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Strong mechanical squeezing and optomechanical entanglement in a dissipative
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We consider a dissipative cavity optomechanical system which couples to an auxiliary cavity with a high-
quality factor and is driven by an amplitude-modulated laser field. Due to the introduction of the auxiliary cavity,
we find that the steady-state mechanical squeezing can be enhanced compared to the case without an auxiliary
cavity and the so-called 3 dB limit can also be broken in the resolved-sideband regime. Moreover, the squeezing
can also be achieved even in the unresolved-sideband regime. We study the optomechanical entanglement in
the presented system. It is found that the enhanced entanglement can be obtained by introducing the auxiliary
cavity, and the entanglement can also be generated in the unresolved-sideband regime for appropriate system
parameters. Numerical results show that the presented schemes have strong robustness against the thermal noise
acting on the mechanical mode.
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I. INTRODUCTION

The preparation of nonclassical states of macroscopic ob-
jects, especially entangled states and squeezed states, not
only contributes to revealing the essence of nonclassical phe-
nomena in the transition from the quantum world to the
classical world, but also plays an important role in quan-
tum computation, quantum information processing [1–3], and
quantum ultra-high-precision measurements [4,5]. Optome-
chanical systems that exhibit nonlinear properties by the
radiation pressure of light exerting on a movable mirror can
be equivalent to the nonlinear optical Kerr medium [6] and
provide a brilliant platform for the generation of macroscopic
nonclassical states, such as the entanglement between optical
and mechanical modes [7–10] and between two mechani-
cal modes [11–21], the squeezing of a mechanical mode
[22–30], etc. In general, the steady-state entanglement [7,8]
and squeezing [22–24] can be obtained in optomechanical
systems by radiation pressure or combining quantum mea-
surement and feedback control. Recently, more and more
methods have been proposed to prepare entanglement [9–21]
and squeezing [25–30] in optomechanical systems.

In parallel with the development of cavity optomechanics,
open quantum systems driven periodically by an external field
have attracted much attention due to rich quantum properties
and dynamical behaviors [31–33]. Especially, it was found
that the amount of entanglement and squeezing can be signifi-
cantly enhanced in an optomechanical system by the periodic
modulation without feedback [18,24,34–43]. Mari and Eisert
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showed that larger degrees of mechanical squeezing and op-
tomechanical entanglement can be generated by periodically
modulating the amplitude of driving field in a standard op-
tomechanical system [34]. Farace and Giovannetti proposed
that the desired quantum effects can be enhanced or elimi-
nated by showing an interference pattern for different relative
phases between the modulations of mechanical frequency
and external laser intensity [38]. Recently, Chakraborty and
Sarma demonstrated that the robust mechanical entangle-
ment can be generated by modulating external driving field
and coupling strength between two mechanical oscillators
[39]. The prerequisite of these schemes is the ground-state
cooling of mechanical oscillator, which is usually achieved
by sideband cooling. However, the realization of sideband
cooling requires the system to be in the resolved-sideband
regime, which is still difficult for the standard cavity op-
tomechanical system in some experiments. An effective and
easy implementation scheme is to achieve self-cooling in the
unresolved-sideband regime by combining auxiliary systems.
So far, many auxiliary systems have been introduced in a stan-
dard optomechanical system to cooling mechanical oscillator,
such as a single atom [44–46], an atomic ensemble [43,47,48],
a cavity [49], even an oscillator [50,51].

Motivated by these works above, in this paper, we pro-
pose to directly couple an auxiliary cavity with a high-quality
factor to a dissipative optomechanical cavity that is driven
by a periodical modulated pump. The introduction of auxil-
iary cavity just constructs the electromagnetically-induced-
transparencylike cooling mechanism for the mechanical
oscillator, which greatly reduces the requirement for the qual-
ity factor of the optomechanical cavity [49]. Combined with
the periodic amplitude modulation of driving field without any
feedback, it is possible to explore certifiable quantum effects

2469-9926/2021/104(5)/053506(9) 053506-1 ©2021 American Physical Society

https://orcid.org/0000-0001-9198-2270
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.053506&domain=pdf&date_stamp=2021-11-02
https://doi.org/10.1103/PhysRevA.104.053506


ZHANG, ZHANG, GUO, LIU, LI, AND ZHANG PHYSICAL REVIEW A 104, 053506 (2021)

FIG. 1. Schematic diagram for the double-cavity optomechanical
system. An auxiliary cavity (a2) with a high-quality factor is directly
coupled to a standard optomechanical cavity (a1) driven by an exter-
nal laser with frequency ωl and time-dependent amplitude E (t ). The
frequency and decay rate of mechanical oscillator are ωm and γm,
respectively. ω1(2) and κ1(2) represent the frequency and decay rate of
the two cavities. J: the cavity-cavity coupling strength.

involving macroscopic mechanical modes. We study the effect
of auxiliary cavity on mechanical squeezing and optomechan-
ical entanglement for the standard optomechanical cavity in
the resolved-sideband and unresolved-sideband regimes. It
is found that, in the resolved-sideband regime, the mechan-
ical squeezing can be significantly enhanced and break the
so-called 3 dB limit, and the optomechanical entanglement
can also be significantly enhanced. what’s more, even in the
unresolved-sideband regime, the mechanical squeezing and
optomechanical entanglement can also be generated. And the
presented schemes have strong robustness against the thermal
noise acting on the mechanical mode.

This paper is organized as follows. In Sec. II, we describe
the presented model in detail and obtain the linearized dynam-
ical equation of the system. In Sec. III, we derive the analytical
solutions of the first moments for the system operators by
a perturbation method, and analyze numerically and analyt-
ically the dynamical characters of the first moments. Then
we derive the evolution equation of the covariance matrix
(CM) describing the dynamics of the quantum fluctuations
in Sec. IV. In Sec. V, we show that the enhancement and
generation of mechanical squeezing in the resolved-sideband
and unresolved-sideband regime, respectively. In Sec. VI, we
study the optomechanical entanglement in both the resolved-
sideband regime and unresolved-sideband regime. Finally,
conclusions are presented in Sec. VII.

II. DESCRIPTION OF THE MODEL

The system we considered is shown in Fig. 1, in which
an auxiliary cavity with a high-quality factor is directly cou-
pled to the standard optomechanical system consisting of a
movable mirror and a dissipative cavity driven by an external
laser with frequency ωl and time-dependent amplitude E (t ).
We assume that both cavities are single-mode cavities and the
cavity-cavity coupling strength is J . The movable mirror is
modeled as a mechanical oscillator with frequency ωm and
decay rate γm. The total Hamiltonian of the system (in the

unit of h̄ = 1) is given by

H = ω1a†
1a1 + ω2a†

2a2 + ωm

2
(q2 + p2)−ga†

1a1q

+ J (a†
1a2 + a1a†

2) + i[E (t )a†
1e−iωl t − E∗(t )a1eiωl t ].

(1)

Here, a1 (a†
1) and a2 (a†

2) are the annihilation (creation) op-
erators of the two cavity modes with frequency ω1, ω2 and
decay rate κ1, κ2, respectively; q and p are dimensionless
position and momentum operators of the mechanical mode
with standard canonical commutation relation [q , p] = i; g
is the single-photon optomechanical coupling coefficient. The
amplitude of the external laser E (t ) is periodically modulated
with the period τ [E (t ) = E (t + τ )]. In the frame rotating at
the laser frequency ωl , the Hamiltonian becomes

H = δ1a†
1a1 + �2a†

2a2 + ωm

2
(q2 + p2)−ga†

1a1q

+ J (a†
1a2 + a1a†

2) + i[E (t )a†
1 − E∗(t )a1], (2)

where δ1 = ω1 − ωl and �2 = ω2 − ωl are the detunings of
two cavities with respect to the driving laser, respectively.

Aside from the unitary dynamics, the influence of the en-
vironment on the quantum system is also crucial. Therefore,
taking the mechanical damping and cavity decay into account,
the dissipative dynamics of the open system can be described
by the following set of nonlinear quantum Langevin equations
(QLEs) [52]

q̇ = ωm p,

ṗ = −ωmq − γm p + ga†
1a1 + ξ (t ),

ȧ1 = −(κ1 + iδ1)a1 + iga1q − iJa2 + E (t ) +
√

2κ1ain
1 (t ),

ȧ2 = −(κ2 + i�2)a2 − iJa1 +
√

2κ2ain
2 (t ), (3)

where ain
1 and ain

2 are zero-mean noise operators of two cavi-
ties with the correlation functions [52]〈

ain
j (t )ain†

j (t ′)
〉 = (na j + 1)δ(t − t ′),〈

ain†
j (t )ain

j (t ′)
〉 = na jδ(t − t ′), (4)

where j = 1, 2; na j = [exp(h̄ω j/kBT ) − 1]−1 is the mean
bath photon number at the environmental temperature T ,
and kB is the Boltzmann constant. ξ (t ) is zero-mean Brow-
nian motion noise operator with non-Markovian correlation
function [53,54]

〈ξ (t )ξ (t ′)〉 = γm

2πωm

∫ [
coth

(
h̄ω

2kBT
+ 1

)]
ωe−iω(t−t ′ )dω.

(5)

For the case that the mechanical oscillator has a high-quality
factor Q = ωm/γm � 1, the above correlation function of ξ (t )
can be described by Markovian approximation as

〈ξ (t )ξ (t ′) + ξ (t ′)ξ (t )〉/2 � γm(2nm + 1)δ(t − t ′), (6)

where nm = [exp(h̄ωm/kBT ) − 1]−1 is the mean thermal
phonon number.

The QLEs in Eq. (3) are nonlinear inhomogeneous differ-
ential equations, which are usually difficult to solve directly.
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FIG. 2. Time evolution of the real part and the imaginary part of the first moments 〈a1(t )〉 (a) and 〈a2(t )〉 (b) during the three modulation
periods [57τ, 60τ ]. The dashed and solid lines represent the approximate analytical results and the exact numerical results, respectively, in both
(a) and (b). (c), (d) The phase-space trajectories of 〈a1(t )〉 and 〈a2(t )〉 for time intervals [0, 60τ ]. The green (light gray) and black solid lines
represent the approximate analytical results and the exact numerical results respectively in both (c) and (d). The chosen system parameters
are (in units of ωm) κ1 = 1.5, δ1 = 1, g = 7 × 10−6, γm = 10−5, κ2 = 0.1, �2 = −1, J = 0.7, nm = 0, E0 = 1.3 × 105, E±1 = 2 × 104, and

 = 2.

However, in the case of strong driving, each Heisenberg op-
erator can be rewritten as O = 〈O(t )〉 + δO (O = q, p, aj ),
where δO is zero-mean quantum fluctuation operator around
the classical c-number first moments 〈O(t )〉. Therefore, by
applying the standard linearization technique to the QLEs in
Eq. (3), the evolution equation of the first moments can be
obtained

〈q̇(t )〉 = ωm〈p(t )〉,
〈ṗ(t )〉 = −ωm〈q(t )〉 − γm〈p(t )〉 + g|〈a1(t )〉|2,

〈ȧ1(t )〉 = −(κ1 + iδ1)〈a1(t )〉 + ig〈a1(t )〉〈q(t )〉
− iJ〈a2(t )〉 + E (t ),

〈ȧ2(t )〉 = −(κ2 + i�2)〈a2(t )〉 − iJ〈a1(t )〉, (7)

and the linearized QLEs of the quantum fluctuation operators
are

dδq

dt
= ωmδp,

dδp

dt
= −ωmδq − γmδp + g〈a1(t )〉∗δa1

+ g〈a1(t )〉δa†
1 + ξ (t ),

dδa1

dt
= −(κ1 + iδ1)δa1 + ig〈q(t )〉δa1

+ ig〈a1(t )〉δq − iJδa2 +
√

2κ1ain
1 (t ),

dδa2

dt
= −(κ2 + i�2)δa2 − iJδa1 +

√
2κ2ain

2 (t ). (8)

From the linearized QLEs above, one can obtain the corre-
sponding linearized system Hamiltonian

H lin = [δ1 − g〈q(t )〉]δa†
1δa1 + �2δa†

2δa2 + ωm

2
(δq2 + δp2)

+ J (δa†
2δa1 + δa2δa†

1) − g[〈a1(t )〉∗δa1

+ 〈a1(t )〉δa†
1]δq. (9)

III. DYNAMIC CHARACTERS OF THE FIRST MOMENTS

The time evolution of the first moments reflects the clas-
sical dynamic characters of the system. On the other hand,
the time-dependent first moments are crucial for studying the
dynamics of the quantum fluctuations, which can be seen from
Eq. (8). Therefore, a detailed description of the first moments
is necessary. Generally, it is difficult to find the exact solutions
of the first moments directly. But, when the system is far away
from optomechanical instabilities and multistabilities [55],
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FIG. 3. The phase-space trajectories of 〈q(t )〉 and 〈p(t )〉 for the time intervals (a) [0, 15τ ], (b) [15τ, 30τ ], (c) [30τ, 45τ ], and (d) [45τ, 60τ ].
From (a) to (d), the green (light gray) lines and black solid lines are obtained from the approximate analytical results and the exact numerical
results, respectively. The chosen parameters are the same as those in Fig. 2.

we can regard the optomechanical coupling as a perturbation
term. Moreover, the asymptotic solution of first moments will
have the same period as the amplitude modulation according
to the Floquets theory, i.e., 〈O(t + τ )〉 = 〈O(t )〉. Hence, we
can explore the system’s asymptotic behaviors by the approx-
imate analytical solutions and the exact numerical solutions of
the first moments. To find the approximate solutions, we first
perform a double expansion for 〈O(t )〉 in power series of the
coupling constant g and Fourier series

〈O(t )〉 =
∞∑

l=0

∞∑
n=−∞

On,l e
in
t gl , (10)

where 
 = 2π/τ is the fundamental modulation frequency.
In addition, Fourier series expansion can also perform on the
periodically modulated amplitude E (t )

E (t ) =
∞∑

n=−∞
Ene−in
t . (11)

Substituting Eqs. (10) and (11) into Eq. (7), the time-
independent coefficients On,l can be calculated by the
following recursive relations

pn,0 = qn,0 = 0,

an,0
1 = [κ2 + i(n
 + �2)]E−n

[κ1 + i(n
 + δ1)][κ2 + i(n
 + �2)] + J2
,

an,0
2 = JE−n

i[κ1 + i(n
 + δ1)][κ2 + i(n
 + �2)] + iJ2
, (12)

which corresponds to the case of l = 0. When l � 1, we get

pn,l = in


ωm
qn,l ,

qn,l = ωm

l−1∑
k=0

∞∑
m=−∞

am,k
1

∗
an+m,l−k−1

1

ω2
m − (n
)2 + iγmn


,

an,l
1 = i[κ2 + i(n
 + �2)]

×
l−1∑
k=0

∞∑
m=−∞

am,k
1 qn−m,l−k−1

[κ1+i(n
+δ1)][κ2+i(n
+�2)]+J2
,

an,l
2 = J

l−1∑
k=0

∞∑
m=−∞

am,k
1 qn−m,l−k−1

[κ1+i(n
+δ1)][κ2+i(n
+�2)]+J2
.

(13)

Now, in order to obtain the approximate analytical so-
lutions, we truncate the series above to l � 6 and |n| � 5,
and truncate the series of the modulated amplitude E (t ) to
|n| � 1, that is, the time-dependent amplitude takes the form
of E (t ) = E−1ei
t + E0 + E1e−i
t . Then we plot the time
evolution and phase-space trajectories of the first moments
〈a1(t )〉 and 〈a2(t )〉 in Fig. 2 to analyze the dynamics of the
cavity modes by using both numerical and analytical results.
Figures 2(a) and 2(b) show the asymptotic periodic evolution
of the real and imaginary parts of the first moments 〈a1(t )〉
and 〈a2(t )〉, respectively, from which it can be seen that the
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evolution period of the first moments is indeed the same as the
modulation period τ in the long-time limit. Furthermore, we
find that the approximate analytical solutions (dashed lines)
in Eqs. (12) and (13) agree well with the exact numerical
solutions (solid lines) obtained from Eq. (7) after about 60
modulation periods, which further verifies the accuracy of the
analytical solutions by perturbation approximation. In order
to show the dynamics of the system more clearly, Figs. 2(c)
and 2(d) exhibit the phase-space trajectories of 〈a1(t )〉 and
〈a2(t )〉, respectively, in which the green (light gray) and black
solid lines, respectively, represent the approximate analytical
results and the exact numerical results. As mentioned above,
both trajectories from the numerical results converge to a limit
cycle agreed well with the analytical results after about 60
modulation periods. To further show the convergence process,
we plot the phase-space trajectories of 〈p(t )〉 and 〈q(t )〉 in dif-
ferent time periods in Fig. 3. From Figs. 3(a) to 3(d), we can
clearly observe the slow asymptotic process of the accurate
numerical results and the analytical results.

IV. DYNAMICS OF QUANTUM FLUCTUATIONS

After obtaining the evolution characteristic of the first mo-
ments, we can easily solve the quantum fluctuations dynamics
of the system. To this effect, we introduce the quadrature
operators of the two cavity modes and the corresponding input
noise operators

δx1 = δa1 + δa†
1√

2
, δy1 = δa1 − δa†

1

i
√

2
,

δx2 = δa2 + δa†
2√

2
, δy2 = δa2 − δa†

2

i
√

2
,

xin
1 = ain

1 + ain†
1√

2
, yin

1 = ain
1 − ain†

1

i
√

2
,

xin
2 = ain

2 + ain†
2√

2
, yin

2 = ain
2 − ain†

2

i
√

2
, (14)

and all the quadrature operators and corresponding noise op-
erators can be expressed as the column vectors

u(t ) = [δq, δp, δx1, δy1, δx2, δy2]T ,

n(t ) = [0, ξ (t ),
√

2κ1xin
1 (t ),

√
2κ1yin

1 (t ),√
2κ2xin

2 (t ),
√

2κ2yin
2 (t )]T . (15)

Then, the linearized QLEs of the quantum fluctuations in
Eq. (8) can be rewritten as

du

dt
= R(t )u + n(t ), (16)

where R(t ) is a 6 × 6 time-dependent matrix

R(t ) =

⎡
⎢⎢⎢⎢⎢⎣

0 ωm 0 0 0 0
−ωm −γm Gx(t ) Gy(t ) 0 0

−Gy(t ) 0 −κ1 �1(t ) 0 J
Gx(t ) 0 −�1(t ) −κ1 −J 0

0 0 0 J −κ2 �2

0 0 −J 0 −�2 −κ2

⎤
⎥⎥⎥⎥⎥⎦

, (17)

where

�1(t ) = δ1 − g〈q(t )〉 (18)

is the effective time-modulated detuning; Gx(t ) and Gy(t ),
respectively, are the real and imaginary parts of the effective
coupling strength

G(t ) =
√

2g〈a1(t )〉. (19)

When the system is stable, due to the linearized process of
fluctuations evolution and the zero-mean Gaussian nature of
the noises, the asymptotic quantum state of the system will
evolve into a Gaussian state and is independent of the initial
states [56]. Here, the initial states of the cavity modes (a1

and a2) are prepared in vacuum state while the mechanical
mode is initially in the thermal state in equilibrium with me-
chanical bath. The asymptotic state of the fluctuations can be
characterized by the covariance matrix σ (t ), whose elements
are defined as

σk,l = 〈uk (t )ul (t ) + ul (t )uk (t )〉/2. (20)

We can derive the motion equation of the CM σ (t ) according
to Eqs. (16) and (20)

dσ

dt
= R(t )σ (t ) + σ (t )R(t )T + D, (21)

where R(t )T denotes the transpose of R(t ); D is a diffusion
matrix whose elements are related to noise correlation func-
tions and defined as

δ(t − t ′)Dk,l = 〈nk (t )nl (t
′) + nl (t

′)nk (t )〉/2. (22)

From Eqs. (4) and (6), we find that D is a diagonal matrix

D = diag[0, γm(2nm + 1), κ1(2na1 + 1), κ1(2na1 + 1),

κ2(2na2 + 1), κ2(2na2 + 1)]. (23)

Due to the periodicity of the elements of R(t ) in Eq. (17),
the solutions of linear differential equation (21) will have the
same periodicity as R(t ) in a long-time limit according to the
Floquet’s theorem

σ (t ) = σ (t + τ ). (24)

Now, the dynamic evolution of quantum fluctuations is com-
pletely described based on the evolution equation of the CM
σ (t ). In the following calculations, all eigenvalues of R(t )
have a negative real part for all time to ensure the stability of
the system, which is justified according to the Routh-Hurwitz
criterion [57].

V. MECHANICAL SQUEEZING
IN THE RESOLVED-SIDEBAND

AND UNRESOLVED-SIDEBAND REGIMES

We now investigate the generation of mechanical squeez-
ing when the auxiliary cavity is directly coupled to the
optomechanical cavity. Because of the zero mean of the quan-
tum fluctuations, the first and second diagonal elements of the
CM σ (t ) represent the variance of position and momentum
operators of the mechanical oscillator, respectively. Accord-
ing to the Heisenberg uncertainty principle and commutative
relation [q, p] = i, as long as the variance V (q) or V (p), i.e.,
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FIG. 4. Variance of the position operator of the mechanical os-
cillator in the resolved-sideband regime. The solid and dashed lines
correspond to the cases with and without auxiliary cavity, respec-
tively. The rectangular colored region represents the area below
quantum noise limit. All the selected parameters except those related
to the auxiliary cavity are the same as in Ref. [34]. The parame-
ters related to the auxiliary cavity are (in units of ωm) κ2 = 0.01,
�2 = −1.1, J = 0.6.

the first or second diagonal elements of the CM σ (t ), is less
than 1

2 , it can be judged that mechanical squeezing has been
generated.

In order to exhibit the behavior of mechanical squeez-
ing, we first plot the asymptotic evolution of the position
variance of the mechanical oscillator from t = 66τ to 70τ

in the resolved-sideband regime (κ1 < ωm) in Fig. 4, in
which the solid line is the variance in the presented scheme,
and the dashed line is the one in Ref. [34], i.e., the case
without the auxiliary cavity. It can be seen from Fig. 4 that
the position quadrature of the mechanical oscillator is pe-
riodically squeezed with the same period as the amplitude
modulation. what’s more, the squeezing can be enhanced

compared with the scheme in Ref. [34] and broke the so-called
3 dB limit in schemes based on the parametric interaction
[22–24,58], which are limited by a factor of 1

2 below the
zero-point level, i.e., 0.25. For example, V (q) = 0.195 18
for t = 66.437τ . This means that strong mechanical squeez-
ing can be achieved by coupling an auxiliary cavity to
a resolved-sideband optomechanical system. For the case
that the optomechanical cavity is in the unresolved-sideband
regime, by choosing appropriate system parameters, the me-
chanical squeezing can also be achieved as shown in Fig. 5(a).
Moreover, Fig. 5(b) shows that the mechanical squeezing can
still be generated even when the mean thermal phonon number
nm = 3000 (corresponding to the environmental temperature
T = 0.144 K), which proves that the presented scheme for
mechanical squeezing is robust against the noise from the
mechanical thermal reservoir.

What needs to be pointed out is that the steady-state
squeezing can be achieved after a long period of time, and
the periodicity in Figs. 4 and 5 is just the periodicity of the
squeezing direction in the phase space. In order to show
the characteristic of the mechanical squeezing more compre-
hensively, we depict the Wigner functions [56] in the phase
space at different specific moments in two contiguous peri-
ods [68τ, 70τ ] and the evolution of single-mode squeezing
parameter r in Figs. 6 and 7, respectively, where the squeezing
parameter r is defined as the logarithm of the minimum eigen-
value of the CM σ (t ) [34,43]. It can be seen from Fig. 6 that
the shapes of the Wigner functions at the same moments in the
two modulation periods are identical, which further demon-
strates the dynamical behavior of the system has the same
period as the amplitude modulation. During every period, the
squeezing direction rotates once in the phase space, but the
degree of squeezing remains the same and this is because
the squeezing parameter will be a constant in long-time limit
as shown in Fig. 7.

The realization of many macroscopic quantum effects in
an optomechanical system, especially mechanical squeezing,
must cool the mechanical oscillator to the ground state at first.
In our scheme, the introduction of the auxiliary cavity and
the periodic modulation of driving field are the key factors

FIG. 5. Variance of the position operator of the mechanical oscillator in the unresolved-sideband regime with the mean thermal phonon
number (a) nm = 0 and (b) nm = 3000. The dashed and solid lines correspond to the analytical solutions and the exact numerical results of first
moments, respectively. The rectangular colored regions represent the area below quantum noise limit. The chosen system parameters are (in
units of ωm) κ1 = 5, δ1 = 1, g = 8 × 10−5, γm = 10−6, κ2 = 0.01, �2 = −1, J = 4, E0 = 1.5 × 105, E±1 = 2 × 104, and 
 = 2.
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FIG. 6. Wigner functions of the mechanical mode at some specific times. The chosen parameters are the same as those in Fig. 5.

for mechanical squeezing. The precooling process has not
been performed in the presented scheme, which is owed to
the self-cooling mechanism induced by the auxiliary cavity.
In Ref. [49], it has been demonstrated that the mechanical
oscillator can be cooled to ground state in a double-cavity op-
tomechanical system even in the unresolved-sideband regime
due to the electromagnetically-induced-transparencylike ef-
fect, and that is also why the presented scheme is robust
against the thermal noise of the mechanical mode. On the
other hand, the generation of mechanical squeezing originates
from the nonlinear effect induced by the periodic amplitude
modulation, which is similar to the parametric amplification
process. The amplitude of the driving field is modulated
at twice mechanical mode frequency, which is equivalent
to modulate the spring constant of the optical spring ef-
fect [34,38,59]. Therefore, using the presented model, the
mechanical squeezing can be achieved even in the unresolved-
sideband regime.

FIG. 7. Time evolution of the mechanical mode-squeezing pa-
rameter r. The chosen parameters are the same as those in Fig. 5.

VI. OPTOMECHANICAL ENTANGLEMENT IN THE
RESOLVED-SIDEBAND AND UNRESOLVED-SIDEBAND

REGIMES

In this section, we turn to investigate the entanglement
between the optical mode and the mechanical mode in the
presented system. As mentioned above, since the system’s
asymptotic state is Gaussian, a convenient method to measure
the entanglement is the logarithmic negativity EN [60,61],
which can be readily computed from the reduced 4 × 4 CM
σcm(t ) for one of the cavity modes and the mechanical mode.
Here we focus on the entanglement between the auxiliary
cavity and the movable mirror, so σcm(t ) can be gotten from
the full 6 × 6 CM σ (t ) by extracting the first two and last two

FIG. 8. Time evolution of optomechanical entanglement EN in
the resolved-sideband regime. The red (light gray) and black lines
represent the optomechanical entanglement in the presented scheme
and in Ref. [34], respectively. All the selected parameters except
those related to the auxiliary cavity are the same as in Ref. [34].
The parameters related to the auxiliary cavity are (in units of ωm)
κ2 = 0.03, �2 = −0.8, J = 0.5.
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FIG. 9. Time evolution of optomechanical entanglement EN in
the unresolved-sideband regime. The red (light gray) and black lines
represent the cases for the mean thermal phonon number nm = 0 and
5000, respectively. The lower inset presents zooming in on the tiny
rectangular area. The chosen system parameters are (in units of ωm)
κ1 = 2, δ1 = 1, g = 10−5, γm = 10−6, κ2 = 0.01, �2 = −1, J = 1,
E0 = 2 × 105, E±1 = 4 × 104, and 
 = 2.

rows and columns, where σ (t ) can be gotten by numerically
solving Eq. (21). If we write the reduced 4 × 4 CM σcm(t ) as
the block matrix form

σcm(t ) =
[

Vm Vcm

V T
cm Vc

]
, (25)

where Vm, Vc, and Vcm are 2 × 2 matrices, and EN is given
by [60,61]

EN = max[0,−ln(2η−)], (26)

with

η− ≡ 2−1/2{ − [2 − 4 detσcm]1/2}1/2,

 ≡ detVm + detVc − 2 detVcm. (27)

If EN > 0, i.e., η− < 1
2 , the cavity mode and mechanical mode

are entangled.
We first numerically simulate the optomechanical entan-

glement dynamics between the auxiliary cavity and the mirror
in Fig. 8 with the red (light gray) line, where the optome-
chanical cavity is in the resolved-sideband regime and all
the parameters are the same as those in Ref. [34] besides
the auxiliary cavity. For comparison, we also give the op-
tomechanical entanglement in Ref. [34] (the black line in
Fig. 8). Obviously, the enhanced optomechanical entangle-
ment can be obtained by introducing the auxiliary cavity at
the expense of the entanglement between the optomechanical

cavity and the mirror tending to zero (not shown in Fig. 8). In
addition, we note that the optomechanical entanglement has
the same period as amplitude modulation after a long-time
evolution. In Fig. 9, we show the process of obtaining steady-
state optomechanical entanglement when the system is in the
unresolved-sideband regime (κ1 > ωm). It is found that the
optomechanical entanglement can also be generated even in
the unresolved-sideband regime, regardless of the case of the
mean thermal phonon number nm = 0 or 5000 (corresponding
to the environmental temperature T = 0.24 K), which means
the entanglement is robust against the thermal mechanical
bath.

VII. CONCLUSIONS

In conclusion, we have studied the mechanical squeezing
and optomechanical entanglement in a double-cavity optome-
chanical system driven by a periodically modulated laser. We
analyzed the asymptotic behavior of the system dynamics
by solving the first moments of the system operators nu-
merically and analytically, and found that the period of the
classical evolution of system is the same as the amplitude
modulation in the long-time limit. Then, we showed that the
introduction of the auxiliary cavity can enhance the mechan-
ical squeezing in the resolved-sideband regime, and due to
the self-cooling mechanism, the mechanical squeezing can
be achieved even in the unresolved-sideband regime. On the
other hand, after introducing the auxiliary cavity, the enhanced
optomechanical entanglement can be obtained in both the
resolved-sideband and the unresolved-sideband regimes. We
numerically evaluated the influence of the mechanical thermal
bath, which indicates that both the mechanical squeezing and
optomechanical entanglement have strong robustness against
the mechanical noise. Moreover, the double-cavity optome-
chanical system can be achieved experimentally based on
Fabry-Pérot cavities or whispering-gallery cavities [62–64].
Therefore, the presented scheme may be meaningful for the
ultraprecise measurement based on mechanical squeezing
(e.g., the gravitational wave detection) and the exploration
of the macroscopic quantum effects based on optomechanical
system.
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