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Exceptional points in a dielectric spheroid
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Evolution of resonant frequencies and resonant modes as dependent on the aspect ratio is considered in a
dielectric high index spheroid. Because of rotational symmetry of the spheroid the solutions are separated by
the azimuthal index m. By the two-parametric variation of a refractive index and the aspect ratio we achieve
exceptional points at which the resonant frequencies and resonant modes are coalesced in the sector m = 0.
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I. INTRODUCTION

Optical properties of a dielectric particle are described
by resonant frequencies and corresponding resonant modes.
The most famous case is a dielectric sphere whose resonant
modes and frequencies were first considered by Stratton [1].
The solutions in the form of quasinormal modes (QNMs)
leaking from the sphere were considered in Refs. [2,3]. The
frequencies of these solutions’ resonances are complex be-
cause of coupling of the dielectric particle with the radiation
continuum and can be considered as the eigenvalues of the
non-Hermitian Hamiltonian [4–7]. Non-Hermitian phenom-
ena drastically alters the behavior of a system compared to
its Hermitian counterpart describing the closed system. The
best example of such a difference is the avoided resonant
crossing (ARC) when real or imaginary parts of complex
eigenvalues of the non-Hermitian Hamiltonian undergo repul-
sion for variation of a parameter of the closed system [8–12].
In turn the ARC can emerge to singularities’ exceptional
points (EPs). In parameter-dependent eigenvalue problems of
the non-Hermitian Hamiltonian, a special kind of degeneracy
may occur at some particular values of the system parameters:
two or more eigenvalues coalesce and their corresponding
eigenfunctions collapse into one single function [13–15]. EPs
are interesting because they give rise to unusual physical phe-
nomena. Early experiments on microwave coupled resonators
revealed the peculiar topology of eigenvalue surfaces near
exceptional points for encircling of EP [16].

Many works on EPs and their applications are associated
with parity-time (PT) symmetric optical systems with a bal-
anced gain and loss. In that case, EPs can be easily found
by tuning a single parameter, namely, the amplitude of the
balanced gain and loss [17–21]. Since it is not always easy
or desirable to keep a balanced gain and loss in an optical
system it is of significant interest to explore EPs and their
applications in non-PT-symmetric optical systems. Currently,
there exist studies concerning EPs for resonant states in ex-
tended periodic dielectric structures sandwiched between two
homogeneous half-spaces [22–25], dual-mode planar opti-
cal waveguides [26] and plasmonic waveguide [27], layered

structures [28–30], two infinitely long dielectric cylinders
[31–35], and even a single rod with deformed cross section
[33,36–39]. As for compact dielectric resonators we distin-
guish the only study of EPs in a compact coated dielectric
sphere [40].

In the present paper we consider a compact elementary
dielectric resonator such as a spheroid in which EPs can be
achieved by two-parametric variation of aspect ratio and re-
fractive index. Although the spheroid allows the solution due
to separation of variables in a spheroidal coordinate system
[41,42], analytical expressions for solutions are too cum-
bersome. We use software package COMSOL MULTIPHYSICS,
which allows one to obtain numerically the complex resonant
frequencies and corresponding resonant modes of a particle of
arbitrary shape embedded into the radiation continuum by use
of perfectly absorbing boundary conditions.

II. EVOLUTION OF RESONANT FREQUENCIES
IN A SPHEROID

In all realistic physical resonators there is a certain degree
of dissipation of energy to the environment. This effect is
responsible for a broadening of the peaks in the spectra and is
typically quantified in terms of the so-called quality factor Q.
These solutions, which have complex resonance frequencies,
are known in the literature as resonant modes or morphology-
dependent resonances [43], or quasinormal modes (QNMs)
[4]. Computation of resonances of spherical particles from
Lorenz and Mie is a trivial matter due to analytical theory [1].
The spheroid also has rotational symmetry that allows one to
calculate the resonant frequencies and resonant eigenmodes
separately for each azimuthal index m and calculate EM field
configurations as series over the orbital momenta outside the
spheroid [41]

−→
E (m)(−→r ) =
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FIG. 1. Evolution of complex TE resonant frequencies in silicon spheroid with permittivity ε = 12 for variation of aspect ratio of polar
Rz and equatorial R⊥ radii in the sector m = 0. Wave patterns show azimuthal component of electric field |Eφ | of the Mie resonant modes in
sphere at points marked by closed circles where integers above the insets notify the orbital momentum l and the radial index n. “×” marks the
case of oblate spheroid with Rz = 0.4R⊥ while “+” marks the case of prolate spheroid with Rz = 1.6R⊥.

where
−→
M m

l and
−→
N m

l = 1
k

−→∇ × −→
M m

l are the vector spherical
harmonics [1,44] and k is the frequency. In what follows we
consider the sectors m = 0 and m = 1.

The sector m = 0 is simplified compared to the sector
m = 1 because of the separation of TE and TM modes.
Figure 1 presents the evolution of complex TE resonant fre-
quencies with variation of the equatorial radius R⊥ relative to
the polar radius Rz from oblate silicon spheroid Rz = 0.4R⊥
to prolate spheroid Rz = 1.6R⊥. k is the wave number and
R = (RzR2

⊥)1/3 is the mean radius that equalizes volumes of
sphere and spheroid. For the reader’s convenience we split
the frequency range in Fig. 1 into two parts. The insets show
the QNMs of a sphere. In Fig. 2 we demonstrate a phe-
nomenon of avoided crossing of resonances marked as 1 and
2 in Fig. 1, which is the result of interaction of the dipole
QNM with the octuple QNM [45]. There is a general belief
that a homogeneous spherical dielectric body represents the
ideal case, so that any perturbation of shape of the sphere can
only degrade the resonance (the imaginary part increases or
the Q factor decreases). Lai et al. [45,46] have shown this,
however, provided that the imaginary part of the spherical
QNM is small enough. For the QNMs with low Q factor their

FIG. 2. Evolution of resonant frequencies and resonant modes
labeled as 1 and 2 in Fig. 1 versus ratio of radii Rz and R⊥.

frequencies deviate from the complex eigenfrequencies of the
sphere linearly [4].

This anomalous behavior of the low-Q resonances can be
comprehended if one refers to the series over spherical har-
monics (1). For the TE polarization we have

−→
E =

∑

l

a0
l
−→
M 0

l , (2)

where l = 1, 3, 5, . . . if the azimuthal component of electric
field Eφ is even relative to z → −z and l = 2, 4, 6, . . . if Eφ

is odd. Once a sphere transforms into a spheroid the orbital
momentum l is not preserved. Figure 3 shows new multipole
radiation channels are opened with this transformation. Let us
consider some of the resonances shown in Fig. 1. For variation
of the polar radius Rz the lowest mode shown by black line
goes through the Mie dipole mode 1,0 of a sphere with the fre-
quency kR = 0.862 + 0.0414i. As seen from the first subplot

FIG. 3. Evolution of multipole coefficients in series (1) for evo-
lution of resonant modes l, n shown in Fig. 1.

053507-2



EXCEPTIONAL POINTS IN A DIELECTRIC SPHEROID PHYSICAL REVIEW A 104, 053507 (2021)

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.02

0.04

0.06 1

2

(b)(a)

FIG. 4. ARCs of TE QNMs for evolution of sphere into spheroid in the sector m = 0.

of Fig. 3 at this moment the only radiation channel is given by
the coefficient a10. The resonant widths of the Mie resonant
modes fast fall down with the orbital momentum l and grow
with the radial index n [47]. As a result, when a sphere is
deformed, the fast decaying dipole channel is weakening at
the cost of linear arising of the next slower decay octuple
channel l = 3 in accordance to Eq. (2). These comprehensive
considerations were issued by Lai et al. [45]. Respectively, the
resonant width is decreased as shown in Fig. 1 by black line.
However, there are exceptions from this rule, for example,
the QNMs l = 2, n = 1 and l = 2, n = 0 (the last column of
subplots in Fig. 3). In both cases the same slower decaying
radiation channels with l = 4 and l = 6 are attaching to the
quadruple channel with l = 2 for deviation from a sphere.
Nevertheless the behavior of resonant widths is dramatically
different as seen from Fig. 1. For the radial quantum n = 0 we
observe a degradation of the quadruple QNM, while for n = 1
we observe the opposite behavior. That shows the importance
of the radial indices for resonant widths [47].

Let us consider also the resonances evolving with the Mie
resonances with higher orbital momentum, and octuple res-
onance 3,0 with the frequency kR = 1.629 + 0.0042i shown
by green line in Fig. 1. Corresponding evolution of multipole
coefficients is shown in Fig. 3 in the subplot labeled 3,0.
In contrast to previous dipole and quadruple resonances the

FIG. 5. Evolution of selected resonant frequencies and resonant
modes labeled as 1 and 2 in Fig. 4 vs ratio of radii Rz and R⊥. The
insets show the azimuthal component |Eφ | of corresponding resonant
modes at points marked by closed circles.

high-Q decaying octuple resonance is substituted by the fast
decaying dipole resonance 1,0. As a result we observe an
increase of resonant width in Fig. 1 for transformation of
sphere into spheroid. The other subplot 4,0 in Fig. 3 shows
the same result.

We omit analysis of the TM resonances because of a sim-
ilarity with the case of the TE resonances. The reader can
see the TM resonances in Ref. [48]. Also we present there
the sector m = 1 destined to show that the phenomena of
ARCs exist in the other sectors of the azimuthal index m, in
particular, m = 1. Similar to the TE resonances in the sector
m = 0 we observe the same tendency of degradation of the
high-Q QNMs and, visa versa, enhancement of the Q factor
for the low-Q QNMs for deformation of sphere [48].

III. EXCEPTIONAL POINTS

EPs arise in the vicinity of ARCs, numerous examples of
which are shown in Fig. 4 highlighted by open circles. It is
interesting that the ARC phenomena are observed only for the
oblate spheroids below Rz/R⊥ = 1/2. Figure 5 demonstrates
an exchange of the resonant modes typical for ARC for vari-
ation of the aspect ratio of spheroid. As shown in Fig. 4(b)
the ARCs are complemented by strong enhancement of the

FIG. 6. Evolution of resonant frequencies and resonant modes
versus Rz/R⊥ at ε = 17.2 in the sector m = 0. Open circles highlight
EPs. The left one at Rz/R⊥ = 0.292, ε = 17.2 and the right one at
Rz/R⊥ = 0.304, ε = 18.4. The insets show the |Eφ | profiles of TE
QNMs at points marked by closed circles.
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FIG. 7. Encircling of EPs shown by open circles in Fig. 6. (a),(b) Encircling separate EPs. (c) Encircling of both EPs. Insets show the
component Eφ of resonant mode.

Q factor in an agreement with numerous considerations in
different dielectric resonators [10,49–51]. Although the point
ε = 17.2 and Rz/R⊥ = 0.45 is not the exact EP point, one can
see from Fig. 6 that two resonant modes coalesce into the one

FIG. 8. Evolution of the field patterns Ey for encircling the EP
ε = 12, Rz/R⊥ = 0.84 marked by star in the sector m = 1.

inside the areas highlighted by open circles. Such a behavior
of resonances close to the EP behavior was observed in dif-
ferent dielectric structures [26,33,34,37,40]. There are ways
to approach the true singular points of EPs [52,53] by pre-
cise two-parametric tuning of the aspect ratio Rz/R⊥ and the
refractive index of spheroid that is challengeable experimen-
tally. However, there is also a way to show EPs by encircling
the EP through which resonant eigenmodes are interchanged
[16] without approaching the EP point. We encircle the EP
points shown as open circles in Fig. 6 by three ways. In the
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0 1 2
/2

0
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1

FIG. 9. Evolution of the expansion coefficients a1
l (TE modes)

and b1
l (TM modes) for encircling the EP shown in Fig. 8.
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first case the rectangular contour encircles only the left EP
at the point Rz/R⊥ = 0.292, ε = 17.2, as shown in Fig. 7(a).
Respectively, in the second case the contour encircles the right
EP point Rz/R⊥ = 0.304, ε = 18.4 as shown in Fig. 7(b). At
last, we present also the case of encircling of both EPs shown
in Fig. 7(c). In all cases we encircle EPs counterclockwise.

Let us consider the first case shown in Fig. 7(a), where
encircling starts with point Rz/R⊥ = 0.32, ε = 17 marked by
an open circle in the inset of the figure. In the first downward
path we decrease the aspect ratio at the same permittivity
reaching the point till Rz/R⊥ = 0.27, ε = 17, which is marked
by a cross. In the complex plane this path maps into sharp
trajectory shown by a dot-dashed blue line that features high
response of resonant frequency on the shape of the spheroid.
Respectively, the resonant mode demonstrates sharp change
of the resonant mode. In the next horizontal path we slightly
increase the permittivity from ε = 17 to ε = 17.8 of the oblate
spheroid with the same shape and reach the point Rz/R⊥ =
0.27, ε = 17.8 marked by a square in the inset. In the complex
plane this path maps into monotonic descent of resonant fre-
quency by law (kR)2ε ≈ C or kR ≈ √

C/17(1 − �ε/2). That
linear part of the trajectory is plotted by a solid blue line in
Fig. 7(a). The resonant mode presented by the insets at starting
and finishing points also does not show visible changes. The
third upward part of the rectangular contour goes from the
point marked by square Rz/R⊥ = 0.27, ε = 17.8 to the point
marked by star Rz/R⊥ = 0.32, ε = 17.8 maps into sharp tra-
jectory shown by a blue dashed line. However, the resonant
mode is not changing the fact that is related to far distance
between the left EP and the path as distinct from the first
downward path from circle to cross. By doing so we closed
the rectangular contour, however, as the resonant frequency as
the resonant mode are interchanged, as was first demonstrated
by Dembowskii et al. in a microwave metallic resonator [16].
And only the second encircling of the left EP restores the
resonant mode as demonstrated in Fig. 7(a) by red lines.

The right EP Rz/R⊥ = 0.304, ε = 18.4 is expected to give
rise to the same features. However, as shown in Fig. 7(b)
counterclockwise encircling of this EP demonstrates clock-
wise behavior of the resonant frequency and mode opposite to
the case of counterclockwise encircling of the left EP. That

is related to the fact that the signs of winding numbers of
neighboring EPs arising after crossing of two lines in the
complex plane are opposite each other [54,55]. Figure 7(c)
presents graphical evidence for that. The every encircling of
two EPs with opposite winding numbers restores the resonant
modes.

Finally, Fig. 8 demonstrates that the EPs are not unique
and exist in the sector m = 1. Figure 8 demonstrates as for
encircling of the EPs in plane R⊥/Rz and ε one of the reso-
nant modes restores only after encircling by 4π in the sector
m = 1. It is clear that the same refers to the multipole coeffi-
cients a1

l and b1
l as shown in Fig. 9. There are also many other

EPs with higher frequencies.

IV. SUMMARY AND CONCLUSIONS

It seems reasonable that resonances of any dielectric par-
ticle shaped differently from a sphere yield to the Mie
resonances of sphere by the Q factors because the surface of
the sphere is minimal. However, as Lai et al. [45,46] have
shown, that is true only for those resonances whose imag-
inary part is small enough. We present numerous examples
which confirm this rule and give comprehensible insight by
demonstration of multipole radiation channels for evolution
of a sphere into spheroid. However, we also show exceptions
to this rule.

However, the main objective of the present paper was
demonstration of EPs in a spheroid that has fundamental
significance because of compactness of these dielectric res-
onators. Moreover, evolution of expansion coefficients in
Fig. 4 demonstrates multipole conversion for encircling of
EPs and, what is the most remarkable, this evolution has a
period 4π . In the photonic system, the appearance of EPs
can be exploited to a broad range of interesting applica-
tions, including lasing [56], asymmetric mode switching [26],
nonreciprocal light transmission [57,58], enhancement of the
spontaneous emission [59], and ultrasensitive sensing [60].
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