = 0.

(15)

Thus, the soliton parameters μ and ν uniquely define the
soliton solutions. The frequency shift of the solitons is a
function of μ and ν and is independent for the three field
components; it is therefore incorporated into the definitions
of A f and Asm. We note that we recover our model for CW
solutions by setting A f (η) = Ã f e−iδη and Asm(η) = Ãsme−2iδη

which shows us that soliton and CW propagation constants are
related by

μc = μ + νδ. (16)

A. Localization analysis

From here, we analyze the system to identify criteria for
localized solution existence. To do this, we require that far
from their center, the soliton envelope functions decay expo-
nentially:

A f (η → ±∞) = a f e−λ f |η|,

Asm(η → ±∞) = asme−λs|η|.
(17)

Linearizing the system in Eq. (15) for small-amplitude soliton
tails, we obtain λ f and λs as functions of the soliton param-
eters μ and ν. For λ f and λs to provide exponential decay,
we require that they have non-zero real parts, from which we

derive

μ < −
(
β̄

(1)
f − ν

)2

2β
(2)
f

,

2μ > κ − C

√
1 −

(
ν

β̄
(1)
s

)2

,

2μ < κ + C

√
1 −

(
ν

β̄
(1)
s

)2

,

(18)

as the conditions on localized soliton existence. These con-
ditions are visualized on the μ-ν plane in Fig. 4(a) for our
example geometry with κ = 0. The two conditions for SH
localization form the upper and lower bounds of an ellipse
in this visualization. Localization in all three components is
possible where the different shaded regions overlap.

Extending this analysis to the imaginary parts of λ f and λs

at the soliton existence boundaries, we obtain expressions for
frequency detuning of the soliton tails,

δ f ,tail = ν − β̄
(1)
f

β
(2)
f

,

δs,tail = C

2β̄
(1)
s

[(
β̄ (1)

s

ν

)2

− 1

]−1/2

. (19)

This analysis is equivalent to finding the frequency
at which the soliton inverse velocity and linear group
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FIG. 4. Soliton analysis for the case of exact phase matching (κ = 0). (a) Soliton existence criteria plotted on the μ-ν plane shown as
shaded red and blue areas for the FF and SH localization respectively (bounded by solid and dotted thick lines respectively). Vertical solid
and dashed lines plot constant ν = −115 fs/mm and ν = −62 fs/mm trajectories respectively. (b) Energy in soliton components as a function
of μ, FF in red (light gray) and SH1 in blue (dark gray). Solid and dashed lines correspond to the same trajectories as in panel (a). Insets
give enlarged view of low and high μ ends of FF and SH trajectories respectively. Trend for SH2 follows SH1 closely and is omitted for
clarity. (c) XFROG plot of soliton 5 as marked in the other panels in this figure calculated numerically using Newton-Raphson method. Black
curves mark the peak frequency in each component as a function of time. Gaussian reference pulse used for XFROG had a FWHM of 24fs.
Panels (d) and (e) show each soliton component plotted on the μc-δ plane; thick curves are as in Fig. 2(a). Frequencies, δ, in panels (d) and
(e) are from the temporal peak and tail respectively of the solitons. Thin lines correspond to same trajectories as in panel (a). Red (light gray),
blue (dark gray), and green (dark gray, dotted and dot-dashed) lines correspond to FF, SH1, and SH2 components respectively. Dots labeled
with numbers correspond positions of examples solitons shown in panel (c) and Fig. 5. Gray crosses in panel (e) mark soliton tail positions
according to Eq. (19).

velocity match as the soliton approaches the linear
dispersion.

B. Numerical solutions

Using the Newton-Raphson method, we were able to
find soliton solutions numerically across the entire region

of their existence, as predicted by our tail analysis in
Eq. (18). To analyze the structure of soliton solutions, we
find it most instructive to construct cross-correlation fre-
quency resolved optical gating (XFROG) spectrograms of
the solitons. This is a commonly used technique which
allows us to view both temporal and spectral structures
in the soliton simultaneously. Here we produce XFROGs
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FIG. 5. Soliton profiles in the time [(a), (c)] and frequency domain [(b), (d)]. Panels (a) and (b) show solitons on the solid line as shown in
Fig. 4(a) labeled with the same numbers. Panels (c) and (d) show solitons on the lower half of the dashed line in Fig. 4(a). FF, SH1, and SH2
are shown in panels from right to left in red, blue and green respectively. Evidence of pedestal formation is labeled with “ped.” and lines are
vertically offset for clarity.

using

I (t, ω) = ln

∣∣∣∣
∫ +∞

−∞
dτ ′Aref (τ ′ − τ )F (τ ′)e−iωτ ′

∣∣∣∣, (20)

where Aref is a Gaussian reference pulse envelope and F is one
of the FF, SH1, or SH2 field envelopes. Using the XFROGs,
we observed that soliton structure varies significantly across
the existence domain and many of the solitons have a pro-
nounced frequency chirp, such that frequencies in their tails
(|τ | � 0) are different from those in their main core (t = 0).
These frequency differences are also seen to vary across the
three components of the soliton. An XFROG spectrogram
showing an example of such a soliton is shown in Fig. 4(c).
Calculating soliton profiles across their whole existence do-
main, we use Eq. (16) with the FF core frequency of the
soliton to map the soliton existence domain onto the linear
dispersion plot in Fig. 2(a). We observe that the solitons exist
in a region of CW solution existence, which is consistent with
our earlier observations for two-component χ (2) solitons [3].

To explain changes of the solitons’ structures across their
domain of existence, it is instructive to consider solutions
along two constant ν lines as shown in Fig. 4(a). These lines
are chosen as examples that allow us to discuss three impor-
tant trends we observe in the structure of these solitons more
generally as a function of μ. The first of these occurs in the

ν = −115 fs/mm (solid) line as μ approaches its minimum
value, μmin, where we observe a rapid drop in the total energy
of each component as shown in Fig. 4(b). This drop occurs
as the soliton broadens and drops in peak power as shown
in Fig. 5(a). In this limiting case, as power drops to zero,
the soliton becomes a linear wave packet. This behavior is
consistent with that of a Kerr soliton as μ −→ μmin, and for
this reason we will refer to this case as “Kerr-like.”

The next case of interest is seen in the ν = −62 fs/mm
(dashed) line as μ −→ μmin. In this case, we see a small uptick
in energy in the FF component shown in Fig. 4(b). The reason
for this can be seen in the soliton profiles in Fig. 5(c), where
we see a pedestal beginning to form in the FF component as it
approaches μmin. We will call this case “FF-pedestal.” We also
point out that the soliton is not broadening and decreasing in
power as in the Kerr-like case.

The final case occurs in both constant ν lines where we
see an uptick in energy in the SH components as the solitons
approach their maximal μ values, μmax. Once again, we see
the formation of pedestals, this time in the SH components,
and we give this case the name “SH-pedestal.”

The onset of these pedestals can also be observed in the
frequency domain where sharp peaks begin to form as in
Figs. 5(b) and 5(d). These peaks are detuned from the main
core of the soliton, as expected from our previous observation
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FIG. 6. Simulations of soliton generation from simple initial pulses in the FF component plotted in the time domain. Initial pulses had
sech field shape with 33-fs FWHM and 160-W peak power. Frequency detuning (a) δ/2π = 13 THz (λ ≈ 1200 nm) and (b) δ/2π = 2.9 THz
(λ ≈ 1230 nm).

of distinct core and tail frequencies in Fig. 4(c). Using both
the core and tail frequency detunings for δ, the two constant ν

lines are mapped onto the μc-δ plane in Figs. 4(c) and 4(d), re-
spectively. These data show very different behavior of the core
and tail frequencies as a function of μc. The core frequencies
change smoothly and remain in the region of CW solution
existence. The tail frequencies change abruptly as different
frequency components in the soliton tail become dominant.
We also point out that these tail frequency data approach the
linear dispersion lines at exactly the points predicted by our
analysis in Eqs. (19).

As μ −→ μmin, we see the core and tail frequencies of
the ν = −115 fs/mm (solid) line approach the same point
on the FF linear dispersion. This is not true for the ν =
−62 fs/mm (dashed) line or either line as μ → μmax. We
believe the difference between these cases comes from the
approach of the soliton to the boundary of CW solution
existence. As the ν = −62 fs/mm (dashed) line approaches
the FF linear dispersion in its tail frequency, the shift of
the soliton body is frustrated by the boundary of CW solu-
tion existence. The soliton core frequency cannot cross this
boundary as CW solution existence is a necessary criteria for
soliton existence. The same behavior occurs in both lines as
μ → μmax.

Finally, we used numerical methods to simulate pulse
propagation in our system. Our first step was to simulate prop-
agation of numerical soliton solutions. We found these to be

generally stable over distances of tens of millimeters, which
are feasible maximum lengths for such LN nanowaveguides.
Next, we simulated the generation of solitons from simple ini-
tial pulses, similar to what might be feasible experimentally.
In our simulations, we found that solitons could be generated
from a single sech-shaped pulse in the FF component. One
example of such a simulation is shown in Fig. 6(a). In this
example, formation of a soliton is clearly visible after 1 mm
of propagation, suggesting a minimum waveguide length for
any such experimental investigation.

According to our results presented in Fig. 2(a), solitons are
predicted only for certain frequency detunings δ. Our sim-
ulations showed soliton generation was less favorable when
shifting the initial pulse away from this predicted region.
An example simulation initialized with a FF pulse outside
the soliton existence region is shown in Fig. 6(b). Temporal
broadening in all three spectral components is clearly visible,
and the dynamics are very different from the soliton generated
in Fig. 6(a).

V. SUMMARY

This work models a system in which modal group velocity
matching may be achieved in a χ (2) waveguide where two
guided modes make an avoided crossing at the SH frequency.
We have analyzed nonlinear CW and soliton solutions in this
system and developed a model with two linearly coupled
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“pure” modes describing the dispersion in the avoided cross-
ing region. Introducing a difference in effective nonlinearity
between each of the two pure modes and the FF mode, we
also reproduced the dispersion of nonlinearity in the system.
We find that CW solutions generally exist within four domains
in the plane of their two parameters: the propagation constant,
μc, and the frequency detuning, δ. Linear dispersion of the
FF and the two SH modes, and the additional condition μc =
β̄sin(δ) where CW solutions become singular, together define
the boundaries of the domains. Our analysis shows CW solu-
tions to be unstable with respect to modulation over the vast
majority of their existence domains. In some cases, simulated
propagation of CW solutions with small initial perturbation
revealed formation of trains of solitons, as the result of the
instability development. We also derived existence conditions
of the three-component soliton solutions in our system and
obtained corresponding numerical solutions. Our analysis re-
veals that solitons generally have frequency chirp in all three
components, with the core of the soliton and its tails generally
having distinct frequencies. Close to their existence domain
boundaries, these solitons show signs of pedestal formation
in either SH or FF components, when their tail frequencies
reside in regions of no CW solution existence. This pedestal

formation is accompanied by the formation of characteristic
spectral features. Finally, we simulated soliton propagation
where we found them to be stable over distances typical
for practical lengths of LN nanowaveguides. Generation of
solitons from simple, low-power pulses in the FF component
was also successfully simulated, suggesting the potential for
experimental studies of soliton dynamics in such systems.
This work shows that a simple LN waveguide structure with
QPM allows for modal group velocity matching between FF
and SH, which is highly important for frequency conversion
applications with ultrafast pulses.

All data presented in this study are openly available from
the University of Bath Research Data Archive [29].
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