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Bulk plasmaritons: Wave-mechanical and second-quantized theories
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Inspired by a recently established quantum theory for bulk and surface plasmons [Jung and Keller, Phys. Rev.
A 103, 063501 (2021).], wave-mechanical and second-quantized quantum electrodynamic theories for bulk plas-
maritons in a homogeneous jellium are presented. Starting from the “inner” structure of the transversely polarized
classical plasmariton mode, it is argued that a plasmariton quasiparticle may be formed by an always attached
pair consisting of a transverse (gauge) photon and a never observable transverse plasmon. A first-quantized
plasmariton theory is established from a plasmariton Klein-Gordon equation. It is shown that the plasmariton
can be perceived as a diamagnetically driven spin-1 boson quasiparticle. A Lagrangian-Hamiltonian formalism
is used to extend the first-quantized plasmariton theory to the second-quantized level. The minimal coupling
principle is used to change the free QED theory into a theory coupling the plasmariton to an electromagnetic
gauge field. Using the microscopic transverse Lindhard (random phase approximation) dielectric function, it is
shown that for small wave numbers, the classical Boltzmann equation part of the Lindhard dielectric function
results in a hydrodynamic Brewster branch, the quantization of which follows that of a vectorial Klein-Gordon
equation. For plasmariton wave numbers larger than the Fermi wave number, a pure electrostatic model (with
no magnetic-field component) results in a harmonic-oscillator description of the plasmariton’s polarization field.
With inspiration and elements from the Power-Zinau-Wolley description, the Pauli-Fierz theory for particle-tied
transverse photons, and the propagator theory of Keller for the spatial localization of transverse photons, a
formalism in which the plasmariton quasiparticle is dressed by a cloud of transverse (long-wavelength) photons
is developed. The quantized radiated part of the electromagnetic field is described by a free-field quantization
of the transverse part of the displacement field (DT ). The total Hamiltonian is diagonalized, and the resulting
dispersion relation obtained. The interaction between the transverse radiated and attached photons implies that
a strongly localized and charged plasmariton quasiparticle with its tied photons vibrates as a simple harmonic
oscillator in the “external” radiative transverse photon field.
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I. INTRODUCTION

For over half a century, studies of the electromagnetic
interaction between light and collective charged particle
(electrons, ions) distributions in solid-state plasmas have
played an increasingly important role in physical optics. An
electromagnetic wave traveling through the plasma induces
(microscopic) polarizations in the particle system, and the
coupled field-particle modes are generally known as polariton
modes. In the jellium approximation, where the ionic potential
is smeared uniformly in space, the light-electron modes are
sometimes called plasmaritons [1], a term we shall use in this
paper. Following a period in which bulk plasmaritons were the
main subject of study, investigations of surface plasmaritons
have set the scene for many-faceted theoretical and exper-
imental research [2–4]. In a bulk jellium, the plasmaritons
are divergence-free [called transverse (T )] modes. Charged
particles (e.g., electrons) can excite another collective plasma
mode, called a plasmon. In a bulk jellium, the plasmon modes
are rotational-free [called longitudinal (L)], and these modes
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also exist as surface plasmons. In general, the surface modes
are of a mixed plasmon-plasmariton type.

In the present article, we shall focus our attention on a the-
oretical study of bulk plasmaritons, and we will leave studies
of surface plasmaritons for an upcoming paper. We do this
because the connection between bulk and surface excitations
from a theoretical point of view is less strong than often
claimed in the literature. This is so since the surface region
contains an extra source emitting evanescent modes, which in
a covariant treatment comprises not only T -modes but also
L-modes and scalar S-modes [5,6]. These L- and S-modes
can be replaced by the sum of a gauge-mode (which can
be eliminated by a gauge transformation within the Lorenz
gauge) and a so-called near-field (NF) mode [7].

In recent years, studies aimed at technological applications
of the physical optical plasmariton theory (bulk, surface, and
interface) have attracted a great deal of attention, and terms
such as “plasmonics” and “surface plasmonics” have been
catchy designations.

In this work, we go in the opposite direction and focus
on the basic foundation of plasmariton theory. We have three
main goals: (i) To establish a quantum electrodynamic (QED)
theory for plasmaritons that enables one to make use of the
machinery of quantum optics, and thus investigate coherent,
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squeezed, and entangled states, and others for plasmaritons.
(ii) To establish tight connections and analogies to the com-
prehensive literature dealing with single photons and massive
quasiparticles surrounded by their tied photon clouds. (iii) To
formulate and develop a formalism describing the plasmariton
as a diamagnetically driven spin-1 particle.

The paper is organized as follows. In Sec. II, we revisit
aspects of the classical plasmariton description, with an eye
on the quantum theory to follow. Thus, in Secs. II A–II C,
we discuss, respectively, the T and L dielectric functions [8],
the eigenmode conditions, and the “inner” structure of the
plasmariton dispersion relation. In Sec. III, we show how to
formulate a first-quantized theory for a single plasmariton,
in a manner closely related to the first-quantized theory for
single photons [9–16]. We start by a Klein-Gordon equa-
tion inferred from the plasmariton dispersion in analogy with
the setting up of the Klein-Gordon equation for a (massive)
electron from its relativistic dispersion relation (Sec. III A).
The dynamic evolution of the plasmariton wave function is
governed by a Schrödinger-like first-order (in time) equation,
much like the Landau-Peierls evolution equation for a pho-
ton [9] (Sec. III B). We proceed to describe the plasmariton
as a diamagnetically spin-1 particle, and we also demon-
strate how a plasmariton helicity concept can be introduced
for the plasmariton (Sec. IV). The first-quantized plasmari-
ton theory, which one may characterize as a plasmariton
(PL) wave-mechanical (WM) theory (PLWM), is extended
to the second-quantized (QED) level through a Lagrange-
Hamiltonian approach for free plasmaritons in Sec. V. The
inspiration for this line of thought has come from our pre-
viously established QED theory for bulk plasmons [17]. In
Sec. VI, we develop the theory to include the plasmariton’s
interaction with an electromagnetic gauge field via the mini-
mal coupling principle [ p̂μ => p̂μ − QÂμ, p̂μ and Âμ being
the μth component of the plasmariton momentum and four-
potential field operators (μ = 0–3), and Q is the plasmariton
charge] [6,18,19].

In Secs. VII and VIII, we study plasmaritons using the
Lindhard transverse dielectric function [based on a random-
phase-approximation (RPA) description] [8,20–22]. We show
that this theory leads one to a QED theory with two
types of modes (quanta) following, respectively, the Klein-
Gordon equation [19] (Brewster-like branch) [2–4] and, at
wave numbers exceeding the Fermi wave number, a simple
harmonic-oscillator equation. In the oscillator-like regime, the
Lindhard function is predominantly electrostatic. In the clas-
sical regime, where quantum interference effects are absent,
we bring the Lindhard formalism in contact to the Boltzmann
equation formalism [23–26] and then to the hydrodynamic
theory for T -modes. The hydrodynamic approach can be
derived from the Vlasov equation, i.e., the collisionless Boltz-
mann equation. The hydrodynamic theory often works quite
well, particularly when extended to the density functional
level [2,26].

Before the summary and outlook (Sec. X), we finish the
general theory of plasmaritons with a Hamiltonian description
based on a model where the transverse microscopic displace-
ment field DT (multiplied by −1) plays the role of canonical
field momentum (Secs. IX A and IX B). In this picture, the jel-
lium oscillators appear with a tied T -photon cloud [a charged

jellium oscillator with renormalized plasma frequency (ωp ⇒√
2ωp)]. Among other important aspects, we prove that the

transverse field tied to the oscillator interacts with the free
DT field (Sec. IX C). This part of our theory establishes
a link to the Pauli-Fierz theory [27,28] and the propagator
gauge formalism developed previously to describe the spatial
localization of quantized light emitted from a single-electron
atom [29,30]. In Sec. IX D, we reach the final form for the
total Hamiltonian operator, and in Sec. IX E, the Hamiltonian
is diagonalized to obtain the dispersion relation for the plas-
mariton modes in the DT -description.

The interested reader may refer to Appendixes A and B for
details on the transverse Lindhard dielectric function and the
plasmariton oscillator surrounded by its T -photon cloud.

II. THE CLASSICAL PLASMARITON DISPERSION
RELATION REVISITED

A. Lindhard dielectric functions at small wave numbers

In a bulk jellium system, the infinitesimal translational
and rotational invariance dictates that the microscopic relative
dielectric tensor in the wave vector(q)-frequency(ω) domain,
ε(q, ω), has the general dyadic form

ε(q, ω) = (U − q̂q̂)εT (q, ω) + q̂q̂εL(q, ω), (1)

where q̂ = q/q, and U is the 3 × 3 unit tensor. The trans-
verse (T ) dielectric function εT (q, ω) and the longitudinal
(L) dielectric function εL(q, ω) depend on the magnitude of
the wave vector |q| only, and become identical in the long-
wavelength limit, i.e.,

εT (q → 0, ω) = εL(q → 0, ω) ≡ ε(ω). (2)

In the random phase approximation (RPA), also called the
self-consistent field (SCF) approach, explicit expressions for
εT (q, ω) and εL(q, ω) were given by Lindhard [20]. In the
Lindhard theory, both single-particle and collective-mode ex-
citations are included. In the present context, we focus on
the collective excitations. These are obtained by an expansion
of εT (q, ω) and εL(q, ω) to lowest order (∼q2) in the wave
vector. The inversion symmetry of the jellium implies that
terms linear in the wave vector vanish.

For small q, one obtains (for εT ; see Appendix A 4)

εT (q, ω) = 1 − ω2
p

ω2 − DT q2
(3)

and

εL(q, ω) = 1 − ω2
p

ω2 − DLq2
, (4)

where ωp = [ne2/(mε0)]1/2 is the plasma frequency (electron
density, n; electron mass, m; electron charge, e). The quanti-
ties

DT = 1
5v2

F , (5)

DL = 3
5v2

F , (6)

are the so-called transverse and longitudinal diffusion coeffi-
cients. These are of the order of the electron Fermi velocity,
vF . The expressions in Eqs. (3) and (4) are derived most easily
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from the classical Lindhard regime, identical to what may be
obtained from a Boltzmann equation approach; see Sec. VII C
and Appendix A 3. The results in Eqs. (3) and (4) are just
those obtained also from a phenomenological hydrodynamic
approach. While Eq. (4) is well-established [with DL given
by Eq. (6)], Eq. (3), which is of main interest in this paper,
often is postulated [as an analogy to Eq. (4)] in macroscopic
electrodynamics. However, the value DT = (1/5)v2

F for the
diffusion coefficient follows exactly from the microscopic
Boltzmann equation.

B. Eigenmode conditions

In microscopic linear Maxwell-Lorentz electrodynamics,
one introduces the relations

D(q, ω) ≡ ε0E(q, ω) + P(q, ω) = ε0ε(q, ω) · E(q, ω), (7)

where D(q, ω), P(q, ω), and E(q, ω) are the microscopic
displacement field, polarization field, and the local electric
field, respectively. Although the relations in Eq. (7) look like
those well-known from macroscopic electrodynamics, they
are different. Thus, the polarization field P(q, ω) contains all
multipole moments, not only the electric dipole moment (per
unit volume). Microscopically, the electron current density
given by

J(q, ω) = −iωP (q, ω) + iq × M(q, ω) (8)

is a well-defined quantity, related to quantum mechanics (and
QED). The division of J(q, ω) into “polarization [P (q, ω)]”
and “magnetization [M(q, ω)]” parts, to a certain extent, is
arbitrary [31]. It is known that it is possible (by an appropriate
transformation) to eliminate M(q, ω) from the formalism,
giving [31]

J(q, ω) = −iωP(q, ω). (9)

It is the P(q, ω), related to the physical quantity J(q, ω) in
Eq. (9), which enters Eq. (7). Roughly speaking, P(q, ω)
contains also magnetic responses, and as a consequence
ε(q, ω) also describes magnetic effects for q �= 0. This
formalism is well known from linear electrodynamics of BCS-
superconductors, where it can account for the linear Meissner
effect [32,33].

Let us now bring into play the microscopic Maxwell
equation

iq × B(q, ω) = μ0J(q, ω) − iω

c2
E(q, ω), (10)

written in the (q, ω)-representation of ∇ × B(r, t ) =
μ0J(r, t ) + c−2∂E(r, t )/∂t . With the help of Eqs. (7) and (9),
Eq. (10) can be written as (μ0ε0 = c−2)

−c2

ω
q × B(q, ω) = ε(q, ω) · E(q, ω), (11)

and hence in the jellium case

−c2

ω
q × B(q, ω) = εL(q, ω) · EL(q, ω)

+ εT (q, ω) · ET (q, ω), (12)

where ET (q, ω) = (U − q̂q̂) · E(q, ω) and EL(q, ω) =
q̂q̂ · E(q, ω) are the transverse and longitudinal parts of the

local electric field. With the help of the Maxwell equation
B(q, ω) = ω−1q × E(q, ω) [∇ × E(r, t ) = −∂B(r, t )/∂t],
the left side of Eq. (12) can be rewritten as

−c2

ω
q × B(q, ω) =

(
cq

ω

)2

(U − q̂q̂) · E(q, ω)

=
(

cq

ω

)2

ET (q, ω). (13)

Thus, one obtains

εL(q, ω)EL(q, ω) +
[
εT (q, ω) −

(
cq

ω

)2]
ET (q, ω) = 0.

(14)

To satisfy Eq. (14), its L- and T -parts separately must be zero.
This gives [for EL(q, ω) �= 0] the bulk plasmon dispersion
relation

εL(q, ω) = 0, (15)

and [for ET (q, ω) �= 0] the bulk plasmariton dispersion rela-
tion

εT (q, ω) =
(

cq

ω

)2

. (16)

These microscopic dispersion relations have been known for
many years. In many (macroscopic) classical studies, the often
small wave-number dispersion in εT (q, ω) is neglected; cf.
Eq. (2).

C. The “inner” structure of the bulk plasmariton
dispersion relation

In view of the quantum theory for plasmaritons, which will
be established in Secs. III–VI, it is worthwhile to reflect on,
and compare, the structure of Eqs. (15) and (16). Using the
hydrodynamic expression for εL(q, ω) [Eq. (4)], the (squared)
plasmon dispersion relation takes the form

ω2 = (aLq)2 + ω2
p (17)

with

aL = D1/2
L =

√
3

5
vF . (18)

In one of our recently published papers [17], a wave-
mechanical theory for bulk plasmons was established starting
from Eq. (17). On the basis of the Lagrangian formalism, this
theory afterward was extended to the QED level. Note that
only (two) parameters relating solely to the jellium, viz., aL

and ωp, appear in Eq. (17) (both parameters are functions of
the electron density). At a deeper level, this circumstance is
related to the fact that the electric L-field can be eliminated in
favor of the electron position coordinates in the Schrödinger
equation, and thus the density becomes a factor. In density
functional theory, which is exact only for ET (r, t ) = 0, the
(many-body) Schrödinger equation can be rewritten as a func-
tional of the in general inhomogeneous electron density n(r)
[34,35].

It is tempting, but generally wrong, to develop the quan-
tum theory of plasmaritons from an equation analogous to
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Eq. (15), viz.,

εT (q, ω) = 0, (19)

an equation giving the hydrodynamic [Eq. (3)] dispersion
relation (in squared form)

ω2 = (aT q)2 + ω2
p, (20)

where

aT = D1/2
T =

√
1

5
vF . (21)

As discussed in Appendix A 2, the dispersion relation is the
correct one obtained from the Lindhard formula at large wave
numbers q � kF = mvF /h̄, kF being the electron Fermi wave
number. For q/kF � 1, magnetic effects can be neglected
(c → ∞, effectively) and the dispersion relation becomes the
“electrostatic” one given by Eq. (19).

However, the correct quantum theory for the plasmaritons
involves attached photons; this is obvious from Eq. (12) in
a sense. From the correct dispersion relation for T -modes
[Eq. (16)], the following result is obtained from Eq. (3):

ω2 = (cq)2 + ω2
p. (22)

The dispersion relation in Eq. (22) is the starting point for our
quantum theory for the bulk plasmaritons.

The mixed T -plasmon/photon character of the dispersion
relation in Eq. (22) appears explicitly from the fact that jellium
(ωp) and photon (c) parameters appear in Eq. (22). We have
added the words attached photon and not just photon, because
it is impossible to split the plasmariton into a free T -photon
and a T -plasmon. Attached transverse photons appear in gen-
eral fields of physics at long wavelengths. The transverse field
tied to a classical particle is conveniently described in terms of
the Pauli-Fierz representation [27]. See a graphical illustration
of the “inner” plasmariton structure and the quasiparticles tied
photons in Fig. 1.

III. FIRST-QUANTIZED THEORY OF BULK
PLASMARITONS

In this section, we establish and discuss a first-quantized
theory of bulk plasmaritons. This quantum-mechanical the-
ory of a new single-particle plasmariton field is based on
a wave equation of the Klein-Gordon type. The vectorial
wave function can be divided into two species composed of
orthogonal polarization states in the wave-vector represen-
tation. The positive-frequency part of the plasmariton wave
function satisfies a first-order (in time) differential equation of
the Riemann-Silberstein-Oppenheimer type used extensively
in photon wave mechanics by Bialynicki [13] and others
[9–12,14–16].

A. Plasmariton Klein-Gordon equation

Although parts of the quantum-mechanical theory of the
plasmariton can be established technically in analogy to that
of the plasmon [17], the underlying physical interpretation is
qualitatively different, and it offers a new perspective on the
divergence-free (∼ transverse) collective modes.

(a)

(b)

(c)

FIG. 1. Schematic illustration of the “inner” bulk plasmariton
structure. (a) Light-line in red (straight line), T -plasmon in blue
(lower curved line), plasmariton in green (middle curved line),
and the renormalized in violet, ω̃p = √

2ωp (upper curved line)
dispersion relations. (b) A localized plasmariton quasiparticle (big
circle) with its “internal” boson particles: T -photon, red (left) and
T -plasmon, blue (right). (c) Plasmariton quasiparticle with its tied
T -photon cloud in violet (gray shaded); see the renormalization
analysis in Sec. IX.

A quantum-mechanical wave equation for the plasmariton
is obtained from the dispersion relation in Eq. (22) via the
usual prescription −iω ⇒ ∂/∂t and iq ⇒ ∇. This gives the
following Klein-Gordon-like wave equation for the plasmari-
ton wave function �(r, t ):(

∇2 − 1

c2

∂2

∂t2

)
�(r, t ) − Q2

C�(r, t ) = 0, (23)

where a plasmariton Compton number is defined as

QC = ωp

c
. (24)
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Due to the fact that the transverse dynamics in the jellium
has two independent polarization degrees of freedom, the
plasmariton wave function is a vectorial quantity, satisfying
in space-time the transversality condition

∇ · �(r, t ) = 0. (25)

The introduction of the wave function �(r, t ) brings into
focus the fact that the plasmariton inevitably is a single
quantity, not a coupled T -plasmon–photon state, as classical
electromagnetic theory suggests. The plasmariton cannot in
any manner experimentally be separated into T -plasmon and
photon parts. Seen in this perspective, the plasmariton in a
sense has a status similar to the tied (attached) field picture
appearing for single electrons in the long-wavelength Pauli-
Fierz theory [27] and in the spatial delocalization problem
related to single-photon emission from an atom [36]. Some-
times it is convenient to divide �(r, t ) into two polarization
species related to a summation over the wave-vector spectrum
of the plasmariton wave function. Thus, let us write the wave
function as a Fourier integral, viz.,

�(r, t ) =
∑
i=1,2

∫ ∞

−∞
�i(q, ω)êi(q̂)ei(q·r−ωt ) d3q

(2π )3

dω

2π
. (26)

The pair of generally complex unit vectors êi (i = 1, 2) satisfy
the conditions

q̂ · êi(q̂) = 0, ê∗
i (q̂) · ê j (q̂) = δi j, (27)

where q̂ = q/q is a unit vector in the wave-vector (q) di-
rection, δi j is the Kronecker symbol, and i, j = 1, 2. The
decomposition in Eq. (26) obviously satisfies Eq. (25). In
the space-time domain, the two plasmariton wave-function
species are

�i(r, t ) = (2π )−4
∫ ∞

−∞
�i(q, ω)êi(q̂)ei(q·r−ωt )d3qdω,

i = 1, 2. (28)

For the free plasmariton field, the two wave-function species
develop independently in time.

The two species each satisfy the relativistic energy-
momentum relation

h̄ω = +[(ch̄q)2 + (Mc2)2]1/2, (29)

where

M = h̄ωp

c2
(30)

is the plasmariton “rest mass.” Defining covariant and con-
travariant derivatives with metric signature (1,−1,−1,−1),
i.e.,

{∂μ} ≡
(

1

c

∂

∂t
,∇
)

, {∂μ} ≡
(

1

c

∂

∂t
,−∇

)
, (31)

the vectorial plasmariton wave equation reads(
∂μ∂μ + Q2

C

)
�(r, t ) = 0. (32)

B. Dynamical evolution equation for plasmaritons

Let us consider the analytical (positive-frequency) part,
�(+)(r, t ), of the plasmariton wave function, �(+)(r, t ). This

part, given by

�(+)(r, t ) = 1

2π

∫ ∞

−∞
θ (ω)�(r; ω)e−iωt dω, (33)

where θ (ω) is the Heaviside unit step function, also satisfies
the Klein-Gordon equation, i.e.,(

∇2 − 1

c2

∂2

∂t2

)
�(+)(r, t ) − Q2

C�(+)(r, t ) = 0. (34)

In the (q, ω)-domain, Eq. (34) multiplied by −c2 takes the
form [

c2
(
q2 + Q2

C

)− ω2
]
�(+)(q, ω) = 0. (35)

We now rewrite Eq. (35) as[
c
√

q2 + Q2
C + ω

][
c
√

q2 + Q2
C − ω

]
�(+)(q, ω) = 0. (36)

Since �(+)(q, ω) = θ (ω)�(q, ω) = 0 for ω < 0, Eq. (36) is
identical to [

c
√

q2 + Q2
C − ω

]
�(+)(q, ω) = 0. (37)

In the (q; t )-domain, the analytical part of the plasmariton
wave function hence satisfies the dynamical (first-order in
time) evolution equation

ih̄
∂

∂t
�(+)(q; t ) = Ĥ (q)�(+)(q; t ), (38)

where

Ĥ (q) = ch̄
√

q2 + Q2
C (39)

is the Hamiltonian (operator); cf. Eq. (29). If one defines a
nonlocal operator (Q2

C − ∇2)1/2 via its action in Fourier space,
i.e.,√

Q2
C − ∇2F(r) ≡

∫ ∞

−∞

√
Q2

C + q2F(q)eiq·r d3q

(2π )3
, (40)

the plasmariton evolution equation can be written in the
Schrödinger-like form in space-time, viz.,

ih̄
∂

∂t
�(+)(r, t ) = ch̄

√
Q2

C − ∇2�(+)(r, t ). (41)

The quantity
√−∇2 (QC = 0) was introduced by Landau and

Peierls in 1930 [9] in one of the first attempts to formulate a
wave-mechanical theory for photons; see Ref. [5] and refer-
ences therein.

IV. PLASMARITON AS A DIAMAGNETICALLY
DRIVEN SPIN-1 PARTICLE

Up to this point, we have considered the plasmaritons as
quasiparticles built from T -plasmons with attached photons.
In this section, the perspective is turned around in that we
regard the plasmariton as a transverse photon inevitably sub-
ject to diamagnetic coupling to matter (here jellium). Seeing
the plasmariton in different perspectives helps one to link the
phenomenon to other fields of electromagnetics.

It is known that the diamagnetic effect is universal in
electrodynamics. Thus, independent of the manner in which
charged particles are coupled electronically (here in jellium
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via Coulomb forces), the effect only depends on the (quantum-
mechanical) particle density, n(r), in the field (∼ transverse
photon)-unperturbed state. Subjected to a self-consistently de-
termined transverse vector potential, AT (r, t ), a diamagnetic
microscopic current density,

J(r, t ) = −n(r)e2

m
AT (r, t ), (42)

is induced in matter (charged particles assumed here to be
electrons). The perhaps most prominent example of a diamag-
netic phenomenon is the Meissner effect in superconductors
[32,33]. Above the superconducting transition temperature
(TC), the induced current density consists of paramagnetic
and diamagnetic parts (as in all solids). The paramagnetic
part is structure (e.g., ∼ band structure) -dependent, and su-
perconductors are unique in the sense that the paramagnetic
part tends to vanish below TC . In a two-fluid picture, only
the diamagnetic part exists for the superconducting fluid part.
Note that the expression in Eq. (42) is gauge-invariant, since
AT is. The transverse vector potential satisfies the microscopic
wave equation(

∇2 − 1

c2

∂2

∂t2

)
AT (r, t ) = −μ0JT (r, t ), (43)

where JT (r, t ) (in the diamagnetic case) is the divergence-free
(transverse) part of JT (r, t ) in Eq. (42). For a nonuniform
collection of electrons, Eq. (42) couples the transverse (T ) and
longitudinal (L) dynamics. However, for a uniform jellium
(density: n), where JT (r, t ) = J(r, t ), the T -and L-dynamics
decouple, and AT (r, t ) satisfies the inhomogeneous wave
equation(

∇2 − 1

c2

∂2

∂t2

)
AT (r, t ) − μ0ne2

m
AT (r, t ) = 0. (44)

In photon wave mechanics, AT (r, t ) (properly normalized)
may represent the wave function of a single photon [13],
and Eq. (44) then is the wave equation for a free AT -photon
driven by a diamagnetic current density distribution [JT = J
in Eq. (42)].

Since μ0ne2/m = (ωp/c)2 = Q2
C , a comparison of

Eqs. (23) and (44) shows that the plasmariton can
be conceived as a T -photon unavoidably coupled
diamagnetically to jellium. Seen in this perspective, the
formalisms used in photon wave mechanics can be applied
to plasmariton wave mechanics. The methods of photon
wave mechanics in structural vacuum [36], an extension of
the Riemann-Silberstein-Oppenheimer photon energy wave
function formalism [10–16], appears particularly attractive
[36].

One can introduce a plasmariton spin-1 operator in the
description in the following manner. Let us first rewrite the
curl of the plasmariton wave function as

∇ × � = i−1(σ · ∇)�, (45)

where σ = (σ1, σ2, σ3) is the well-known dimensionless
Cartesian spin-1 operator, the elements of which are the ma-
trices

(σi ) jk = i−1εi jk, (46)

εi jk being the Levi-Civita symbol. Now, since ∇ · � = 0
[Eq. (25)], one obtains

∇2� = −∇ × (∇ × �) = (σ · ∇)2�, (47)

a relation that with the help of the momentum operator

p̂ = h̄

i
∇ (48)

can be given in the form

−h̄2∇2� = (σ · p̂)2�. (49)

In view of this result, the Klein-Gordon equation for the plas-
mariton [Eq. (23)] can be recast in the quantum-mechanical
form[(

ih̄
∂

∂t

)2

+ (cp̂ · σ)2

]
�(r, t ) = (Mc2)2�(r, t ), (50)

utilizing that ch̄QC = h̄ωp ≡ Mc2, where M is the plasmari-
ton “rest mass.” The reader may notice that

ĥ ≡ p̂−1(p̂ · σ) (51)

is the plasmariton helicity operator (above in the r-
representation).

V. SECOND-QUANTIZED THEORY OF BULK
PLASMARITONS

A. Lagrange-Hamilton formalism for free plasmaritons

Let us return to Eq. (26) and write it in the compact form

�(r, t ) =
∑
i=1,2

�i(r, t ), (52)

where �i(r, t ) is the ith polarization species. The relativistic
energy-momentum relation [Eq. (29)] simplifies the scalar
Fourier amplitude, �i(q, ω), to the form

�i(q, ω) = 2π�i(q)δ
{
ω − [(cq)2 + ω2

p

]1/2}
(53)

where δ{· · · } is the Dirac delta function, so that

�i(r, t ) =
∫ ∞

−∞
�i(q)ei(q̂) exp(i{q · r

− [(cq)2 + ωp]1/2t})
d3q

(2π )3
. (54)

From the last member of Eq. (27) it follows that the two polar-
ization species satisfy the generalized orthogonality condition∫ ∞

−∞
�∗

1(r, t ) · �2(r, t )d3r = 0. (55)

Since global (observable) plasmariton-field operators involve
integrations over the entire space, the orthogonality condition
implies that independent Lagrange-Hamilton formalisms can
be established for each of the two free species.

In the following, we use the generic term �(r, t ) for the
two wave-function species �1(r, t ) and �2(r, t ). We now
resolve �(r, t ) into Cartesian components, i.e.,

�(r, t ) =
∑

i=1−3

εi
i(r, t ), (56)
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where {εi}, i = 1–3, is a set of unit vectors (ε1 × ε2 = ε3). A
related particle (P) Lagrangian density

LP =
∑

i

LPi =
∑

i

[
(∂μ
i )(∂μ
∗

i ) − Q2
C
i


∗
i

]
(57)

inserted into the Euler-Lagrange equations

∂μ

[
∂LP

∂ (∂μ
∗
i )

]
− ∂LP

∂
∗
i

= 0 (58)

leads to the Klein-Gordon equations for the three components
of the free plasmariton wave function,(

∂μ∂μ + Q2
C

)

i(r, t ) = 0, i = 1, 2, 3. (59)

By means of Eqs. (56) and (57), the Klein-Gordon equation
for �(r, t ) then becomes(

∂μ∂μ + Q2
C

)
�(r, t ) = 0. (60)

To obtain the associated free plasmariton Hamiltonian density,
one needs the six canonical momenta (i = 1–3)

�
i ≡ ∂LP

∂ (∂0

∗
i )

= ∂0
i, (61)

�
∗
i

≡ ∂LP

∂ (∂0
i )
= ∂0
∗

i . (62)

In turn, with

�
i (∂0

∗
i ) = �
∗

i
(∂0
i ) = (∂0
i )(∂0


∗
i ), (63)

the Hamiltonian density,

HP =
∑

i=1−3

[�
i (∂0

∗
i ) + �
∗

i
(∂0
i ) − LPi], (64)

can be calculated. Written in “oscillator” form, one obtains

HP =
∑

i=1−3

[
(∂0
i )(∂0


∗
i ) + (∇
i ) · (∇
∗

i ) + Q2
C
i


∗
i

]
.

(65)

The Hamiltonian density is extended to the operator level
with the associations


i ⇒ 
̂i, 
∗
i ⇒ 
̂i

†
, i = 1, 2, 3. (66)

From the integral

ĤP =
∫

V
ĤPd3r (67)

(here over a quantization volume V ), the Hamilton operator
related to the generic �(r, t ) plasmariton field can be obtained
following the standard procedure [18]. Thus (ĤP ⇒ Ĥ


P ),

Ĥ

P =

∑
q

h̄
[
(cq)2 + ω2

p

]1/2
[

N̂ (q) + 1

2

]
, (68)

where

N̂ (q) = â†(q)â(q) (69)

is the number operator belonging to the wave-vector q, â(q)
[â†(q)] being the annihilation (creation) operator for plasmari-
ton quanta.

Our final result for the free bulk plasmariton Hamilton
operator belonging to the sum of the two polarization species
(index here denoted by s) hence is

ĤP =
∑
q,s

h̄
[
(cq)2 + ω2

p

]1/2
[

N̂s(q) + 1

2

]
, (70)

where

N̂s(q) = â†
s (q)âs(q). (71)

The free plasmariton momentum operator is given by

P̂P =
∑
q,s

h̄qN̂s(q). (72)

VI. PLASMARITON INTERACTION WITH
AN ELECTROMAGNETIC GAUGE FIELD

A. Self-consistent four-potential in a sea of plasmaritons

At this point we may consider the jellium as an assembly
of plasmaritons, remembering that we alone are interested
in long-wavelength collective excitations with transverse po-
larizations. The plasmaritons are charged quasiparticles that
interact mutually via electromagnetic couplings. Although the
transverse vector potential in the plasma, AT (r, t ), satisfies
a diamagnetically driven Klein-Gordon-type wave equation
[Eq. (44)], which is form-identical to that of the plasmariton
wave function �(r, t ) [Eq. (23)], the only “external” electro-
magnetic property of the plasmariton is its charge, Q = ne. As
we shall realize in Sec. IX, a useful quantum physical picture
of the plasmariton sees this as a transverse displacement field
(DT ) coupled to a charged polarization oscillator resonating at
a dressed plasma frequency (ω̃p = √

2ωp).
Let us assume that we excite the sea of plasmaritons by a

prescribed external four-potential {Aext
μ }. The dynamics of the

external field hence is determined by charged source particles
outside the jellium system in consideration. Via its interaction
with the plasmariton charges, the {Aext

μ }-field induces a field
{Aind

μ } in the plasmariton sea. In a self-consistent manner, the
plasmariton quasiparticle hence is driven effectively by a four-
potential field

{Aμ} = {Aext
μ

}+ {Aind
μ

}
. (73)

B. Plasmaritonian interaction Lagrangian density

The covariant relativistic four-potential vector

{Aμ} =
(

A0 = U

c
, A
)
, (74)

where U and A are the scalar and vector potentials, respec-
tively, and its contravariant partner [using here the “metric”
signature (1,−1,−1,−1)] transfers via minimal coupling
substitution for complex fields, with plasmariton charge Q,
i.e.,

∂μ ⇒ ∂μ − i
Q

h̄
Aμ, (75)

∂μ ⇒ ∂μ + i
Q

h̄
Aμ, (76)
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the Lagrangian density of the generic field �(r, t ) [Eq. (57)]
to LP + LI :

LP + LI =
∑

i

(LPi + LIi )

=
∑

i

[(
∂μ
i + i

Q

h̄
Aμ
i

)

×
(

∂μ
∗
i − i

Q

h̄
Aμ
i ∗

)
− Q2

C
i

∗
i

]
. (77)

The interaction Lagrangian density (LI ) thus has the explicit
form

LI =
∑

i

{
iQ

h̄
[(Aμ
i )(∂μ
∗

i ) − (∂μ
i )(Aμ
∗
i )]

+
(

Q

h̄

)2

AμAμ
i

∗
i

}
. (78)

In compact notation one may write the expression for LI as
follows:

LI = iQ

h̄
[(Aμ�) · (∂μ�∗) − (∂μ�) · (Aμ�∗)]

+
(

Q

h̄

)2

AμAμ� · �∗, (79)

remembering that the summation over upper and lower μ-
indices is kept implicit in the notation.

C. Inhomogeneous plasmariton Klein-Gordon equation

From the three (i = 1–3) Euler-Lagrange equations written
here in compact form as

∂μ

[
∂ (LP + LI )

∂ (∂μ�∗)

]
− ∂ (LP + LI )

∂�∗ = 0 (80)

for the generic plasmariton field �(r, t )[= �1(r, t ) or
�2(r, t )], one obtains the electromagnetically driven vectorial
Klein-Gordon equation

(
∂μ∂μ + Q2

C

)
� + iQ

h̄
[∂μ(Aμ�) + Aμ(∂μ�)]

−
(

Q

h̄

)2

AμAμ� = 0. (81)

VII. PLASMARITONS WITH SPATIAL DISPERSION

A. Hydrodynamic model

It is well known that a classical theory for wave prop-
agation of bulk plasmons cannot be established unless one
incorporates spatial nonlocality in the longitudinal dielectric
function. In cases in which the solid (to a good approximation)
can be considered as a translationally invariant medium (e.g.,
jellium), spatial nonlocality is commonly called spatial disper-
sion. In the wave-vector-frequency domain, many properties
of bulk plasmons are well described in the framework of a
hydrodynamic model, with εL(q, ω) given by Eq. (4). In our
recently developed wave-mechanical and second-quantized
theories for bulk (and surface) plasmons, the hydrodynamic
dispersion relation was taken as a starting point [17].

As we have seen in Secs. III–VI, a rigorous quantum theory
for bulk plasmaritons can be developed without the inclusion
of spatial dispersion. In fact, the overwhelming majority of
classical plasmariton studies are carried out using a spatially
local dielectric function. However, it is of theoretical impor-
tance to investigate the possibilities (and needs) for extending
the quantum theory of plasmaritons to the nonlocal domain.
The perhaps simplest spatially dispersive model is based on
the hydrodynamic expression for εT (q, ω), given in Eq. (3).

As shown in Appendix A 3, the hydrodynamic expression
for the transverse dielectric function [Eq. (3)] can be derived
from the linearized Boltzmann equation. The designation “hy-
drodynamic” relates to the circumstance that all quantities are
integrated over the electron velocity distribution, exemplified
by the linearized (denoted here by subscript 1) current density

J1(r, t ) = en
∫ ∞

−∞
v f1(r, v, t )d3v, (82)

whose (q, ω) representative appears in Eq. (9)’s classical
small-q expression.

At this point, it is important to note that the frequency
(ω) and the wave number (q) are independent quantities in
εT (q, ω). This implies that small q does not tell us anything
about the ω-values. In the hydrodynamic approach, branch-
cut contributions are associated with the singular points in
arctan(i/u) (see Appendix A 3), where

u = ω

qvF
(83)

in the collisionless limit (closed system) adopted herein. It
follows from Eq. (A15) that the singular points appear at
u = ±1. Physically, the branch cuts (two) describe the single-
particle excitation spectrum. Including quantum interference
effects, whose importance in the Lindhard theory is character-
ized by the parameter

z = q

2kF
, (84)

the singularities are located at u + v = ±1 and u − v = ±1,
cf. Eq. (A5). For z → 0 (the classical regime), the branch
cuts extend from u = ±ω/(qVF ) to infinity (u → ±∞). The
corner of the branch cut (for ω > 0) forms a straight line in
the (ω, q)-plane, viz.,

ω = qvF , classical. (85)

Readers interested in a detailed analysis of the Lindhard
dielectric functions may consult Ref. [8], where a comprehen-
sive list of references to original works can also be found. In
addition, Ref. [37] provides examples of Lindhard’s theory
extension to nonlinear nonlocal electrodynamics.

In the hydrodynamic model for charged gas plasma sys-
tems, the zeros of the denominators in Eqs. (3) and (4), viz.,

ω =

⎧⎪⎨
⎪⎩
√

1
5vF q, T -mode,√
3
5vF q, L-mode,

(86)

characterize the onset of instabilities for the electron subsys-
tem. In our jellium model, the ionic background is uniform
and stationary. Such an approximation in general does not
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work in gas plasmas, where the (free) ions form a system that
is essentially dynamic, yet is coupled strongly to the electron
plasma in most cases.

Since (vF /c)2 ∼ 10−4, it turns out that the small-q disper-
sion relation for the plasmariton is given by (in squared form)

ω2 = (cq)2 + ω2
p, ω > ωp. (87)

This means that spatial dispersion is negligible. In the local
regime, the dispersion relation in Eq. (87) is known as the
Brewster branch [2].

In the classical theory of surface plasmaritons, an extra
low-frequency dispersion relation, called the Fano branch,
is present [2]. The surface plasmaritons mix in L- and T -
dynamics. Inclusion of spatial dispersion in the L-dynamics
(where it is of most importance) shows that the Fano branch is
linear in the classical electrostatic limit presented herein. The
Ritchie dispersion relation [2,17]√

3

5
vF qR

‖ = ω

[
1 −

(
ωpS

ω

)2]
, classical, (88)

where qR
‖ is the Ritchie (R) wave number parallel to the sur-

face, and ωpS = ωp/
√

2 is the surface L-plasmon resonance
frequency in the limit q → 0, is of central importance in elec-
tron scattering studies from surface plasmons. For ω � ωpS ,
the Fano branch becomes linear, i.e.,

ωR =
√

3

5
vF qR

‖ . (89)

The related quantum theory of the L-plasmon [17] was the
springboard for our development of the bulk plasmariton
quantum theory.

Although there is no Fano branch for bulk plasmaritons,
it is interesting that the Ritchie relation in Eq. (89), and the
branch-cut line in Eq. (85), are both linear, and with slopes
ωR/qR

‖ = (3/5)1/2vF ∼ vF = ω/q of the order of the Fermi
velocity. We shall take up this aspect in our next paper on the
quantum theory of surface plasmaritons.

Plots relating to the hydrodynamic model are shown in
Fig. 2, using material parameters for doped free-electron-like
n-InSb.

In the low-temperature limit (T → 0 K) and for ω > ωp,
the single-particle excitation domain occupies the region
of the (ω, q)-plane located between the two curves h̄ω =
(h̄2/m)(q2/2 − qkF ) and h̄ω = (h̄2/m)(q2/2 + qkF ), where
kF is the Fermi wave number. These relations stem from the
energy-momentum conversation related to scattering of an
electron from state k to k + q by a photon of momentum h̄q.
For h̄ω < εF , εF being the Fermi energy, the Pauli principle
introduces a further restriction on the extension of the single-
particle excitation domain, as is well known [8]. Thus, the
energy-momentum conservation can be expressed as

2mω

h̄
= q2 + 2k‖q, (90)

where k‖ = k · q/q is the component of the electron wave
vector in the q/q direction. The Pauli principle requires that
the initial state must be a filled state (|k| < kF ) and the final

FIG. 2. Illustration [in a normalized (q, ω)-plane] of key ele-
ments of the classical Lindhard (Boltzmann) domain in relation to the
bulk plasmariton theory: (i) Fully drawn thick black curve: Brewster
branch, with asymptotic light line (broken curve). (ii) Green curve:
unobservable T -plasmon. (iii) Violet curve (inset): linear branch-
cut corner and (iv) in black (inset): The linear Fano branch part.
(v) Gray toned domain: single-particle excitation region. Material
parameters for n-InSb: m = 0.015m0 (m0, free-electron mass) and
n = 4 × 1018 cm−3.

state an empty state (|k + q| > kF ). Thus,

k2
F − 2mω

h̄
� k2

‖ + k2
⊥ � k2

F , (91)

where k⊥ is the magnitude of the initial electron wave vector
component perpendicular to q. The minimum value of k⊥,
kmin
⊥ , is thus

kmin
⊥ =

(
k2

F − k2
‖ − 2mω

h̄

)1/2

. (92)

By eliminating k2
‖ from Eq. (92) using Eq. (90), and from

the necessary condition kmin
⊥ � 0, it appears that the Pauli

principle gives an extra boarder line curve

h̄ω

εF
= 2

(
q

kF

)
−
(

q

kF

)2

(93)

to the single-particle excitation below the plasma frequency;
see Fig. 2.

B. Electrostatic Lindhard model

The hydrodynamic plasmon and plasmariton models both
have their roots in the classical Boltzmann transport equation,
and as such the hydrodynamic theory cannot describe quan-
tum interference effects. Quantum phenomena appear when
the mode wave-vector magnitude (q) is comparable to (or
larger than) the Fermi wave number (kF ). In the Lindhard
theory, quantum interference effects are included, thus the
correctness of the hydrodynamic plasmariton dispersion rela-
tion must be determined from the Lindhard description of the
transverse electrodynamics. The general Lindhard expression
for εT (q, ω) is given in Appendix A, where also a few of its
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FIG. 3. Illustration [in a normalized (q, ω)-plane] of the electro-
static Lindhard (essential quantum) domain in relation to the bulk
plasmariton: (i) Fully drawn thick black curve: Electrostatic dis-
persion relation. (ii) Gray shaded domain: single-particle excitation
domain. Material parameters for n-InSb: m = 0.015m0 (m0, free-
electron mass) and n = 4 × 1018 cm−3. h̄ωp/εF = 0.99. The A → B
part of the electrostatic branch is an open window for undamped
mode propagation (but a rigorous analysis requires that the changes
coming from the replacement z ± 1 ⇒ |z ± u ± 1| are included).
The B → C part is inside the single-particle domain, and the modes
are strongly damped here. From C → D (floating point) the waves
are undamped. Beyond D, the quasiparticle quantum polarization
oscillator (QO) model gives an accurate quantum description.

main properties are summarized. For large relative wave num-
bers (�q/kF ), the dielectric T -function becomes essentially
electrostatic. For a degenerate electron jellium, one obtains
(see Appendix A)

εT (q, ω) = 1 − 3

8

(
ωp

ω

)2

f (z), electrostatic, (94)

where, with z = q/(2kF ),

f (z) = z2 + 1 − [1 − z2]2

2z
ln

∣∣∣∣ z + 1

z − 1

∣∣∣∣. (95)

In the electrostatic regime, there is no magnetic field present,
and the dispersion relation is given by (see the plot in Fig. 3)

εT (q, ω) = 0, electrostatic, (96)

i.e., Eq. (19), which of course, as discussed in Sec. II C, is
wrong when electromagnetic retardation effects are included.
In explicit form, Eq. (96) can be given for z � 1 as

ω = ωp

[
1 − 4

5

(
kF

q

)2]
. (97)

For large z, the Lindhard electrostatic dispersion relation ap-
proaches ωp. In this limit, the quantum theory is based on that
of a “simple” harmonic oscillator.

C. Classical low-frequency Lindhard formula

The Boltzmann equation approach, used previously in
linear and nonlinear response theory, is connected to the Lind-

hard theory for z → 0 (see Appendixes A 3 and A 5), and with
u = ω/(qvF ) one has

εT (q, ω) = 1 − 3

2

(
ωp

ω

)2

f (u), classical, (98)

where

f (u) = 3u2 + 1 + u ln

∣∣∣∣1 − u

1 + u

∣∣∣∣. (99)

For u → ∞,

f (u) = 2

3
+ 2

15

(
qvF

ω

)2

+ O(q4). (100)

To order q2, this results in a dispersion relation

cq(ω) =
[

ω2 − ω2
p

1 + 1
5

(ωp

ω

)2( vF
c

)2
]1/2

. (101)

Here, we note that only for ω > ωp is there a real solu-
tion for q(ω); see also Fig. 2. Since (vF /c)2 ∼ 10−4, the
last term is always negligible. The classical Lindhard model,
therefore, reproduces the Brewster-branch dispersion relation,
given in square form in Eq. (22). The Boltzmann theory
(∼ the classical Lindhard model) thus confirms that the trans-
verse hydrodynamic theory is correct in the small-q collective
mode region.

VIII. REMARKS ON THE SECOND-QUANTIZED
PLASMARITON THEORY WITH SPATIAL DISPERSION

A. Brewster branch

It has been realized that the inclusion of spatial disper-
sion in the dispersion relation of the Brewster branch is
unimportant. The wave equation of the Brewster plasmariton
hence is described by the Klein-Gordon theory presented in
Sec. III A, and its extension to the QED level is given for the
free plasmariton in Sec. V A, and for its interaction with an
electromagnetic gauge field in Sec. VI A.

If one literally takes the words “Brewster plasmariton
quasiparticle” as in classical theory, one would like to su-
perimpose Brewster plane-wave modes to form a spatially
well-localized quasiparticle. To have a stable quasiparticle
propagating in space-time, one must avoid losses stemming
from electron-hole pair excitations. These would result in an
unstable Brewster plasmariton quasiparticle—a particle with
a finite lifetime, so to speak. The Brewster dispersion relation
reaches the single-particle border (B) at q = qB determined by

[
(cqB)2 + ω2

p

]1/2 = h̄

m

(
1

2
q2

B − kF qB

)
. (102)

Vectorial free wave packets (more or less particlelike in the
classical sense), here denoted by the generic name WP(r, t ),
hence are formed by superpositions of the type

WP(r, t ) =
∫ qB

0
c(q) exp

(
i
{
q · r − [(cq)2 + ω2

p

]
t
}) dq3

(2π )3
,

(103)
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where only the limit on the magnitude of q is indicated in the
limits for the 3D integration. Since

∇ · c(q) = 0, (104)

the vectorial amplitude coefficients must satisfy the geometric
transversality constraint

q̂ · c(q) = 0. (105)

This constraint in itself puts a limit on the possibility for the
spatial compression of a Brewster plasmariton quasiparticle.
Thus, it is well known that one cannot, even if one lets
qB → ∞, localize a transversely polarized wave packet better
than to a size given by the transverse dyadic δ function, given
in spherical contraction by

δT (R) = 3R̂R̂ − U
4πR3

, R �= 0 (106)

outside the center of confinement located at R = 0. In
Eq. (106), U is the 3 × 3 unit tensor, and R̂ = R/R. For the
plasmariton confinement, spherical contraction has a privi-
leged status, as for other types of vectorial boson particles,
e.g., the transverse photon.

B. Quantum oscillator

Each of the high wave-number harmonic quantum oscil-
lators, all belonging to the dispersion relation beyond the
floating point D in Fig. 3, can for each frequency (ω) form
a localized oscillating single-plasmariton quasiparticle. As is
well known from elementary electron dynamics, for example,
a number state superposition can be constructed forming a
coherent state, which during vibratory motion behaves much
like a pseudoclassical particle in a harmonic potential. In the
description presented in Sec. IX, where the transverse dis-
placement field, DT (multiplied by −1), acts as canonical field
momentum, the charged plasmariton oscillator behaves like
a simple polarization oscillator with mass M = nm and res-
onance frequency ω̃p = √

2ωp. The oscillator is surrounded
by its tied T -photon cloud, and it oscillates in an “external”
potential associated with the radiative part of the T -photon
field. Further remarks on this point are given in Sec. X B.

IX. PLASMARITON HAMILTONIAN WITH −DT

AS CANONICAL FIELD MOMENTUM

A. Charged jellium oscillator

It was realized in Sec. II that the microscopic polarization
field, P, plays an important role in the plasmariton theory. In
the long-wavelength limit (q → 0), the time evolution of the
jellium polarization is equivalent to that of a simple electri-
cally charged harmonic oscillator with mass (M) and charge
(Q) given by

M = nm, Q = ne, (107)

where n is the uniform electron density. A Lagrangian polar-
ization density

LP = M

2Q2
Ṗ2 − 1

2ε0
P2 (108)

inserted into the Lagrange equation

d

dt

(
∂LP

∂Ṗ

)
− ∂LP

∂P
= 0 (109)

leads to the correct oscillator equation for the polarization. In
Eqs. (108) and (109), Ṗ ≡ dP/dt , and Eq. (109) is a compact
notation for the three Lagrange equations related to the Carte-
sian components of P. The vectorial quantity

π ≡ ∂LP

∂Ṗ
= M

Q2
Ṗ (110)

is the canonical momentum of the polarization field, thus
∂LP/∂P = (−1/ε0)P. Equation (109) gives the simple vec-
torial oscillator equation

P̈ + ω2
pP = 0, (111)

where

ωp =
(

Q2

Mε0

)1/2

=
(

ne2

mε0

)1/2

(112)

is the plasma frequency, already introduced in Sec. II A.
The Hamiltonian density of the polarization field, viz.,

HP ≡ π · Ṗ − LP, (113)

thus takes the explicit oscillator form

HP = π · π

2MQ2
+ 1

2ε0
P · P = 1

Q2

(
π2

2M
+ 1

2
Mω2

pP2

)
, (114)

with “kinetic” and “potential” energies π2/(2M ) and
(1/2)Mω2

pP2, divided by Q2, respectively.

B. Lagrangian and Hamiltonian densities
of the plasmariton field

In the following, we establish the Hamiltonian formalism
for the plasmariton field following the standard procedure
used for a coupled electron-photon system, remembering that
we are interested only in the transversely polarized collective
oscillations of the jellium. The total Lagrangian density

L = LF + LP + LI (115)

hence is the sum of a free electromagnetic field (F ) part

LF = ε0

2
{[ȦT (r, t )]2 − c2[∇ × AT (r, t )]2}, (116)

a plasma oscillator part, given by Eq. (108), and an interaction
(LI ) part. Usually one takes the interaction part in the form
J · AT , but since one may add to LI a time derivative

dF (r, t )

dt
= − d

dt
(P · AT ) = −J · AT − P · ȦT (117)

(remembering that J = Ṗ), without changing the physics, we
make the equivalent choice

LI = −P · ȦT . (118)

In explicit form one hence has

L = ε0

2

[
Ȧ2

T − c2(∇ × AT )2
]+ M

2Q2
Ṗ2 − 1

2ε0
P2 − P · ȦT .

(119)
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Remembering that P = PT for the transversely polarized
polarization field, the momentum M conjugate to AT becomes

M ≡ ∂L
∂ȦT

= ε0ȦT − PT , (120)

and then

M = −(ε0ET + PT ) = −DT , (121)

where DT is the transverse part of the microscopic displace-
ment field; cf. Eq. (7). In the plasmariton case, DT = D of
course. The canonical field is thus indirectly linked to the fact
that the plasmariton is built from a T -photon and a T -plasmon
(here without spatial dispersion included); cf. Fig. 1.

The total Hamiltonian density

H ≡ M · ȦT + π · Ṗ − L (122)

can now be expressed as a function of “coordinates” (P,
AT ) and conjugate “momenta” (π, M) eliminating (Ṗ, ȦT ) by
means of Eqs. (110) and (120). The explicit result is given by

H =
{

1

2ε0
M2 + ε0c2

2
(∇ × AT )2

}

+ 1

Q2

[
π2

2M
+ 1

2
Mω2

pP2

]
+ 1

2ε0
P2 + 1

ε0
M · P. (123)

C. Structure of the Hamiltonian density

To emphasize the structure of Eq. (123) we have put in
two extra sets of brackets, {· · · } and [· · · ]. The expression in
{· · · } may be characterized as a quasifree transverse photon
Hamiltonian density, where the word “quasi” refers to the fact
that it is the DT -field, and not the ET -field, that enters the
field-momentum term. The expression in [· · · ], with prefactor
Q−2, is the Hamiltonian density of the charged jellium oscil-
lator discussed in Sec. IX A. The term P2/(2ε0), which only
depends on the polarization density variables, is to be grouped
with the oscillator part. Since

1

Q2

[
π2

2M
+ 1

2
Mω2

pP2

]
+ 1

2ε0
P2

= 1

Q2

[
π2

2M
+ 1

2
Mω̃2

pP2

]
, (124)

where

ω̃p =
√

2ωp, (125)

it appears that we still have oscillator dynamics, yet with a
dressed resonance frequency. The term M · P/ε0 in Eq. (123)
is an interaction term between the quasifree photon and the
dressed oscillator.

The reader may notice that the Hamiltonian density in
Eq. (123) bears a formal similarity to the Power-Zienau-
Woolley (PZW) Hamiltonian density, used to study the
quantum electrodynamics of strongly localized particle dis-
tributions (atoms, molecules, etc.) in a multipole expansion
scheme [38–41]. In the PZW Hamiltonian, P is the electric
dipole moment per unit volume. In the present work, the
microscopic P includes all multipole orders, cf. the discus-
sion in Sec. II B. Also in a theoretical work by one of the
authors (Keller), which in a propagator formalism describes

(a)

(b)

(c)(c)

FIG. 4. Schematic illustration of how the tied T -photon principle
can occur in different physical systems. All tied T -photon clouds in
violet (gray shading). (a) Nonrelativistic Bethe cloud renormalization
of the bare electron mass m0 to m = m0 + δm (δm finite due to a
high-frequency ω-mode cutoff at the relativistic limit m0c2/h̄) [42].
(b) Tied T -photon cloud as it appears in Keller propagator theory
describing the quantized light emission from a single-electron atom.
The black circle (sphere) gives the trailing edge of the radiated field,
propagating outward (as indicated by the arrows) with the vacuum
speed of light. The best possible T -photon localization is determined
by the tied T -photon cloud [29,30]. (c) T -photon cloud tied to a
localized plasmariton quasiparticle (see also Fig. 1).

the spatial confinement of quantized light emitted from an
atom, a “particle” term PT /(3ε0) appears [29]. Physically
this term relates to the transverse self-field ESF

T attached to
the atom [ESF

T = −PT /(3ε0)]. A schematic illustration of the
Bethe mass renormalization [42], Keller’s propagator theory
of spatial photon confinement [29,30], and the plasmariton
quasiparticle with its tied T -photon are shown in Fig. 4.

D. Quantization of integrated Hamiltonian density

The Hamiltonian density in Eq. (123) is extended to the
operator level (H → Ĥ) by replacing the vectors AT , M, and
P(= PT ) by operators ÂT , M̂, and P̂. From the standard theory
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of electromagnetic field quantization, one obtains [18,19]

ÂT (r) =
∑
q,s

(
h̄

2ε0cqV

)1/2

ε̂s(q̂)
[
âqse

iq·r + â†
qse

−iq·r].
(126)

In Eq. (126) the transverse vector potential is expanded in
plane-wave modes (wave vectors: q) over a quantization vol-
ume V . The two polarization states (s = 1, 2) belonging to
a given q̂ = q/q direction are characterized here by the real
orthogonal polarization vectors εs(q), s = 1, 2. The mode an-
nihilation (âq,s) and creation (â†

qs) operators obey the boson
commutator relations

[âqs, â†
q′s′ ] = δss′δq,q′ , (127)

[âqs, âq′s′ ] = [â†
qs, â†

q′s′ ] = 0. (128)

The quantization of the canonical free field momentum, M =
−DT = −iε0ET , has the same plane-wave expansion as the
electric field operator [18] multiplied by −iε0. Thus,

M̂(r) = −iε0

∑
q,s

(
h̄cq

2ε0V

)1/2

εs(q̂)
[
âqse

iq·r − â†
qse

−iq·r].
(129)

By integration of the field Hamiltonian density over the quan-
tization volume, and by use of the relation

1

V

∫
V

ei(q−q′ )·rd3r = δq,q′ , (130)

where δq,q′ is the Kronecker delta, the field part of the
Hamilton operator

ĤF =
∫

V
ĤF d3r (131)

takes the expected “sum of oscillator” form [18]

ĤF =
∑
q,s

h̄cq

(
â†

qsâqs + 1

2

)
. (132)

For the free field, the zero-point energy plays a role, e.g.,
for the number states. Thus the expectation value of DT

vanishes, whereas the expectation value of the intensity op-
erator (∼DT · DT ) fluctuates about its zero ensemble average.
These fluctuations are nonzero even for the vacuum state.

The charged jellium oscillator model used in Sec. IX A re-
lates to a spatially nondispersive dielectric function [Eq. (2)].
This implies that the scalar amplitude (P0) of a propagating
polarization with wave vector (q) must be independent of q.
As a consequence, the polarization operator can be expanded
in plane-wave modes as follows:

P̂(r) = P0

V 1/2

∑
q,s

εs(q̂)[b̂qse
iq·r + b̂†

qse
−iq·r]. (133)

The polarization-field mode annihilation (b̂qs) and creation
(b̂†

qs) operators satisfy the boson commutator relations

[b̂qs, b̂†
q′s′ ] = δss′δq,q′ , (134)

[b̂qs, b̂q′s′ ] = [b̂†
qs, b̂†

q′s′ ] = 0. (135)

The Hamilton operator of the polarization field,

ĤP =
∫

V
HPd3r, (136)

necessarily must attain the “sum of nondispersive oscillator”
form, viz.,

ĤP = h̄ω̃p

∑
q,s

(
b̂†

qsb̂qs + 1

2

)
. (137)

In Appendix B, we show that the scalar amplitude is given by

P0 = (ε0 h̄ω̃p)1/2. (138)

The interaction is given by the Hamilton operator

ĤI =
∫

V
HI d

3r = 1

ε0

∫
V

M̂ · P̂d3r. (139)

Introducing, tentatively, the abbreviation

K (q) = −iP0

(
h̄cq

2ε0

)1/2

, (140)

one has

ĤI =
∑

q,q′,s,s′

K (q)

V

∫
V

εs(q̂) · εs′ (q̂′)
[
âqse

iq·r − â†
qse

−iq·r]

× [b̂q′s′eiq′ ·r + b̂†
q′s′e−iq′ ·r]d3r. (141)

By utilizing Eq. (140) (for q′ = q,−q), integration over the
quantization volume results in

ĤI =
∑
q,s,s′

K (q)[εs(q̂) · εs′ (−q̂)âqsb̂−qs′

+ εs(q̂) · εs′ (q̂)âqsb̂
†
qs′ − εs(q̂) · εs′ (q̂)â†

qsb̂qs′

− εs(q̂) · εs(−q̂)â†
qsb̂

†
−qs′ ]. (142)

The orthogonality of the polarization unit vectors reduces
Eq. (142) to

ĤI = iP0

∑
q,s

(
h̄cq

2ε0

)1/2

× [â†
qsb̂qs + â†

qsb̂
†
−qs − âqsb̂−qs − âqsb̂

†
qs]. (143)

If one changes q to −q in the summations over the terms
containing b̂†

−qs and b̂−qs, and uses that [see Eqs. (125) and
(138)]

P0

(
h̄cq

2ε0

)1/2

= (ε0 h̄ω̃p)1/2

(
h̄cq

2ε0

)1/2

= h̄(cqωp)1/2, (144)

one finally obtains

ĤI = ih̄
∑
q,s

(cqωp)1/2

× [â†
qsb̂qs + â†

−qsb̂
†
qs − â−qsb̂qs − âqsb̂

†
qs]. (145)

By gathering the results in Eqs. (132), (137), and (143),
it appears that the total plasmariton Hamiltonian operator,
expressed in terms of the boson annihilation and creation
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FIG. 5. Schematic illustration of the DT -photon ↔ dressed os-
cillator scattering and two-particle absorption/emission processes
appearing in the interaction Hamiltonian operator [Eq. (146)]. Oscil-
lator quanta (black), light quanta (gray). (a) Absorption (emission) of
oscillator (light) quanta. (b) Opposite process to that in (a). (c) [(d)]
Two-particle absorption (generation) processes.

operators, becomes

Ĥ =
∑
q,s

{
h̄cq

[
â†

qsâqs + 1

2

]
+ h̄ω̃p

[
b̂†

qsb̂qs + 1

2

]

+ ih̄√
2

(cqω̃p)1/2[â†
qsb̂qs + â†

−qsb̂
†
qs

− â−qsb̂qs − âqsb̂
†
qs]
}
. (146)

The elementary scattering processes appearing in the interac-
tion Hamiltonian operator are shown in the diagrams of Fig. 5.

E. Diagonalization of the Hamiltonian

In the displacement field quantization scheme, the eigen-
modes and their dispersion relation are obtained by diagonal-
izing the Hamiltonian operator in Eq. (146). The form of the
interaction term suggests that an annihilation operator (α̂qs)
ansatz

α̂qs ≡ wâqs + xb̂qs + yâ†
−qs + zb̂†

−qs, (147)

where w, x, y, and z are as yet unknown constants, will do
the job. From the Heisenberg equation of motion for α̂qs, the
diagonalization is obtained from the condition

[α̂qs, h̄−1Ĥ ] = ωqsα̂qs. (148)

The relation in Eq. (148) gives the values of the four constants.
See also the landmark work of Hopfield on polaritons [43].

A few steps for the determination of the constants now
follows. Thus, one obtains

[α̂qs, h̄−1ĤF ] = cq(wâqs − yâ†
−qs), (149)

[α̂qs, h̄−1ĤP] = ω̃p(xb̂qs − zb̂†
−qs), (150)

and

[α̂qs, h̄−1ĤI ]

= i√
2

(cqω̃p)1/2[wb̂qs + x(â†
−qs − âqs) + yb̂qs]. (151)

A combination of Eqs. (147)–(151) results in the set of homo-
geneous equations among the unknown constants:⎛
⎜⎜⎜⎝

cq − ω −A 0 0

A ω̃p − ω A 0

0 A −(cq + ω) 0

0 0 0 −(ωp + ω)

⎞
⎟⎟⎟⎠
⎛
⎜⎝

w

x
y
z

⎞
⎟⎠

=

⎛
⎜⎜⎜⎝

0

0

0

0

⎞
⎟⎟⎟⎠, (152)

with the abbreviation A = (i/
√

2)(cqω̃p)1/2. Setting the deter-
minant to zero, i.e.,∣∣∣∣∣∣∣∣∣

cq − ω −A 0 0

A ω̃p − ω A 0

0 A −(cq + ω) 0

0 0 0 −(ωp + ω)

∣∣∣∣∣∣∣∣∣
= 0, (153)

and remembering that only ω > 0 values are of interest, one
obtains the following implicit form of the dispersion relation:

ω2 = ωω̃p + (cq)2, (154)

with ωqs ≡ ω. Although one cannot expect that the dispersion
relation in the “dressed oscillator” picture is identical to the
one in Eq. (22), they have in common the large-q linear
form ω = cq, and they both approach their relevant plasma
frequencies ω = ω̃p and ω = ωp for q → 0.

In quantum optics (of atoms and solids), it is often justified
to neglect energy nonconserving processes in resonant field-
matter interaction studies [28,31,44–46]. The approximation
is known as the rotating-wave approximation (RWA). In the
plasmariton analysis, these processes appear in the terms of
the interaction Hamiltonian part of Ĥ [Eq. (146)], which
contain the operator products â†

−qsb̂
†
qs [Fig. 5(d)] and â−qsb̂qs

[Fig. 5(c)]. In the RWA, the y and z parts of the α̂qs ansatz
[Eq. (147)] are omitted. Setting the related 2 × 2 determinant,
(cq − ω)(ω̃p − ω) + A2, to zero, one obtains the RWA disper-
sion relation

ωRWA = 1
2

{
ω̃p + cq + [ω̃2

p + (cq)2
]1/2}

. (155)

In Fig. 6, the difference between the general dispersion rela-
tion [obtained from Eq. (154)], i.e.,

ω = 1
2

{
ω̃p + [ω̃2

p + (2cq)2
]1/2}

, (156)

and its RWA form are plotted (in normalized form).
Knowledge of the dispersion relation ωqs = ωqs(q) allows

one to obtain (up to a normalization constant) the eigen-
vector (w, x, y, z). For the present purpose, we do not need
the explicit expression for the eigenvector. Since the charged
oscillator model relates to a spatially nondispersive dielectric
function, the dispersion relation only has a Brewster branch.

053508-14



BULK PLASMARITONS: WAVE-MECHANICAL AND … PHYSICAL REVIEW A 104, 053508 (2021)

FIG. 6. Difference between the RWA [ωRWA(cq)] and the general
[ω(cq)] dispersion relations in a plot where frequencies and wave
number (multiplied by c) are normalized to ω̃p = √

2ωp.

X. CONNEXUM

A. Summary

In the present paper, wave-mechanical (first-quantized) and
quantum electrodynamic (QED) theories of bulk plasmaritons
in a homogenous jellium have been established. After hav-
ing reviewed elements of the classical plasmariton dispersion
relation, in particular the transverse (T ) Lindhard dielectric
function, the eigenmodes condition, and the “inner” structure
of the plasmariton, a quasiparticle built from a T -photon and
a T -plasmon, we turn our attention toward the formulation
of a first-quantized theory for plasmaritons. Starting from the
relativistic energy-momentum relation for the quasiparticle,
a relation that leads to Klein-Gordon equations for each of
the two plasmariton helicity species, we establish a dynamical
(first-order in time) evolution equation for a single plasmari-
ton. The analytical part of the plasmariton wave function
satisfies a Schrödinger-like equation with a Hamiltonian re-
sembling that used by Landau and Peirls [9] in 1930 in one
of the first attempts to formulate a wave-mechanical descrip-
tion for photons. Seen in a somewhat different perspective,
the plasmariton appears as a diamagnetically driven spin-
1 particle. From a Lagrange-Hamilton formulation for free
plasmaritons, we reach a QED theory for the plasmariton
quasiparticle. From there, the fundamental minimal coupling
principle allows us to describe the plasmariton’s interaction
with an electromagnetic gauge field (T -photon) in terms of an
electromagnetically driven (inhomogeneous) Klein-Gordon
equation.

In most cases, it is sufficient to be in possession of a
spatially local plasmariton theory. Nevertheless, it is fun-
damentally important to understand in which manner the
theory for bulk plasmaritons is affected in the presence of
spatial dispersion. For this purpose, we use the Lindhard
(random-phase-approximation) dielectric function for propa-
gating transverse modes. The Lindhard formalism leads in the
wave vector (q)-frequency (ω) domain to collective electron
modes at low and high wave numbers (q). For wave numbers

much smaller than the electron Fermi wave number (kF ),
a classical Lindhard theory (without quantum interference
phenomena) becomes identical to a theory established on
the basis of the Boltzmann equation. The low-wave-vector
collective plasmariton modes are obtained expanding the
transverse dielectric function from q = 0 to order q2. The
often phenomenologically introduced hydrodynamic theory
for transverse excitations follows rigorously from the mi-
croscopic theory, at least well known for longitudinal bulk
plasmons. The hydrodynamical theory leads to a dispersion
relation for bulk plasmaritons which has only one branch: a
Brewster branch with real wave-number (q) modes only above
the bulk plasma frequency at the q = 0 limit. The low-wave-
number plasmariton modes satisfy to an extreme degree of
accuracy a Klein-Gordon wave equation, and the plasmariton
quasiparticles emerge via the usual quantization scheme for a
vectorial Klein-Gordon equation. At relative large wave num-
bers q/(2kF ) � 1, quantum effects dominate the Lindhard
theory, and a density matrix formalism replaces the Boltz-
mann approach. For sufficiently large relative wave numbers,
an electrostatic description can be used since magnetic ef-
fects become unimportant, and for q/kF � 1, the quantization
scheme is identical to that of “simple” nonpropagating oscil-
lator modes.

The quasiparticle picture of an electron surrounded by a
dynamic cloud of transverse photons is well-established in
QED. In the atomic case, Bethe showed on a nonrelativistic
basis (with photon modes cut off at the relativistic frequency
mc2/h̄) how the photon cloud renormalizes the electron mass.
Qualitatively, the tied photon cloud is in Bethe’s theory [42]
related to two closed quantum processes: (i) an electron in
state |a〉 instantaneously emits and reabsorbs a T -photon, and
(ii) the electron in state |a〉 makes a transition to state |b〉 by
emitting a photon. Later the electron in state |b〉 reabsorbs
the photon and returns to state |a〉. These radiative processes
lead to a dynamic renormalization of the electron mass, as dis-
cussed in detail in Ref. [28]. In this work, we have established
a formally somewhat similar theory for the plasmariton quasi-
particle on the basis of a Hamiltonian formalism in which the
transverse microscopic displacement field DT (multiplied by
minus one) plays the role of canonical field momentum. The
total Hamiltonian density here is expressed in terms of “coor-
dinates” (P, AT ) and conjugate momenta (π = MṖ/Q2, M =
−DT ) for the polarization and photon fields. The pair (P,π)
describes the charged plasmariton quasiparticle, with mass
M = nm and charge Q = ne, n being the electron density
in the bulk jellium. The T -photon cloud is stationary (tied)
if only the long-wavelength T -photon mode is included in
the analysis. The quasiparticle oscillator has a renormalized
plasma frequency ω̃p = √

2ωp, ωp being the bulk plasma fre-
quency at q = 0. The plasmariton quasiparticle part of the
Hamiltonian now has an “extra” term [P2

T /(2ε0)] relating to its
self-field energy. In a propagator description of quantized light
emitted from an atom, the limit for the spatial confinement
of the T -photons is determined by a “particle” term PT (3ε0).
Physically, this term relates to the transverse self-field ESF =
−PT /(3ε0) attached to the atom.

The main body of our paper is finished with a description
of the integrated Hamiltonian density in the DT -formalism.
An analytic diagonalization of the total Hamilton operator is
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possible, and this results in an explicit and simple expression
for the bulk plasmariton dispersion relation in the DT -picture.

Different equivalent Hamiltonians can be used to study
bulk plasmaritons in QED. In Sec. IX we used a Hamilto-
nian based on the DT -formalism, because this Hamiltonian
is particularly adequate for renormalization analyses, e.g., it
is used to calculate the interaction between two localized
systems of charges (atomic or molecular). In this case, the
renormalized (PZW) interparticle self-field interaction plays a
crucial role [18,38–40]. To obtain the transition to the classical
plasmariton theory, it appears preferable to start from the
Coulomb gauge, because the Maxwell equations among the
field operators in this gauge are form-identical to the classical
Maxwell equations. Although the analysis is beyond the scope
of this work, the QED theory of coherent states with average
plasmariton number much larger than 1 ultimately will link
the Coulomb QED and classical dispersion relations.

The equality of physical (observational) predictions in two
different representations, j = 1, 2, basically is linked to the
identity of the absolute square of the transition matrix ele-
ments,∣∣〈ψ (1)

f

∣∣ Û (1)(t f , ti )
∣∣ψ (1)

i

〉∣∣2 = ∣∣〈ψ (2)
f

∣∣ Û (2)(t f , ti )
∣∣ψ (2)

i

〉∣∣2,
(157)

where Û ( j)(t f , ti ), j = 1, 2, is the evolution operator relating
the state vectors at the initial (i) and final ( f ) times, i.e.,

|ψ ( j)(t f )〉 = Û ( j)(t f , ti )|ψ ( j)(ti )〉. (158)

At the time of writing, we are not aware of any QED
experiments on plasmaritons. Light scattering experiments
appear as a promising possibility, and they have been carried
out on plasmons in the long-wavelength limit; see, e.g., the
landmark work of Patel and Slusher [1] and the papers on
doped semiconductor plasmas [21]; see also Refs. [47,48] on
light scattering by polaritons and in crystals as such.

B. Outlook—Relativistic plasmariton quasiparticle:
Inadequacy of the concept “field tied to a particle”

1. Electron

Simultaneously with the Pauli-Fierz theory, Kramers at-
tempted to construct first a classical, then a quantum theory,
in which the tied and radiated parts of the electromagnetic
field are constantly distinguishable [49,50]. Kramers’ idea of
renormalization of the electron mass came from his uneasi-
ness with the precise meaning of the mass concept in Dirac’s
radiation theory [51]. Kramers’ struggle with the construction
of a nonrelativistic theory culminated (and terminated) with
Van Kampen’s analysis [51]. It was Bethe’s great insight to
recognize that Kramers’ ideas were the key to understand-
ing the level shift observed by Retherford and Lamb. Bethe,
in a nonrelativistic setting, came to the conclusion that the
Lamb shift originates in the difference between the infinite
self-energies of an electron bound in an atom and that of a
free electron. His finally obtained renormalized electron mass
gave an impressive agreement with the observed Lamb shift
between the 2s1/2 and 2p1/2 states in hydrogen (experimental
value: ∼1.057 MHz; Bethe: ∼1.040 MHz) [42].

To complete the “renormalization program,” the electron
must be described relativistically (in a way involving covari-
ant variables). Finding a transformation that separates tied
and radiated field parts becomes impossible. From a physical
point of view, it is on the probability amplitude of the various
processes and not the field itself that one has to separate the
electromagnetic mass and the production of the field radiation.
Thus, it is the probability amplitude between the initial state
|φi〉 at an instant of time ti, and the final state |ψ f 〉, viz. in the
Schrödinger representation,

P ≡ 〈ψ f | Û (t f , ti )|ψi〉, (159)

where Û (t f , ti ) is the evolution operator between ti and t f ,
which is of physical relevance. The relativistic renormaliza-
tion program is due to Schwinger, Dyson, Feynman, and
Tomonaga, among others. A comprehensive review of the
(history) of the relativistic theory is given in Ref. [52].

2. Plasmariton quasiparticle

Do relativistic considerations play a role for the plasmari-
ton quasiparticle, born as a superposition of collective modes
originating in nonrelativistic electron dynamics (Schrödinger
equation)? At first glance, one would say “no.” If that answer
was correct, the “tied T -photon” concept would make perfect
sense. But the general answer is “yes” even in a solid-state
plasma. In our forthcoming article on surface plasmaritons,
the selvedge region (surface profile region) plays a particu-
larly important role, and at least in this region it is possible
to accelerate the electrons to relativistic velocities in intense
laser fields [53,54]. It is possible to compress the profile re-
gion as a hole, and generate also plasmariton modes. Among
other effects, higher-harmonic generation appears. The issue
as such belongs to nonlinear, nonlocal electron dynamics.
In the wake of our forthcoming paper on surface plasmari-
tons, we will present a relativistic study of the plasmariton
quasiparticle and the (inadequacy) of the “field tied to a quasi-
particle” concept in the relativistic domain.

APPENDIX A: TRANSVERSE DIELECTRIC FUNCTION

In this Appendix, a summary of some of the key formulas
for the linear, microscopic, and transverse dielectric response
theory is presented, with an eye to the particular manner
in which the formalism is used in this paper (see Secs. II
and VII).

1. Lindhard dielectric function

A quantum-mechanical calculation of the field-induced mi-
croscopic current density (J) can conveniently be obtained
from a density matrix operator (ρ̂) calculation. Thus,

J = Tr{ρ̂ ĵ}, (A1)

where ĵ is the relevant electron current density operator. A
many-body expression for the transverse microscopic conduc-
tivity function can be obtained by a linearization of Eq. (A1)
[31]. In a homogeneous jellium, one obtains in the (q, ω)-
domain

JT (q, ω) = σT (q, ω)ET (q, ω). (A2)
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In the framework of the single-particle Lindhard (RPA) the-
ory, the transverse dielectric function

εT (q, ω) = 1 + i

ε0ω
σT (q, ω) (A3)

is explicitly given by [20]

εT (q, ω) = 1 − 3

8

(ωp

ω

)2
f (u, z), (A4)

f (u, z) = z2 + 3u2 + 1 − 1

4z

{
[1 − (z − u)2]2 ln

∣∣∣∣ z − u + 1

z − u − 1

∣∣∣∣
+ [1 − (z + u)2]2 ln

∣∣∣∣ z + u + 1

z + u − 1

∣∣∣∣
}
, (A5)

with u = ω/(qvF ) and z = q/(2kF ).

2. Electrostatic Lindhard dielectric function

If electromagnetic retardation effects can be neglected, one
has u = 0, so that

f (u = 0, z) ≡ f (z) = z2 + 1 − [1 − z2]2

2z
ln

∣∣∣∣ z + 1

z − 1

∣∣∣∣. (A6)

The electrostatic approximation tends to give the dielectric
function correctly when the quantum parameter tends towards
infinity. The electrostatic dispersion relation εT (q, ω) = 0
reads

ω =
√

3

8
ωp f 1/2(z). (A7)

For z → ∞, one has asymptotically

f (z) = 8

3

[
1 − 1

5z2
+ O(z−4)

]
, (A8)

resulting in ω = ωp in the limit.

3. Classical Lindhard region: Boltzmann equation theory

Quantum interference effects are absent from the Lindhard
dielectric function in the limit z → 0. In this classical regime,

εT (q, ω) = 1 − 3

8

(
ωp

ω

)2

f (u, z → 0), (A9)

and hence

εT (q, ω, z → 0)

≡ 1 − 3

2

(
ωp

ω

)2{
u2 − u(u2 − 1)

2
ln

∣∣∣∣1 − u

1 + u

∣∣∣∣
}
. (A10)

The classical dispersion relation, given in Eq. (16), can im-
plicitly be expressed in terms of u as follows:(

c

vF

)2 1

u2
= 1 − 3

8

(
ωp

ω

)2

f (u), (A11)

with the two important ratios c/vF and ωp/ω. Equation
(A11) and its small u limit [ f (u) ≈ 1 + u2] are discussed in
Sec. VII A.

In the classical regime, the density matrix theory coincides
with an approach based on the Boltzmann equation, which in

the collisionless limit has the Vlasov form

∂

∂t
f (r, v, t ) + v · ∇r f (r, v, t )

+ e

m
(E + v × B) · ∇v f (r, v, t ) = 0, (A12)

where the distribution function f (r, v, t ) depends on the par-
ticle position (r) and velocity (v), and the time. Linearization
( f = f0 + f1 + · · · ) results in the following expression for the
transverse dielectric function in the (ω, q)-domain [20]:

εT (q, ω) = 1 − 3

2

(
ωp

ω

)2

f (w), (A13)

where

f (w) = 1

w2

[
1 + w2

w
arctan w − 1

]
, (A14)

with w = i/u. With the help of the relation

arctan w = 1

2i
ln

(
1 + iw

1 − iw

)
, (A15)

one may show that εT (q, ω) [Eqs. (A13) and (A14)] is identi-
cal to εT (q, ω) [Eq. (A10)].

4. Dispersion relation at small wave numbers: Brewster branch

To obtain the classical dielectric function at long wave-
lengths, one starts from the Boltzmann transport equation and
makes a series expansion of f (w) from w = 0. The limit
w → 0 corresponds to q → 0, and thus u = ω/(qvF ) → ∞,
for fixed w. With the help of Eq. (A15), and a large u expan-
sion of the ln function, one obtains (u2 > 1)

arctan w = 1

2i
ln

(
u − 1

u + 1

)
= −2

∞∑
k=1

1

(2k − 1)u2k−1
.

(A16)

To second order in q2, we then get from Eq. (A14) the explicit
result

f (w) = 2

3
+ 2

15

(
qvF

ω

)2

+ O(q4). (A17)

By inserting this result into Eq. (A13), the transverse dielectric
function becomes

εT (q, ω) = 1 −
(

ωp

ω

)2[
1 + 1

5

(
qvF

ω

)2]
+ O(q4). (A18)

The related squared dispersion relation [Eq. (16)] is therefore
given by

(cq)2 = ω2 − ω2
p

1 + 1
5

(ωp

ω

)2( vF
c

)2 . (A19)

Solutions with real q-values obviously only exist for ω > ωp,
and since (vF /c)2 ∼ 10−4, one obtains to an extremely good
approximation

(cq)2 = ω2 − ω2
p. (A20)

Hence, we have regained the Brewster branch [Eq. (22)] also
in the presence of (weak) spatial dispersion.
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In a paper on the microscopic long-wavelength properties
of plasmons (L-mode), Harris [25] started from the RPA
theory, used the Wigner phase space distribution for scalar
potentials [55] to reach the linearized Boltzmann equation
involving the gradient of the scalar potential, and ended
up with the microscopic form of the plasmon dispersion
relation. In this work, the linearized Boltzmann equation re-
lated to the Lorentz field E + v × B [cf. Eq. (A12)] was
obtained directly from the transverse classical Lindhard di-
electric function, giving finally the T -mode dispersion relation
(Brewster branch).

5. Note on branch cuts: Surf-riding resonance

The single-particle excitation spectrum is associated with
the branch-cut structure of the Lindhard dielectric func-
tion, as is well known. These cuts give rise to the
presence of nonexponentially decaying terms in the lin-
ear and nonlinear nonlocal electrodynamics. In a nonlinear
context, the branch-cut contributions seem first to have
been studied in connection with acousto-optic (∼Brillouin)
scattering [56].

Let us return to the transverse hydrodynamic dispersion
relation, and assume, unrealistically for jellium (but possible
in a charged gas plasma, for instance [57]), that

ω = D1/2
T q =

√
1

5
vF q. (A21)

In the field of plasma physics this resonance is called
a surf-riding resonance, because the (plasmariton) wave
travels there [with the replacement (1/5)1/2vF ⇒ vF ] in
a stationary fashion synchronously with the Fermi veloc-
ity. In the Boltzmann approach, the corner of the branch
cut which runs out to infinity is located at the surf-riding
resonance [56].

APPENDIX B: DETERMINATION
OF POLARIZATION-FIELD AMPLITUDE

Let us consider a simple harmonic one-dimensional oscil-
lator with a scaled energy operator

Ĥ = 1

Q2

[
p̂2

2M
+ 1

2
Mω̃2

px̂2

]
. (B1)

The scaling factor Q−2 is introduced to make direct contact
with Eq. (124). The scaling factor may be included in the
momentum ( p̂) and coordinate (x̂) operators, replacing these
by new ones, p̂/Q and x̂/Q. The transformations

x̂ = Q

(
h̄

2Mω̃p

)1/2

(b̂† + b̂), (B2)

p̂ = iQ

(
Mh̄ω̃p

2

)1/2

(b̂† − b̂), (B3)

where the operators b̂ and b̂† satisfy the boson commutator
relation

[b̂, b̂†] = 1. (B4)

By means of the transformation in Eqs. (B2) and (B3), one
obtains

Ĥ = h̄ω̃p
(
b̂†b̂ + 1

2

)
, (B5)

a result that when generalized, i.e., b̂(b̂†) ⇒ b̂qs(b̂†
qs), leads to

Eq. (137). From the classical connection between oscillator
energy and amplitude, namely

h̄ω̃p = M

2Q2
ω̃2

pP2
0 , (B6)

one obtains, with the help of Eq. (112), the result cited in
Eq. (138).
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